
Benchmarking and Analyzing 3D-aware Image
Synthesis with a Modularized Codebase

—Supplementary Material—

Anonymous Author(s)
Affiliation
Address
email

Supplementary Materials Organization:1

2

1 Experimental details 13

1.1 Backbone . 14

1.2 Point embedder . 25

1.3 Feature decoder . 26

1.4 Geometric representation . 27

1.5 Upsampler . 38

1.6 Pose priors . 39

2 Data details 310

3 More results 311

3.1 Efficiency comparison . 312

3.2 More qualitative results . 413

3.3 Code . 514

4 Limitations and future work 515

5 Checklist 616

17

1 Experimental details18

1.1 Backbone19

In this study, we adopt the state-of-the-art 3D-aware GAN, EG3D [2], as our backbone model,20

which we have reproduced in our modularized codebase. This codebase is utilized to perform all21

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.

experiments presented in this paper. Our investigation involves substituting each module in 3D GANs22

with alternative choices to study their individual effects. For instance, to explore the point embedder,23

we replace its tri-plane with feature volume or other representations. Similarly, to investigate the24

feature decoder, we alter the depth or activation function of the decoder. Given our modularized25

design, these changes can be easily implemented by adjusting the parameters in the configuration26

files.27

In our experiments, we use only one-stage training to save computational resources. Specifically, we28

perform the training only at a neural rendering resolution of 64×64, without stepping the resolution29

up to 128× 128.30

1.2 Point embedder31

In this work, we mainly explore the capacity of three point embedders: MLP, volume, and tri-plane,32

as well as their combinations. The MLP-based point embedder utilizes a multi-layer perceptron33

(MLP) to transform raw point coordinates into point features. The volume-based point embedder34

queries point features from the feature volume, while the tri-plane based point embedder queries35

point features from the tri-plane feature representation.36

The experimental settings for the tri-plane based point embedder are identical to those of [2]. For37

the MLP-based point embedder, we adopt an MLP network to extract point features, similar to [6].38

This network employs ReLU activation, 1×1 convolutions modulated by style vectors, and has a39

depth of 16, with a hidden layer dimension of 128 and an output layer dimension of 64. Notably, for40

MLP-based point features, the point embedder and the feature decoder are actually the same. As for41

the volume-based point embedder, we generate the feature volume using a generator that utilizes 3D42

convolutions, which is the same network architecture as [12]. The feature volume resolution is set43

as 64×64. The feature decoder for volume-based point features is an MLP network with the same44

architecture as the MLP-based point embedder. Other settings including geometric representation,45

upsampler, pose priors, etc., remain consistent with our backbone model.46

We also investigate the impact of composite point embedders, which entail combining two or more47

point embedders. Specifically, we explore combinations of MLP and volume, MLP and tri-plane,48

volume and tri-plane, and MLP, volume, and tri-plane. The combination of MLP and volume49

involves concatenating the MLP-based point features and volume-based point features along the50

feature channel dimension, while the other combinations follow the same principle. To conserve51

computational resources during training with composite point embedders, we set the MLP-based52

point features as the raw point coordinates, with the MLP serving as an identical mapping.53

1.3 Feature decoder54

Considering that the feature decoder typically comprises a multi-layer perceptron, it is crucial to55

investigate the impact of its depth and activation layer type on the performance. To this end, we56

conduct an empirical study on the depth and activation type of the feature decoder. Specifically, we57

perform experiments on three point features, including MLP, volume, and tri-plane, utilizing the58

experimental setup inherited from Sec. 1.2, but with varying depths of the MLP. In terms of the59

activation type of feature decoder, we employ both SIREN-based layers and ordinary ReLU-based60

layers in two settings: with and without an upsampler. And the depth of both MLPs was set to 8,61

with a hidden dimension of 128 and an output dimension of 64. When training the model with a62

SIREN-based layer, similar to [1], we set the generator learning rate to 0.00006 and the discriminator63

learning rate to 0.0002.64

1.4 Geometric representation65

Prior works, such as NeuS [11], have incorporated the signed distance function (SDF) into the volume66

rendering formula to enable the reconstruction of smooth surface models. Moreover, 3D GANs [10]67

have explored the use of SDF as a geometric representation for consistent generation. Hence, our68

2

Table 1: Training time and inference speed of models with different point embedders. The tri-plane-
based point embedder exhibits the highest computational efficiency.

Point Embedder FFHQ [7] 256×256 Cats [13] 256×256 Cars [3] 128×128
MLP Volume Tri-plane Training Time Inference Speed Training Time Inference Speed Training Time Inference Speed

✓ ✗ ✗ 5.6 Days 29 FPS 6.1 Days 29 FPS 6.9 Days 23 FPS
✗ ✓ ✗ 6.8 Days 24 FPS 7.3 Days 24 FPS 8.3 Days 20 FPS
✗ ✗ ✓ 2.7 Days 49 FPS 3.1 Days 49 FPS 2.7 Days 48 FPS
✓ ✓ ✗ 6.9 Days 24 FPS 7.5 Days 24 FPS 8.4 Days 20 FPS
✓ ✗ ✓ 2.8 Days 49 FPS 3.3 Days 49 FPS 2.8 Days 48 FPS
✗ ✓ ✓ 3.8 Days 38 FPS 4.4 Days 38 FPS 3.9 Days 35 FPS
✓ ✓ ✓ 3.9 Days 38 FPS 4.5 Days 38 FPS 4.0 Days 35 FPS

goal is to examine the effects of two distinct geometric representations: density and SDF. We perform69

experiments on three point embedders: MLP, volume, and tri-plane. The baseline models utilizing70

vanilla density are identical to the model described in Sec. 1.2. For SDF-based models, the feature71

decoder outputs SDF values. We also incorporate sphere initialization, eikonal loss, and minimal72

surface loss during training, with the same loss weight as [10].73

1.5 Upsampler74

Our study aims to analyze the influence of the upsampler in 3D GANs. To ensure a fair comparison,75

we conduct experiments on the generation of 256×256 resolution images. When an upsampler is not76

utilized, the neural rendering resolution is the same as the image resolution, resulting in significantly77

longer training time and higher computational costs. We conduct experiments on a model without an78

upsampler, and disable dual discrimination since the output images are only at a fixed resolution of79

256×256. Other settings remain consistent with the backbone model.80

1.6 Pose priors81

We additionally explore pose priors on the FFHQ [7] dataset. To obtain the accurate pose distribution82

(APD) of the dataset, we adopt the approach described in [1], where the pose distribution is modeled83

as a Gaussian prior. Camera poses are sampled from a normal distribution with a vertical mean of84

π/2 radians, standard deviation of 0.155 radians; and a horizontal mean of π/2 radians, a standard85

deviation of 0.3 radians. Regarding the random pose distribution (RPD), a Gaussian distribution86

is also assumed for the pose, with only the vertical/horizontal mean and standard deviation being87

randomly assigned. And we introduce the acquisition of ground-truth poses in Sec. 2.88

2 Data details89

We conduct our experiments on three datasets, including FFHQ [7], Cats [13], and ShapeNet Cars [3].90

Since the original data of these datasets lacks pose labels, we perform preprocessing steps for each91

dataset. We follow [2] to align, crop and get pose matrix for each image in the FFHQ [7] dataset.92

Cats [13] contains more than 6K real-world cat images, and the data is preprocessed following [5].93

The ShapeNet Cars [3] dataset comprises various synthetic car models. We use the dataset rendered94

from [2] which is composed of approximately 530K images. Unlike the forward-facing datasets,95

its camera poses encompass the full range of 360◦ horizontal and 180◦ vertical distributions. In our96

experiments, the resolution of 256 × 256 is employed for FFHQ and Cats datasets, while for the97

ShapeNet Cars dataset, a resolution of 128 × 128 is used.98

3 More results99

3.1 Efficiency comparison100

We report the training time and inference speed of models utilizing various point embedders in Tab. 1.101

The training time is computed by training our models on 8 NVIDIA A100 GPUs for 25 million102

images. Inference speed is measured on a single NVIDIA A100 GPU, where we processed 1K103

3

M
LP

 +
V

ol
um

e
M

LP
 +

Tr
i-p

la
ne

V
ol

um
e

+
Tr

i-p
la

ne
M

LP
 +

 V
ol

um
e

+
Tr

i-p
la

ne

CatsFFHQ Cars

Figure 1: Qualitative comparison across various composite point embedders on FFHQ [7], Cats [13]
and ShapeNet Cars [3], where these compound point features exhibit on-par performance in generating
multi-view consistent images and high-quality geometries.

images and calculated the average FPS. As shown in Tab. 1, tri-plane-based point embedders exhibit104

superior computational efficiency compared to MLP-based and volume-based point embedders.105

MLP-based point embedders require a larger number of layers to extract point features, leading to106

longer processing times. Among these, volume-based point embedder is the least efficient, as it107

involves 3D convolutions.108

3.2 More qualitative results109

We present a qualitative comparison of various composite point embedders on FFHQ [7], Cats [13]110

and ShapeNet Cars [3] in Fig. 1. The qualitative result shows that combining the outputs of MLP111

Volume Tri-plane multiple embedders has a negligible impact on the final outcome. Additionally, we112

show more results of different point embedders on FFHQ [7] in Fig. 2, Fig. 3 and Fig. 4. Interestingly,113

we observe that models equipped with tri-plane-based point embedders generate 3D shapes with114

sharper noses, while those equipped with MLP-based or volume-based point embedders do not115

exhibit this characteristic. This phenomenon can be observed more clearly in Fig. 5. However, the116

underlying reason for this remains unknown.117

4

Figure 2: Samples synthesized on FFHQ [7] with truncation 0.7 using the model with an MLP-based
point embedder. For each generated identity, we show the underlying geometry under two views and
appearance under three views.

Figure 3: Samples synthesized on FFHQ [7] with truncation 0.7 using the model with a volume-based
point embedder. For each generated identity, we show the underlying geometry under two views and
appearance under three views.

3.3 Code118

Our code can be accessed in the supplementary file, and comprehensive training details are provided119

within. Upon acceptance, our code and models will be made publicly available. We ensure that all120

results reported in this paper can be easily reproduced.121

4 Limitations and future work122

Efficiency. Training our 3D GAN models is a time-consuming process, especially when utilizing123

MLP-based and volume-based point embedders. To draw meaningful conclusions, we must conduct124

a plethora of experiments. Currently we are uncertain about how to improve the efficiency of our125

models’ training. Each experiment requires careful hyperparameter tuning, which is a challenging126

task. However, due to computational limitations, multiple runs of our experiments are infeasible.127

Consequently, we identify the “optimal” settings using a limited number of attempts.128

Training stability. We have observed that training 3D GANs can be rather unstable. Some129

experiments are highly sensitive to hyperparameters such as the γ value of R1 regularization [9],130

learning rate, etc. However, our study does not investigate this aspect in depth. Future research131

addressing hyperparameter sensitivity and training stability may lead to significant reductions in132

training costs and more compelling results.133

Universality. We trained all our 3D-aware image synthesis models on simple, object-level datasets,134

such as FFHQ [7] for face generation, and our conclusions are based on these datasets. However, our135

paper does not explore the extension of 3D GANs to a higher degree of universality, which represents136

5

Figure 4: Samples synthesized on FFHQ [7] with truncation 0.7 using the model with a tri-plane-
based point embedder. For each generated identity, we show the underlying geometry under two
views and appearance under three views.

Tr
i-p
la
ne

V
ol
um
e

M
LP

Figure 5: Qualitative comparison across different single point embedders on FFHQ [7], zoom in
for better viewing. Models equipped with tri-plane-based point embedders generate 3D shapes with
sharper noses, which can appear unnatural.

a promising research direction for the future. This universality pertains to generating diverse objects137

(e.g., ImageNet [4] or Microsoft CoCo [8]), dynamic objects or scenes, and large-scale scenes.138

5 Checklist139

1. For all authors...140

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s141

contributions and scope? [Yes]142

(b) Did you describe the limitations of your work? [Yes]143

(c) Did you discuss any potential negative societal impacts of your work? [Yes]144

(d) Have you read the ethics review guidelines and ensured that your paper conforms to145

them? [Yes]146

2. If you ran experiments...147

(a) Did you include the code, data, and instructions needed to reproduce the main148

experimental results (either in the supplemental material or as a URL)? [Yes] Please149

refer to the supplementary files to access our code.150

6

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were151

chosen)? [Yes] In addition to the descriptions provided in our paper and Supplementary152

Material, comprehensive training details can be found in the supplementary files of our153

code.154

(c) Did you report error bars (e.g., with respect to the random seed after running155

experiments multiple times)? [No] Our models cannot handle multiple runs due156

to computational infeasibility.157

(d) Did you include the total amount of compute and the type of resources used (e.g., type158

of GPUs, internal cluster, or cloud provider)? [Yes]159

3. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...160

(a) If your work uses existing assets, did you cite the creators? [Yes]161

(b) Did you mention the license of the assets? [N/A]162

(c) Did you include any new assets either in the supplemental material or as a URL? [No]163

(d) Did you discuss whether and how consent was obtained from people whose data you’re164

using/curating? [N/A]165

(e) Did you discuss whether the data you are using/curating contains personally identifiable166

information or offensive content? [N/A]167

References168

[1] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. π-GAN: Periodic implicit generative169

adversarial networks for 3D-aware image synthesis. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.170

[2] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello, O. Gallo, L. J. Guibas, J. Tremblay,171

S. Khamis, et al. Efficient geometry-aware 3D generative adversarial networks. In IEEE Conf. Comput.172

Vis. Pattern Recog., 2022.173

[3] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song,174

H. Su, et al. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012, 2015.175

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image176

database. In IEEE Conf. Comput. Vis. Pattern Recog., 2009.177

[5] Y. Deng, J. Yang, J. Xiang, and X. Tong. GRAM: Generative radiance manifolds for 3D-aware image178

generation. In IEEE Conf. Comput. Vis. Pattern Recog., 2022.179

[6] J. Gu, L. Liu, P. Wang, and C. Theobalt. StyleNeRF: A style-based 3D-aware generator for high-resolution180

image synthesis. In Int. Conf. Learn. Represent., 2021.181

[7] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.182

In IEEE Conf. Comput. Vis. Pattern Recog., 2019.183

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft184

coco: Common objects in context. In Eur. Conf. Comput. Vis., 2014.185

[9] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for GANs do actually converge? In Int.186

Conf. Mach. Learn., 2018.187

[10] R. Or-El, X. Luo, M. Shan, E. Shechtman, J. J. Park, and I. Kemelmacher-Shlizerman. StyleSDF: High-188

resolution 3D-consistent image and geometry generation. In IEEE Conf. Comput. Vis. Pattern Recog.,189

2022.190

[11] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. NeuS: Learning neural implicit surfaces191

by volume rendering for multi-view reconstruction. In Adv. Neural Inform. Process. Syst., 2021.192

[12] Y. Xu, S. Peng, C. Yang, Y. Shen, and B. Zhou. 3D-aware image synthesis via learning structural and193

textural representations. In IEEE Conf. Comput. Vis. Pattern Recog., 2022.194

[13] W. Zhang, J. Sun, and X. Tang. Cat head detection-how to effectively exploit shape and texture features.195

In Eur. Conf. Comput. Vis., 2008.196

7

