
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 BRANCH AND BOUND

Here we gives a simple illustration of B&B algorithm in Figure 5. Given the LP relaxation, the polytope
represents the feasible region of the LP relaxation and the red arrow represents the objective vector. We first
solve the LP relaxation and obtain the solution x̂ as the red point. Noticing it is not feasible for MIP, we
branch the LP relaxation into two subproblems. In (a) we select to split variable x1 and in (b) we select
to split variable x2. The subproblems obtained after branching are displayed by the shaded purple regions.
After finishing solve these two MIPs, we obtain the search trees t1 and t2. We can see that a wise selection
of variable x2 can solve the problem faster.

Branching Rules

Task

• divide into (disjoint)

subproblems

• improve local bounds

Techniques

• branching on variables

• most infeasible
• least infeasible
• random branching
• strong branching
• pseudocost
• reliability
• VSIDS
• hybrid reliability/inference

• branching on constraints

• SOS1
• SOS2

Gregor Hendel – SCIP Introduction 47/71

(x1, x2) = (1,2)

(x1, x2) = (3,2) Infeasible

x2 ≥ 3x2 ≤ 2

x1 ≥ 2x1 ≤ 1

x1

x2

10

2

3

1

2

3

(a) split on x1 and search tree t1

Branching Rules

Task

• divide into (disjoint)

subproblems

• improve local bounds

Techniques

• branching on variables

• most infeasible
• least infeasible
• random branching
• strong branching
• pseudocost
• reliability
• VSIDS
• hybrid reliability/inference

• branching on constraints

• SOS1
• SOS2

Gregor Hendel – SCIP Introduction 47/71

x2 ≤ 2 x2 ≥ 3

(x1, x2) = (3,2) Infeasible

x1

x2

10

2

3

1

2

3

(b) split on x2 and search tree t2

Figure 5: Illustration of splitting in B&B and the corresponding search tree

A.2 IMPLEMENTATION

A.2.1 HARDWARE

All the experiments were run at a Ubuntu 18.04 machine with Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz, 256 GB Memory and Nvidia RTX 2080Ti graphic cards.

A.2.2 PD POLICY

Comparison. PD policy is similar to the GCN in Gasse et al. (2019) but has two major differences. First, we
use a dynamic reduced graph where fixed variables and trivial constraints are removed due to the variable
bounds changing during the solving process while Gasse et al. (2019) do not consider it. The reduced graph
can not only save computation, but also give a more accurate description of the solving state by ignoring the
redundant information. The ablation in Section 5.5 shows it is indispensable in the success of RL. Second,
we use a simple matrix multiplication in our PD policy while Gasse et al. (2019) use a complicated edge
embedding in GCN. In some sense, GCN can be seen as an overparameterized version of our method. And
our success reveals that message passing on the LP relaxation is the true helpful structure.

detail. We implement our primal dual policy net using dgl (Wang et al., 2019), with hidden dimension
h = 64 and ReLU activation. The feature X for variable is a 17 dimension vector and feature Y for
constraint is a 5 dimension vector. We list the detail of feature in Table. 3

11

Under review as a conference paper at ICLR 2021

Tensor Name Description

X

type a one-hot encoding for (binary, integer, implicit, continuous)
coef objective coefficient
lb variable lower bound
ub variable upper bound
at-lb indicator whether solution value equals lower bound
at-ub indicator whether solution value equals upper bound
sol-frac solution value fractionality
basis-status a one-hot encoding for simplex basis status (lower, basic, upper, zero)
red reduced cost
age normalized LP age
sol-val solution value

Y

obj-sim cosine similarity with objective
bias bias value
is-tight tightness indicator in LP solution
dualsol-val dual solution value
age normalized LP age

Table 3: Feature X for variable and feature Y for constraint

A.2.3 BASELINE

FSB. We use the implementation in SCIP Gamrath et al. (2020)

VFS. We use the implementation in SCIP Gamrath et al. (2020)

RPB. We use the implementation in SCIP Gamrath et al. (2020)

GCN. We tried to implement GCN in dgl (Wang et al., 2019), however, it is significantly slower than the
original implementation in Gasse et al. (2019). Hence, we still use the implementation in Gasse et al. (2019).

SVM. We use the implementation in Gasse et al. (2019).

A.3 TRAINING

We have two settings clean, default. In experiments, we always train and test under the same setting.

Imitation Learning. We initialize our PD policy using imitation learning similar to Gasse et al. (2019). The
difference is we only use 10000 training samples, 2000 validation samples and 10 training epochs as a warm
start. In our setting, a policy from scratch can hardly solve an instance in a reasonable time, hence a warm
start is necessary.

Novelty Search Evolution Strategy. We improve our RL agent using Algorithm 2. The parameters are set
as ↵ = 1e� 4, � = 1e� 2, n = 40, V = 200, w = 0.25, � = 0.99, T = 1000, k = 10.

12

Under review as a conference paper at ICLR 2021

Algorithm 2: Evolutionary Strategy with Novelty Score.
Input: Learning rate ↵, Noise std �, number of workers n, Validation size V , Batch size M , Initial

weight �, Weight decay rate �, Iterations T, Parameter ✓0, Policy memory M , Instance
distribution D

1 , Neighborhood size k. Output: Best parameter ✓best
2 Sample validation instances Q1, · · · , QV ⇠ D
3 Set Rbest =

1
V

P
V

j=1 R(✓0, Qj), ✓best = ✓0
4 for t=0 to T do

5 Sample instances P1, · · · , PM ⇠ D
6 Sample ✏1, · · · , ✏n ⇠ N (0, I) and compute ✓i

t
= ✓t + �✏i

7 Set M = {✓1
t
, · · · , ✓n

t
}

8 for i=1 to n do

9 Compute Ri =
1
m

P
M

m=1 R(✓i
t
, Pm)

10 Compute Ni =
1
m

P
M

m=1 N(✓i
t
, Pm,M)

11 end

12 Set ✓t+1 = ✓t + ↵ 1
n�

P
n

i=1 � ·Ni✏i + (1� �) ·Ri✏i
13 Compute R(t+1) = 1

V

P
V

j=1 R(✓t+1, Qj)

14 if R(t+1) > Rbest then

15 Set Rbest = R(t+1), ✓best = ✓t+1, � = � ⇤ �
16 end

17 end

A.4 DATA SET

Set Covering. We generate a weighted set covering problem following Balas & Ho (1980). The problem is
formulated as the following ILP.

min
X

S2S
wSxS

subject to
X

S:e2S

XS � 1, 8e 2 U

xS 2 {0, 1}, 8S 2 S

where U is the universe of elements, S is the universe of the sets, w is a weight vector. For any e 2 U and
S 2 S , e 2 S with probability 0.05. And we guarantee that for any e, it is contained by at least two sets in
S . Each wS is uniformly sampled from integer from 1 to 100.

We first generate a set covering problem with U0 = {e1, · · · , e400} and S0 = {S1, · · · , S1000} and set
it as our backbone. Then, every time we want to generate a new problem with m elements, we let U =
U0 [{e401, e402, · · · , em} add new ei into S 2 S following the pipeline mentioned above.

13

Under review as a conference paper at ICLR 2021

Maximum Independent Set. We generate maximum independent set problem using Barabasi-Albert (Al-
bert & Barabási, 2002) graphs. The problem is formulated as the following ILP.

max
X

v2V

xv

subject to xu + xv  1, 8euv 2 E

xv 2 {0, 1}, 8v 2 V

where V is the set of vertices and E is the set of edges. We generate the BA graph using a preferential
attachment with affinity coefficient 4.

We first generate a BA graph G0 with 350 nodes. Then, every time we want to generate a new problem with
n variables, we expand G0 using preferential attachment.

Capacitated Facility Location. We generate the capacitated facility location problem following Cornuéjols
et al. (1991). The problem with m customers and n facilities is formulated as the following MIP.

min
nX

i=1

mX

j=1

cijdjyij +
nX

i=1

fixi

subject to
nX

i=1

yij = 1, 8j = 1, · · · ,m

mX

j=1

djyij  uixi, 8i = 1 · · · , n

yij � 0, 8i = 1, · · · , n and j = 1, · · · ,m
xi 2 {0, 1}, 8i = 1, · · · , n

where xi = 1 indicates facility i is open, and xi = 0 otherwise; fi is the fixed cost if facility i is open;
dj is the demand for customer j; cij is the transportation cost between facility j and customer i; yij is the
fraction of the demand of customer j filled by facility i. Following Cornuéjols et al. (1991), where we first
sample the location of facility and customers on a 2 dimension map. Then cij is determined by the Euclidean
distance between facility i and customer j and other parameters are sampled from the distribtuion given in
Cornuéjols et al. (1991).

We first generate the location of 100 facilities and 40 customers as our backbone. Then, every time we want
to generate a new problem with m customers, we generate new m � 40 locations for customers and follow
the pipeline mentioned above.

A.5 DISCUSSION

An interesting phenomenon is that GCN can easily beat VFS after imitation learning (Or our PD policy
can obtain similar result). One possible explanation is that the primal-dual message passing is a principle
structure that naturally learns the good decisions and ignores the noise brought by strong branching. Another
possible reason is the biased sampling. To keep the diversity of the sample, Gasse et al. (2019) employs a
mixed policy of RPB and VFS to sample the training data. It is possible that VFS is a powerful expert on
the state distribution determined by the mixed policy. More studies are needed before we can answer this
question.

Another point is our set representation is compatible with general B&B algorithm. Once the weight function
w and distance function d are defined, we can compute the distance between two B&B solving processes.

14

