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Towards Flexible Evaluation for Generative
VisualQuestion Answering

Anonymous Authors

ABSTRACT
Throughout rapid development of multimodal large language mod-
els, a crucial ingredient is a fair and accurate evaluation of their
multimodal comprehension abilities. Although Visual Question An-
swering (VQA) could serve as a developed test field, limitations of
VQA evaluation, like the inflexible pattern of Exact Match, have
hindered MLLMs from demonstrating their real capability and dis-
courage rich responses. Therefore, this paper proposes the use
of semantics-based evaluators for assessing unconstrained open-
ended responses on VQA datasets. As characteristics of VQA have
made such evaluation significantly different than the traditional
Semantic Textual Similarity (STS) task, to systematically analyze
the behaviour and compare the performance of various evaluators
including LLM-based ones, we proposes three key properties, i.e.,
Alignment, Consistency and Generalization, and a corresponding
dataset Assessing VQA Evaluators (AVE) to facilitate analysis. In
addition, this paper proposes a Semantically Flexible VQA Evalu-
ator (SFVE) with meticulous design based on the unique features
of VQA evaluation. Experimental results verify the feasibility of
model-based VQA evaluation and effectiveness of the proposed eval-
uator that surpasses existing semantic evaluators by a large margin.
The proposed training scheme generalizes to both the BERT-like
encoders and decoder-only LLM.1

CCS CONCEPTS
• Computing methodologies → Scene understanding; Activity
recognition and understanding; Information extraction.

KEYWORDS
Visual QuestionAnswering, Semantic Textual Similarity, Contrastive
Learning, Evaluation Method

1 INTRODUCTION
Visual Question Answering (VQA) evaluates the multimodal com-
prehension abilities by posing questions about given images and
comparing the model’s responses with annotated answers[22, 24,
25, 38, 40, 46, 51]. However, current VQA evaluation metrics have
made it tough for evaluating the rich responses of Multimodal Large
Language Models (MLLMs).

1All related codes and data will be released.
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Question:  What are the animals?

Answer:    elephant

BLIP2

Qwen-VL

GPT-4V

LLaVA

elephants

These are elephants.

The animals in the 
image are elephants.

There are two elephants 
in the image.

Figure 1: Responses from four MLLMs on a simple visual
question. The responses are different in length, styles and
complexity, which can all be considered correct but none of
them exactly matches the annotated answer.

Most VQA datasets comply with a triplet format and each sample
consists of a question, image and annotation. Annotations are often
a single word or phrase [25, 38, 46, 51, 52] or a set of ten candidate
answers [22, 24, 40, 47]. Current evaluation metrics, Exact Match
[38] (for samples without candidate answers) and VQA Score [6] (for
samples with ten candidate answers), both require the responses to
be identical in morphology with the annotation to be considered
correct. Variations in tense, singular or plural forms and synonyms
are not allowed, let alone sentence-style responses from MLLMs.

Traditional vison-language models treat VQA as a classification
problem [43, 46, 49, 56, 57], where answers collected from the train-
ing set are used to establish pre-defined classes, and the possible
responses are constrained to these classes. Thus the problem of
evaluating multifarious responses does not exist. However, MLLMs
treat VQA as a generative problem [8, 18, 30, 34] and generates
assorted responses. Meanwhile, the growing trend that the MLLM
community prefers zero-shot test, has made it even tougher for
models to generate responses that are identical to the ground-truth
answers. As shown in Figure 1, semantically equivalent but mor-
phologically distinct responses are not accepted.

Although it is possible to force the model to output a single word
with a harsh prompt, such remediation may potentially damage the
performance and make it unfair for different MLLMs, especially for
those with poor instruction-following ability and those that tend
to response with long sentences. As MLLMs inherit the in-context
learning capability of LLMs, it is feasible to introduce in-context
examples to force short responses. However, since different MLLMs
contain different in-context learning capability, such practice in-
terferes a fair evaluation of MLLMs’ multimodal comprehension
performance. There thus is an urgent need for a metric that aligns
well with human judgment and accommodates various response
types while ensuring consistent evaluation despite variations in
response morphology.

To compare different evaluators, traditional Semantic Textual
Similarity (STS) task measures the difference between predicted
scores and human annotation results from a single aspect of seman-
tic relevance. However, both intuition and our experiments (refer

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

to Section 3.1 and 5.3) suggest that there is a significant difference
between the evaluation of correctness in VQA responses and the
traditional assessment of media-text relevance in STS.

Therefore, to systematically evaluate the performance of an eval-
uator, with the unique characteristics in the task of VQA response
evaluation taken into consideration, we propose three quantitative
key properties, i.e., Alignment, Consistency and Generaliza-
tion. Alignment stands for the overall correspondence of predicted
scores with human annotation. Consistency measures how well
an evaluator accommodates semantically equivalent responses of
different morphology and length. Generalization indicates the vari-
ance of performance on different sources of data. Further, to facili-
tate comprehensive analysis of the performance and behaviour of
evaluators, we provide a human-annotated dataset Assessing VQA
Evaluators (AVE) that grades the correctness of model responses
towards ground-truth labels on VQA datasets. AVE is further aug-
mented by ChatGPT and WordNet [41] to increase the diversity.

As pilot experiment shows (refer to Section 5.3), formulaic met-
rics (BLEU [44], ROUGH [33], METEOR [10]) and model-based
metrics [14, 21, 32, 45] perform poorly on the VQA response evalu-
ation task. Therefore, we propose a novel evaluator that is trained
with meticulously designed pretraining tasks. The tasks are de-
signed for improving the embedding representation of VQA text,
which utilizes contrastive learning to guide the evaluator to capture
the fine-grained difference within a text pair and ignore the noise
in morphology and length. Experiments demonstrate that the pro-
posed pretraining tasks significantly improve the performance of
our evaluator on the AVE dataset, making the evaluator’s prediction
aligns much better with human judgement.

The contribution of this paper can be concluded as follows:
• This paper addresses the dilemma, where rich responses
of MLLMs hinder fair evaluation under current metric, by
proposing semantic-similarity-based evaluation that applies
to various VQA responses.

• This paper proposes three quantitative key properties in
VQA response evaluation based on its characteristics, and a
high-quality human-annotated dataset, AVE, for assessing
different evaluators comprehensively. In addition, we eval-
uate the performance of various types of existing semantic
similarity evaluators on the proposed AVE dataset.

• Experimental results demonstrate the feasibility of apply-
ing model-based methods to the flexible evaluation of VQA
responses as well as the effectiveness of our proposed evalu-
ator. Our evaluator significantly surpasses existing methods,
including ChatGPT and the SOTA embedding model Voyage-
lite-02-Instruct 2 by a large margin. Our training scheme
generalizes to both the encoder-only and decoder-only mod-
els.

2 RELATEDWORK
2.1 Visual Question Answering
As the answer space ofmost open-ended VQAdatasets is limited and
the same answer applies for multiple questions (the most common
2,000 answers in the training set of VQA v2[22] is able to cover about
2As of the time of submission, Voyage-lite-02-Instruct achieves the best performance
on the task of Semantic Textual Similarity (STS).

94% questions in its validation set), early methods [43, 46, 49, 56, 57]
treat VQA as a classification task, which adopt answers in the
training set as class labels and train with classification loss. The
limited answer space of such approach makes it unable to predict
unseen classes and limits the generalization, which inspires the
utilization of generative methods on VQA [8, 18, 30, 34, 35] and
facilitates responses on a more open vocabulary.

2.2 Semantic Textual Similarity
Current semantic evaluation tasks include Semantic Textual Simi-
larity (STS) [4, 5] that assesses to what extent the two sentences are
related, Paraphrase Identification [48, 59] that decides whether two
texts express the same meaning, and Natural Language Inference
[17, 54] that determines the logical relationship between texts. The
essence of these tasks lies in quantifying the degree of semantic
equivalence between sentences, which is a fundamental challenge
due to the complexity and variability of natural language. Methods
in STS include formulaic methods like BLEU [44], ROUGH [33],
METEOR [10] and model-based ones [21, 32, 42, 45, 61]. The for-
mer mainly relies on n-gram or other statistic features between
the candidate and reference (which corresponds to the question-
answer pair and question-response pair in this paper) to calculate
the overlap and import penalty for noise. The latter utilizes models
as encoders to extract the information and compare between the
candidate and reference. Early model-based evaluator [61] com-
pares the similarity of each pair each time, which is computation-
consuming. Later works [21, 32, 42, 45] first generate embeddings
separately for the candidate and reference, then simply calculates
the cosine similarity between embeddings as the similarity score.
Due to the style of STS, either formulaic or model-based methods
pay more attention to the overall similarity and are less capable of
detecting fine-grained semantic difference, as shown in our experi-
ments.

2.3 Multimodal Comprehension Evaluation of
MLLMs

As a developed realm and valuable resource of high-quality data,
VQA has been applied in the evaluation of MLLMs. MME [13]
proposes a smart quantitative analysis of MLLMs with manually
designed instruction-answer pairs that strictly limit responses to be
yes or no. Therefore, all MLLMs are evaluated relatively fairly. How-
ever, although MME is insightful and effective, such detour avoids
the problem of evaluating open-ended response directly. It ignores
previous huge amount of VQA data and costs additional human
annotation, limiting the scale of the dataset and making it tough
for expanding. MM-vet [60] classifies VQA into the integration
of multiple key abilities, and manually annotates corresponding
VQA samples of their required abilities. Then, they use ChatGPT
for evaluation (which we show to be less capable in evaluating
the correctness of open-ended responses, refer to Section 5.3). The
classification of VQA abilities is insightful and aids to the probing
of specific abilities of MLLMs. Yet MM-vet requires high-quality
annotation to identify the VQA abilities each question requires and
are thus limited to a small amount too.
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3 SEMANTIC EVALUATION OF VQA
With the rapid development of MLLMs, current metrics in VQA
response evaluation are too stubborn to assess the rich generation
and hinder evaluating MLLMs’ performance with existing VQA
datasets. Meanwhile, as mentioned in Section 2.2, current seman-
tic evaluation models and tasks are inconsistent with the goal of
flexible VQA response evaluation.

Therefore, this paper proposes the task of semantic evaluation
of VQA, aiming at introducing flexible similarity-based soft evalua-
tion with continuous scores into the assessment of VQA responses,
contrary to inflexible metrics like Exact Match or VQA Score that
require identical morphology of responses towards ground-truth
labels. Such flexible evaluation enables to assess the rich generation
from MLLMs and thus enables to use existing VQA datasets for
probing MLLMs’ multimodal comprehension ability.

3.1 Characteristics of VQA Evaluation
The proposed task of semantic VQA response evaluation shares
significant difference with existing semantic evaluation tasks like
STS and contains its own characteristics.

Discrimination Granularity. As mentioned in Section 1, tradi-
tional semantic evaluation tasks typically focus on the overall mean-
ing in texts, rather than capturing the fine-grained detailed differ-
ence. However, the core of semantic VQA evaluation is comparing
the response with annotated answer under the same question3,
where both texts share large overlap in meaning as the questions
are same. Therefore, semantic VQA response evaluation demands
fine-grained similarity discrimination.

Text Length. As VQA answers are generally much shorter than
text in STS 4, n-gram based formulaic metrics like BLEU [44] will
be more easily affected by the context in response. Model-based
metrics are also vulnerable to such length shift, as their training
data barely cover similar pattern.

Distribution Shift. The texts in STS datasets [2, 4, 5] come from
general domains, like news and social media, while different VQA
datasets comply to different sub-tasks, like knowledge [40] or rea-
soning [25]. Such distribution shift causes inconsistent evaluation
on responses from different VQA datasets.

3.2 Three Key Properties in VQA Evaluation
To systematically evaluate the performance of a VQA evaluator, we
propose three quantitative key properties, i.e., Alignment, Con-
sistency and Generalization.

Alignment. Alignment assesses the overall performance of simi-
larity scores predicted by evaluators with that of human annotation,
in the metric of Spearman’s Rank Correlation following similar set-
ting in previous works[4, 5, 21, 32].

3Considering the polysemy and ambiguity of words and phrases, the question text is
indispensable for evaluating the semantic correctness.
4About 97.9% answers in VQA v2 [22], 97.7% in OKVQA [40], 99.9% in GQA [25] are
shorter than three words. The average length of text in STS-12[4] is 12.5, which is
much longer.

Consistency. A smart evaluator shall catch the key information in
responses and ignore the noise text, e.g., the response of elephants
shall be scored equally with Theses are elephants under the question
of What are the animals?. Therefore, Consistency measures how
close the different responses sharing the same meaning are scored.

Generalization. Considering various VQA datasets focus on vari-
ous sub-tasks and come from various sources, Generalization de-
picts how well an evaluator is able to handle text from different
domains. Refer to Section 3.4 for quantitative definitions.

3.3 A Dataset Assessing VQA Evaluators
To comprehensively compare and analyze the behaviour of dif-
ferent evaluators on VQA responses, taking the proposed three
key properties into consideration, we propose a dataset Assessing
VQA Evaluators (AVE). By collecting multiple MLLMs’ responses
on multiple datasets, the proposed dataset simulates a real scene
of applying evaluators to evaluate the quality of various VQA re-
sponses. In order to compare the evaluators’ scoring results with
human judgement, we provide human annotation of the seman-
tic correctness of responses towards ground-truth answers. The
construction process of AVE is shown as follows:

Response Collection. First, we collect responses of five models,
LLaVA [35], BLIP2 [30], mPLUG-Owl [58], OFA-large [53], Qwen-
VL [8] on the validation set of four datasets, OKVQA[40], A-OKVQA[47],
VQA v2[22] and GQA[25].

Sampling Results. Second, we sample in the responses while
controlling the sampling amount of each dataset to be the same. In
addition, samples that are answered correctly, i.e., the response is
identical with the ground-truth answer, are excluded.

Human Annotation. Third, three annotators are asked to measure
the semantic similarity5 of each sampled response towards the
ground-truth label and annotate an integral similarity score from 0
to 10, under certain rules (refer to Appendix for more details). Then
the scores are averaged over the three annotators.

Description Generation. Fourth, in order to simulate MLLM re-
sponses with sentences instead of words or phrases, we select re-
sponses that are shorter than three words for augmentation. The
augmentation contains two Parts. The first Part comes from using
ChatGPT (refer to Appendix for prompts) to convert each pair of
question and response into three descriptions and asking ChatGPT
to select two descriptions that are closest to the origin question-
answer pair as augmented responses. For example, the question of
What are the animals? and the response of elephants are fed into
ChatGPT, and generate descriptions like The animals are elephants.
The second part comes from manually designed answer templates
(refer to Appendix) to increase the diversity of descriptions rather
than fully relying on ChatGPT. Now each sample contains three
descriptions.

Synonym Generation. Fifth, we use WordNet [41] to locate a syn-
onym for each answer. For cases where multiple synonyms exist,

5We considered multiple aspects of measuring the correctness of a response towards
the ground-truth answer, yet at last we come to the single aspect of semantic similarity
for annotation. Refer to Appendix for more explanation.
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Q: What are the animals?
A: cats
R: It is kitty in the image.
S: 8.67

Q: What are the animals?
A: cats
R: It is kitty in the image.
S: 8.67

Q: What are the animals?
A: cats
R: kitty
S: 8.67

Q: What are the animals?
A: cats
R: It is kitty in the image.
S: 8.67

Q: What are the animals?
A: cat
R: kitties
S: 8.67

Q: What are the animals?
A: cats
R: kitty

Sampled Data

3: Annotation

Annotated Data

Part 1 (original)

Part 2 (augmented)

Part 3 (augmented)

1: Collect response

2: Randomly sample

4: Description
    Generation

5: Synonym
    Generation

VQA Datasets

MLLMs
6: Manual 
    Filter

Q: What are the animals?
A: cats
R: kitty
S: 8.67

Figure 2: The construction procedure of AVE. After randomly
sampled from the outputs of models, each sample is manu-
ally annotated with a score and automatically augmented by
generated descriptions and a variation on the answer word
while remaining almost the same correctness as a VQA re-
sponse. Different parts denote different augmentation meth-
ods.

we choose the most common synonym by countering frequencies
of words in Brown Corpus [20]. Meanwhile, we ask ChatGPT to
introduce a shift in morphology to simulate cases that the outputs
are merely different in tenses or singular or plural forms. The aug-
mented answer is deemed to contain the same meaning with small
disturbance on the style.

Manual Filter. At last, to ensure high-quality of the dataset, the
three annotators also conduct manual filter (refer to Appendix for
rules) to eliminate ambiguous samples, especially those generated
from the fifth stage.

Generally speaking, the whole AVE dataset consists of three parts
generated from above: Part 1 contains original answers and origi-
nal responses. Part 2 contains original answers and the generated
descriptions of responses. Part 3 contains tense-shifted answers
and original responses. The whole procedure is depicted in Figure
2.

Meanwhile, the AVE dataset can also be clustered by the involved
four datasets that each sample belongs to, OKVQA, A-OKVQA, VQA
v2 and GQA, merging the Part 1 to Part 3 together and classifies by
the sources of data only. Refer to Section 3.4 for how they are used.

The total sample amount of the final AVE dataset is 3,592, with
each sample containing four types of augmentation results, as de-
scribed above. The dataset is then split into a validation set and a
test set with the ratio of 3:7. The distribution of annotated scores
is shown in Appendix, which is relatively smooth. To evaluate the
inter-annotator agreement, following previous works [11, 19, 23],
we apply Krippendorff’s alpha [28] and obtain a result of 0.713.

3.4 The Proposed Evaluation Indicators
In AVE dataset, a sample consists of a question 𝑞𝑖 , a ground-truth la-
bel𝑎𝑖 , a source dataset label𝑑𝑖 , a response 𝑟𝑖 and a human-annotated
score 𝑠𝑖 . The task of VQA response evaluation can be defined as:
given a question-answer pair, an evaluator 𝑓 (𝑞𝑖 , 𝑎𝑖 , 𝑟𝑖 ) is expected
to predict the annotated similarity score 𝑠𝑖 with the output 𝑜𝑖 .

𝑜𝑖 = 𝑐𝑜𝑠 (𝑓 (𝑞𝑖 , 𝑟𝑖 ), 𝑓 (𝑞𝑖 , 𝑎𝑖 )) (1)

𝑠𝑐𝑜𝑟𝑒𝑓 = 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑂, 𝑆) (2)
where 𝑐𝑜𝑠 stands for cosine similarity, 𝑠𝑐𝑜𝑟𝑒𝑓 is the performance

score of the evaluator 𝑓 , with 𝑂 and 𝑆 indicating the lists of all
predicted scores and annotated scores respectively. Note that the
metrics used for evaluating evaluators is Spearman’s rank coeffi-
cient of correlation (Spearman).

The key properties of Alignment, Consistency and Generaliza-
tion introduced in Section 3.2 are computed as follows:

Alignment. We use the average result of an evaluator on all parts
of the proposed AVE dataset as alignment:

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =
1

𝑁𝑃𝑎𝑟𝑡𝑠

𝑁𝑃𝑎𝑟𝑡𝑠∑︁
𝑖=1

𝑠𝑐𝑜𝑟𝑒𝑓𝑖 (3)

where 𝑁𝑃𝑎𝑟𝑡𝑠 is the number of Parts in the AVE dataset and
𝑁𝑠𝑒𝑡𝑠 is the number of involved VQA datasets in AVE, according
to different type of division. The 𝑠𝑐𝑜𝑟𝑒𝑓𝑖 is the spearman score of
evaluator 𝑓 on the 𝑖 th part of AVE.

Consistency. Consistency measures how close the responses of
the same meaning with different morphology are evaluated. We
regard the variance of the same sample among the three parts of
AVE as consistency:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = log (1/( 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠∑︁
𝑗=1

𝑣𝑎𝑟 (𝑜 𝑗1 , 𝑜 𝑗2 , 𝑜 𝑗3 ))) (4)

where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the amount of samples and var denotes cal-
culating the variance. Then, 𝑜 𝑗1 , 𝑜 𝑗2 , 𝑜 𝑗3 are the predicted scores of
the evaluator on Part 1, 2, 3 for the same sample 𝑗 , respectively.

Generalization. Generalization measures the difference of per-
formance on various datasets, and we define it as the variance of
the performance on each involved VQA dataset:

Generalization = log 1/ 𝑣𝑎𝑟 (𝑎𝑙𝑖𝑔𝑛𝑂𝐾𝑉𝑄𝐴,
𝑎𝑙𝑖𝑔𝑛𝐴−𝑂𝐾𝑉𝑄𝐴, 𝑎𝑙𝑖𝑔𝑛𝑉𝑄𝐴𝑣2, 𝑎𝑙𝑖𝑔𝑛𝐺𝑄𝐴)

(5)

where𝑁𝑠𝑒𝑡𝑠 is the number of involved VQAdatasets and𝑎𝑙𝑖𝑔𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡
is the mean Alignment score on the AVE data belonging to the cor-
responding VQA dataset.

4 SEMANTICALLY FLEXIBLE VQA
EVALUATOR

With the three key properties of an ideal evaluator taken into con-
sideration, we propose a novel evaluator based on meticulously
designed pretraining tasks.

4.1 Pretraining Tasks
To guide the model to be sensitive to the key information between
answer and response, this paper introduces several pretraining
tasks to enhance the embedding. Data for augmentation come from
a random sampling of VQA data in the training sets of OKVQA[40],
A-OKVQA[47], TDIUC[27], VG-QA[29], GQA[25] and VQA v2 [22],
which end to a total amount of 105, 311 samples. All augmented
samples are mixed for training.
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NLI data. In previous works [21, 32], models performs well with
the natural language inference datasets SNLI [17] and MNLI [54],
where each sample includes a premise, an entailment and a contra-
diction. In addition, these NLI datasets are all manually constructed,
ensuring the high quality of their data, and the premise shares
limited overlap with entailment compared with the sentence pairs
in back-translation datasets. Therefore, to ensure the fundamental
discriminating ability of models to capture overall meaning of sen-
tences, we adopt NLI data and regard the premise-entailment pairs
as postive pairs and premise-contradiction pairs as negative pairs.

Candidate answers. To make the best of available VQA datasets,
for datasets with ten candidate answers, OKVQA, A-OKVQA and
VQA v2, we consider candidate answers as correct answers as well.
Then, for each sample, the most common candidate answer and a
less common one are used to form a positive pair, with a random
answer sampled from the answer space as negative.

Synonym and Antonym. In VQA response evaluation, semanti-
cally similar answers shall receive similar scores. We replace the
answer with a synonym by WordNet [41], and if the antonym of
an answer exists, we then pair up the answer and antonym as a
negative pair, else we pair up the answer and a randomly sampled
answer from the answer space as a negative pair. In addition, we
use ChatGPT to produce synonyms as well, as ChatGPT is able to
capture contextual information in the question and thus generates
more accurate synonyms.

Generated descriptions. To simulate the output of MLLMs, for
each sample, we provide ChatGPT with its question and answer
to generate three descriptions with small disturbance of the same
meaning. Then, we construct positive samples by pairing up the
original answer and each generated description. For negative sam-
ples, we replace the answer in the generated description with a
randomly sampled answer. The goal is to pull the embedding rep-
resentation of a natural language description close to its simple
form of a single answer, so that responses with different length but
carrying similar meanings will receive similar scores. In addition,
the negative pair is constructed by replacing the key answer word
in the description, therefore guiding the model to be sensitive to
the key words and to ignore the noise.

4.2 Model Framework
Following previous works [15, 16, 21, 32] on the STS task [1–5, 12],
we use cosine similarity for distance calculation between embeddings[21,
32]. As shown in Figure 3, we adopt the simple contrastive learn-
ing framework [15] and contrastive learning with in-batch hard
negatives [21].

The backbone encoder in this paper is RoBERTa [36]. In order to
gain better generalization and comprehension ability, we apply the
decoder-only LLM LLAMA2 [50] with the prompt[32] of Summarize
the text {text} in a single word:. Then, the hidden states of the first
generated new token is considered as the embedding vector.

The contrastive learning with in-batch hard negatives loss [21]
is defined as follows:

𝑙𝑜𝑠𝑠𝑖𝑏𝑛 = − log
𝑒𝑠𝑖𝑚 (ℎ𝑖 ,ℎ+𝑖 )/𝜏∑𝑁

𝑗=1 (𝑒
𝑠𝑖𝑚 (ℎ𝑖 ,ℎ+𝑗 )/𝜏 + 𝑒𝑠𝑖𝑚 (ℎ𝑖 ,ℎ−𝑖 )/𝜏

) (6)

where ℎ𝑖 is the embedding representation of sample 𝑖 , ℎ+
𝑖
and

ℎ−
𝑖
respectively denote the representation of the positive sample

and in-batch hard negative sample of sample 𝑖 .

5 EXPERIMENTS
5.1 Implementation Details
Experiments in this paper is based on transformer package[55] on
Pytorch. We use AdamW [37] optimizer, and the hyper-parameters
of AdamW, betas, eps and weight-decay are set to 0.9, 0.999, 1e-8
and 0.01. We use a cosine scheduler and the batch size and peak
learning rate for encoders are 128, 1e-5 for RoBERTa-base [36],
VisualBERT [31] and LXMERT [49], 32, 6e-6 for RoBERTa-large
and 8, 4e-6 for LLAMA2 [50].

5.2 Baselines
To assess to what extent existing models are competent for the
VQA response evaluation, this paper collects four types of common
methods for semantic similarity evaluation and refer to them as:
formulaic, PLM, LLM, and API.

• Formulaic methods contain BLEU [44], ROUGE [33] and
METEOR [10]. These methods base on n-grams for assessing
the overlap. As VQA answers are usually short, we also report
2-gram results for BLEU and ROUGE.

• PLM refers to the Pretrained Language Models, which are
generally small in sizes and typically in BERT-like encoder-
only structures. SBERT (Sentence BERT) [45] embeds the
text by BERT-like structures as the backbone and generate
the text embedding vector, and apply cosine similarity to
calculate the distance between vectors to decide the textual
similarity. SIMCSE [21] provides both unsupervised and su-
pervised methods, and this paper selects the supervised and
better-performing one trained on NLI datasets for compar-
ison. BGE [14] follows a multi-task learning scheme that
collects and pretrains on multifarious datasets for better
generalization. AnglE [32] aims to mitigate the gradient sat-
uration issue encountered when using cosine distance by
projecting vectors onto the complex plane and introducing
an angular loss.

• LLM refers to large language models. This paper selects
four of the well-performing LLMs, Baichuan2 [9], Qwen [7],
LLAMA-2 [50] and Mistral [26].

• API refers to the remote usage of models by API online,
including ChatGPT and Text-embedding-v3-large from Ope-
nAI, and Voyage-lite-02-instruct from Voyage AI. Refer to
Appendix for prompts. The latter two are embedding models
that produce text embedding of given text, which are then
used to calculate similarity score by cosine distance.

5.3 Main Experiments
Table 1 exhibits the performance comparison of various evaluators.
The results are on the test set of AVE, with specific scores on each
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Question: What are the 
animals? Answer: 

elephants

Original Sample

Question: What are the 
animals? Answer: The 
animals are elephants.
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Figure 3: Framework of contrastive learning in the proposed Semantically Flexible VQA Evaluator (SFVE). The original sample
in augmented into two variations and form a positive pair and a negative pair. The example in the figure shows the procedure
of the pretraining task Generated descriptions. In the positive pair, the semantics of the sentence is considered same as the
original, while in the negative pair, as the answer word is replaced with a random answer, the sentence contains unmatched
meaning with the original.

Types Methods Alignment ↑ Consistency ↑ Generalization ↑ STS Avg. ↑Part 1 Part 2 Part 3 Avg.

Formulaic

BLEU-2 -1.7 -2.6 3.2 -0.4 4.35 11.30 50.1
BLEU-4 -2.9 -3.5 2.0 -1.5 4.23 11.25 47.6
ROUGE-2 -2.8 -4.5 1.2 -2.0 5.79 11.82 53.9
ROUGE-L 4.9 -0.1 3.3 2.7 6.73 10.78 48.3
METEOR 12.4 4.4 15.3 10.7 7.25 9.34 53.4

PLM

RoBERTa-large (w/o CL) 11.9 0.7 23.4 12.0 7.91 10.36 27.9
SBERT 47.7 44.3 40.6 44.2 8.79 8.55 76.8
SIMCSE 44.9 44.7 41.7 43.7 9.37 8.30 83.8
BGE 42.3 36.5 41.0 39.9 8.93 8.25 84.9
AnglE 43.4 38.2 40.2 40.6 9.01 7.78 86.4

LLM

Baichuan2-7b 28.1 27.8 31.8 29.2 5.30 8.86 64.6
Qwen-7b 25.9 26.3 24.2 25.5 9.07 10.10 68.3
LLaMA2 32.7 27.9 34.6 31.7 7.45 8.53 61.9
Mistral-7b 16.8 14.5 20.7 17.3 4.61 8.49 72.1

API
ChatGPT 21.2 15.2 24.6 20.3 5.21 8.35 73.7

Text-embedding-v3-large 32.5 28.6 36.3 32.5 9.40 8.00 82.3
Voyage-lite-02-instruct 29.1 28.9 29.3 29.1 11.81 6.78 86.3

SFVE (ours)
SFVE-base 58.4 57.1 53.7 56.4 9.12 8.34 81.2
SFVE-large 58.1 57.5 56.0 57.2 9.53 8.67 82.0

SFVE-LLAMA2-7b 60.2 57.0 57.2 58.1 9.46 8.87 77.9

Table 1: The comparison of performance on our proposed AVE dataset. The STS Avg. denotes the average scores over STS 2012 to
STS 2016 [1–5], SICK-R [39] STS-B [12], providing a reference of methods’ general discriminating ability. RoBERTa-large [36]
(w/o CL) refers to the original pretrained checkpoint without contrastive learning. SFVE-base, SFVE-large and SFVE-LLAMA2-7b
are RoBERTa-base, RoBERTa-large and LLAMA2-7b trained by contrastive learning on our proposed pretraining tasks. The
specific model checkpoints in experiments are as follows: SBERT[45]: SRoBERTa-NLI-large, BGE[14]:BAAI-bge-large-en,
SIMCSE[21]: RoBERTa-NLI-large, AnglE [32]: RoBERTa-large.

part of the dataset, as described in Section 3.3. To promote a com-
prehensive assessment of existing methods, this paper compares
the performance with four common types of methods for seman-
tic evaluation, as introduced in Section 5.2. The last row of Types
contains our results from training with the proposed pretraining
tasks on the corresponding model. Then, the column of Alignment
contains the separate results on each of the three parts in AVE
datasets and their average.

5.3.1 Performance of Formulaic Methods. Formulaic methods, i.e.,
BLEU, ROUGE and METEOR perform poorly in Alignment scores,
and some of them drop below 0, indicating adverse scores to the
human annotation. Such phenomenon is expected, as the n-gram
matching strategy of BLEU and ROUGE is unable to handle the
synonyms or variations in tenses and singular or plural forms. For

METEOR, however, it applies port stem [10] and synonym match-
ing to preprocess the 1-gram in both the candidate and reference,
restoring words to stems and thus performs better.

In addition, it is interesting to notice that although the Alignment
of BLEU and ROUGE are much lower that that of METEOR, their
Generalization scores are much higher. There are two reasons to
this anomaly. First, BLEU and ROUGE fail to handle the task well
and their prediction can be considered random, thus the sources
of data do not affect the results, just like RoBERTa-large (w/o CL).
Second, these n-gram based evaluators do not involve semantics,
therefore the sources of data that causes word distribution shift
matter less.

5.3.2 Performance of PLMs. The BERT-like models pretrained for
textual similarity prediction, i.e., SBERT, SIMCSE, BGE, AnglE (the
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Settings Alignment ↑ Consistency ↑ Generalization ↑Part 1 Part 2 Part 3 Avg.
All tasks 58.4 57.1 53.7 56.4 9.12 8.34

w/o NLI data 53.3 52.3 50.9 52.2 8.71 8.50
w/o Candidate answers 57.3 56.5 53.0 55.6 9.33 8.54

w/o Synonym and Antonym 42.1 40.3 38.8 40.4 9.19 8.41
w/o generated descriptions 56.9 47.0 52.3 52.1 8.07 8.93

w/o All tasks 12.5 3.1 20.0 11.8 10.58 9.90
NLI data only 44.3 42.0 33.1 39.8 9.46 10.00

Candidate answers only 37.4 29.8 39.6 35.6 8.10 8.11
Synonym and Antonym only 53.8 43.7 50.6 49.4 7.89 9.08
Generated descriptions only 42.8 49.1 42.1 44.6 8.17 7.67

Table 2: Ablation experiments of designed pretraining tasks on RoBERTa-base. The row of All tasks represents the best
performance of RoBERTa-base with all pretraining tasks, and the row of w/o All tasks contains results from testing on the
RoBERTa-base checkpoint without further training. w/o represents without the corresponding pretraining task, contrary to
the setting in lower part of the table where the model is trained only on a single task each time.

latter four models), show much better performance than RoBERTa-
large (w/o CL) and formulaic methods, indicating the basic textual
similarity tasks are helpful to the VQA response evaluation task,
but they fail to align well with human judgement, compared to the
SFVE results under the same structure of BERT-large. In addition,
the performance on Part 1 and 3 of the latter four PLM models are
similar, and the major gap lies in the capability of processing long
responses.

5.3.3 Performance of LLMs. For LLMs (refer to Appendix for the
detailed prompt) including ChatGPT, they fail to gain satisfactory
results on AVE. Naturally, LLM performs better than RoBERTa
w/o CL, and Generalization scores are slightly higher than PLMs,
which we attribute to the better generalization ability of LLMs.
Although LLMs obtain acceptable results on STS tasks, just like
the formulaic methods, they encounter significant performance
drop on the VQA response evaluation. Such phenomenon verifies
the significant difference between the evaluation of STS and VQA
responses and the necessity in the task of VQA evaluation.

The performance of embedding models (the latter two models)
on STS is higher than LLMs but the VQA response evaluation per-
formance is still low. The reason to their incompetence on AVE, we
speculate, is that these embedding models focus more on retrieving
and capturing the general meaning of given texts than discovering
the fine-grained difference between given pair of texts. In addition,
such focus of capturing the general meaning of texts has also em-
powered them with the ability to ignore noise in morphology and
text length, thus gaining high scores of Consistency despite the low
Alignment scores.

5.3.4 Performance of SFVE. The section of SFVE (ours) in the ta-
ble presents our results on AVE. The pretraining tasks effectively
improve the Alignment scores of all three models and bring moder-
ately better Consistency and Generalization performance. From the
prospective of model sizes, the 125M Roberta-base demonstrates
similar capability with the 355M Roberta-large with merely a gap
of0.8%. The same applies for the 7b LLAMA2, which surpasses
RoBERTa-large by 0.9%. Giant increase in model sizes brings minor
improvement in scores. We believe the reason is that the similarity
measure, either in STS or AVE, is relatively simple for models to
comprehend and implement, where a simple structure with limited

parameters is able to achieve excellent performance with proper
training.

Therefore, during the training of generative VQA models, con-
sidering the significantly larger computation cost in LLAMA-7b
than RoBERTa, we recommend utilizing RoBERTa base or large
for a rough validation of model performance each certain steps or
epoch, and use LLAMA for more accurate evaluation near the best
steps or epochs.

5.4 Ablation Experiments
To analyze the influence of each pretraining task, Table 2 provides
ablation results by removing a pretraining task each time and by
training on a single task alone. From the table it is clear that all
pretraining tasks contribute to the final performance more or less.

The most important task is Synonym and Antonym, which causes
a drop of 16.0% in Alignment scores on average and damages Con-
sistency as well. In addition, when trained only on such data, the
model performs the best. We believe the importance of training
on Synonym and Antonym task lies in aligning the representation
of synonyms and increasing the difference towards antonyms and
other answers.

The second influencing pretraining task is Generated descriptions,
without which the model can not directly learn to align the repre-
sentation between semantically similar texts with different length.
Yet the removal of it does not substantially damage the results on
other parts than Part 2, which consists of long responses.

Meanwhile, the removal of NLI data matters almost the same
as Generated descriptions. As mentioned before, NLI data focuses
more on the coarse-grained meaning between text pairs while AVE
requires a finer semantic discrimination. However, for a model that
barely handles the task (shown in the row of w/o All tasks), we
believe the easier data in NLI aid to fertilizing the basic capability
in semantic evaluation. Yet the NLI data alone is insufficient, as
shown in the row of NLI data only.

5.5 Practical Application
To demonstrate the practical values of our proposed evaluator in
flexible VQA response evaluation, we collect responses of multiple
MLLMs and compare the results with different evaluators by overall
scores and case study.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

 Question: What is the     
man in green's job?

 Answer: street cleaner

SFVE (ours) BGE

LXMERT police 63.0 89.7

mPLUG-Owl
The man in green is a 
garbage collector, as he is 
driving a truck.

74.5 87.7

Question: What brand is a 
competitor of the brand on 
the billboard?

Answer: coke

SFVE (ours) BGE

LXMERT pepsi 74.9 96.9

mPLUG-Owl
A competitor of the brand 
on the billboard is pepsi. 73.2 91.9

Question: What is the term 
for the brown marks on the 
bottom portion of the fire 
hydrant?

Answer: rust

SFVE (ours) BGE

LXMERT paint 75.0 95.4

mPLUG-Owl
The brown marks on the 
bottom portion of the fire 
hydrant are called rust.

87.7 90.8

 Question: What is this 
dish being cooked in?

 Answer: wok

SFVE (ours) SBERT

LXMERT pan 79.4 83.6

mPLUG-Owl
The dish is being cooked 
in a large black wok. 80.3 71.2

Question: How many 
people have skateboards?

Answer: 2

SFVE (ours) SBERT

LXMERT 2 100.0 100.0

mPLUG-Owl
There are 2 people with 
skateboards in the image. 91.1 81.8

Question: What cultural 
clothing are the women 
wearing?

Answer: japanese

SFVE (ours) SBERT

LXMERT none 13.9 54.9

mPLUG-Owl
The women in the image are 
wearing traditional chinese 
clothing.

47.7 57.5

(a) (b) (c)

(e) (f) (g)

Question: Why are the 
lights red with no traffic?

Answer: late night

SFVE (ours) BGE

LXMERT stop 47.3 91.5

mPLUG-Owl
Because the street is 
empty and there are no 
vehicles present.

51.8 84.6

Question: What kind of 
resort are these people at?

Answer: ski resort

SFVE (ours) SBERT

LXMERT skiing 94.4 95.1

mPLUG-Owl
These people are at a ski 
resort, as they are skiing 
down snow

93.6 87.0

(d)

(h)

Figure 4: Cases for analysis. The samples come from the open-ended part of A-OKVQA [47] validation set. The first row comes
from results of SFVE and SBERT, and the second comes from SFVE and BGE.

Model Evaluation Metric
VQA Score BGE SBERT SFVE (ours)

LXMERT † [49] 19.5 83.3 75.6 43.6
LXMERT 37.3 94.9 83.6 67.9

VisualBERT [31] 37.6 94.8 83.4 66.3
LLaVA-7b [35] 3.6 89.1 82.5 72.3

BLIP2-opt-2.7b [30] 15.5 94.1 83.1 70.2
InstructBLIP-Vicuna [18] 21.4 94.8 86.4 74.3

mPLUG-Owl [58] 0.0 91.0 82.7 69.1
OFA-large [53] 39.5 95.3 86.5 78.0

Qwen-VL-chat [8] 54.9 96.1 89.7 83.5

Table 3: Practical application of utilizing our proposed eval-
uator for assessing the responses from MLLMs. The VQA
dataset for response generation is the open-ended validation
set of A-OKVQA[47]. Models in the upper part of the table
are smaller than 0.5B. VisualBERT and LXMERT are fine-
tuned on VQA v2[22]. LXMERT † means the LXMERT that
is not sufficiently trained, which ends training at the half
of the first epoch to provide comparison. SFVE (ours) uses
the RoBERTa-large evaluator trained with our proposed pre-
training tasks. Refer to Appendix for the calculation of VQA
Score. Note that the scores are for comparison within the
an evaluator itself, and it is meaningless to compare scores
across evaluators, as evaluators are not aligned.

As shown in Table 3, VQA score is clearly incompetent for as-
sessing assorted responses from MLLMs. Since all responses from
mPLUG-Owl are sentences, VQA Score even comes to 0. In the
comparison of LXMERT and mPLUG-Owl, both BGE and SBERT
indicate LXMERT generates better responses than mPLUG-Owl.
However, taking the case study in Figure 4 into consideration, we
verify that existing well-performing methods, BGE and SBERT,
fail to perform consistent evaluation and bias towards short re-
sponses while penalizing longer ones. For example, in (a) of Figure
4, LXMERT response pan receives a much higher score than the
mPLUG-Owl response which is a descriptive sentence containing

the correct answer. In (c), the descriptive text and the single word
response receive similar scores under our SFVE, but SBERT consid-
ers the short answer of LXMERT is much better than the descriptive
sentence of mPLUG-Owl. Similar phenomena exist in BGE as well.
As in (e), mPLUG-Owl response describing garbage collector is a
much better than LXMERT output police, yet the latter receives
even higher scores.

In addition, not only does the length impede a fair evaluation,
but the incompetence in fine-grained semantics discrimination also
causes absurd results. Like in (c) and (g), where LXMERT answers
are less correct but they receive competitive or even higher scores
than reasonable responses. Such error, we speculate, is caused by
focusing more on the overall meaning of text, as the questions are
the same within a pair.

Due to the phenomena above, it is clear the superficial superiority
of LXMERT over mPLUG-Owl is merely a mistake by incompetent
VQA evaluators, which also demonstrates the importance of fairness
and consistency in VQA evaluation. We consider the proposed
pretraining tasks and SFVE effective, not only on our proposed AVE
dataset, but also in practical application where previous methods
fail to perform fair and insightful evaluation.

6 CONCLUSION
This paper proposes a practical task of utilizing semantic correct-
ness to evaluate unconstrained open-ended VQA responses, facilitat-
ing the assessment of MLLMs’ multimodal comprehension abilities
by VQA data. We propose three key properties for assessing VQA
evaluators, i.e., Alignment, Consistency and Generalization. In ad-
dition, this paper proposes a new dataset assessing VQA evaluators
(AVE) to comprehensively analyze multiple aspects of evaluators.
Based on contrastive learning with meticulously designed pretrain-
ing tasks, this paper provides a Semantically Flexible VQAEvaluator
(SFVE) that performs significantly better than existing evaluators
on VQA evaluation and the training scheme generalizes to both the
encoder-only and decoder-only models.
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