Long-Short Transformer: Efficient Transformers
for Language and Vision (Appendix)

A Details of Norm Comparisons

As we have shown in Figure 2, the norms of the key-value embeddings from the long-term and
short-term attentions, K,V and K, V, are different at initialization, and the norms of K,V is always
larger than K, V' on different networks and datasets we have evaluated. Here, we give an explanation.

Intuitively, at initialization, following similar assumptions as [60, 61], the entries of K,V should
have zero mean. Since each entry of K, V' is a weighted mean of K, V, they have smaller variance
unless one of the weights is 1. Given that K, V are also zero-mean, the norm of their embedding
vectors (their rows), which is proportional to the variance, is smaller. For the key-value embeddings
from short-term attention, K, V' are just a subset of K, V, so their embedding vectors should have the
same norm as rows of K, V' in expectation. Therefore, the norms of embedding vectors from K,V
will be smaller than those from K, V' in expectation.

B Details for Experiments on Long Range Arena

The tasks. We compare our method with the following three tasks:

* ListOps. ListOps [62] is designed to measure the parsing ability of models through hierarchically
structured data. We follow the setting in [20] in which each instance contains 500-2000 tokens.

» Text. This is a binary sentiment classification task of predicting whether a movie review from
IMDb is positive or negative [63]. Making correct predictions requires a model to reason with
compositional unsegmented char-level long sequences with a maximum length of 4k.

* Retrieval. This task is based on the ACL Anthology Network dataset [64]. The model needs to
classify whether there is a common citation between a pair of papers, which evaluates the model’s
ability to encode long sequences for similarity-based matching. The max sequence length for
each byte-level document is 4k and the model processes two documents in parallel each time.

Architecture. On all tasks, the models have 2 layers, with embedding dimension d = 64, head
number h = 2, FFN hidden dimension 128, smaller than those from [20]. Same as [20], we add a CLS
token as a global token and use its embedding in the last layer for classification. We re-implement the
methods evaluated by Xiong et al. [18], and report the best results of our re-implementation and those
reported by Xiong et al. [18]. For our method, the results we run a grid search on the window size w
and the projected dimension 7, and keep 2w + r < 256 to make the complexity similar to the other
methods. The maximum sequence length for ListOps and Text are 2048 and 4096. For Retrieval,
we set the max sequence for each of the two documents to 4096.

Table 7: Configurations of our method corresponding to the best results (Transformer-LS (best)) in
Table 1.

ListOps (2k) | Text (4k) | Retrieval (4k)
w r | w ro|w r
Dynamic Projection | 0 410 1281 0 256
Transformer-LS 16 211 111 254

Hyperparameters for Training. Our hyperparameters are the same as Nystromformer [18] unless
otherwise specified. Specifically, we follow [18] and use Adam with a fixed learning rate of 10~
without weight decay, batch size 32 for all tasks. The number of warmup training steps 77, and total
training steps 1" are different due to the difference in numbers of training samples. For Retrieval, we
accidentally found using 77, = 8000 rather than the default 7;, = 800 of [18] improves the results
for all models we have evaluated. See Table 8 for the configurations of each task.

Error bars. We have already provided the average of 4 runs with different random seeds in Table 1.
Here we also provide the standard deviations for these experiments in Table 9.
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Table 8: Training Hyperparameters for LRA tasks.

Ir batch size T, T

ListOps 104 32 1000 5000
Text 10~4 32 8000 20000
Retrieval 10~* 32 8000 30000

Table 9: Accuracy (%) and its standard deviation on Long Range Arena (LRA), with the model
configurations and sequence length stats (under the dataset names) annotated. All results are averages
of 4 runs with different random seeds. Note that, text has the largest variance of length (i.e., 893).

ListOps Text Retrieval Average
(888 £ 339) (1296 + 893) (3987 £ 560)
Model Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc.
Full Attention [1] 371+ 04  1.21 654+£03 457 |823x04 9.14 61.59
Reformer [31] (2) 364+04 027 | 649+04 058 | 78.6+£07 1.15 59.99
Linformer [17] (k=256) 374+ 04 041 |561+15 081 |794+£09 1.62 57.62
Performer [28] (r = 256) 328+94 041 | 652+02 082 |81.7£02 1.63 59.90

Nystromformer [18] ({ =128) 37.3+£02  0.61 65.8 £0.2 1.02 81.3+03 2.03 61.46
Transformer-LS (w,r = 8,32) 37.5£03 020 | 66,002 0.40 81.8+03 0.80 61.77

Dynamic Projection (best) 378+£02 015 | 663+07 069 |819+05 217 61.98
Transformer-LS (best) 38.4 +04 0.16 68.4 + 0.8 0.29 82.0 £ 0.5 2.17 62.90

C Additional Results on LRA
C.1 Results on the image-based tasks of LRA
We give the results of our model on the image-based tasks, implemented in PyTorch, in Table 10.

Table 10: Comparing our model (Transformer-LS) with other methods on the image-based tasks of LRA. For
the results of other models, we take their highest scores from [18] and [20].

Model Transformer-LS Linformer Reformer Performer Sparse. Trans. Nystromformer Full Att.

Image 45.05 38.56 43.29 42.77 44.24 41.58 42.44
Pathfinder 76.48 76.34 69.36 77.05 71.71 70.94 74.16

C.2 Compare models implemented in JAX

To compare the results with the implementations from the original LRA paper [20], we re-implement
our method in JAX and give the comparisons with other methods in Table 11. The accuracies of other
methods come from the LRA paper. We evaluate the per-batch latency of all models on A100 GPUs
using their official JAX implementation from the LRA paper. Our method still achieves improvements
while being efficient enough. We were unable to run Reformer with the latest JAX since JAX has
deleted jax.custom_transforms, which is required by the Reformer implementation, from its
APIL3 Note the relative speedups from the LRA paper are evaluated on TPUs.

D Details for Autoregressive Language Modeling

An example of long-short term attention for autoregressive models. We give an illustration for
the segment-wise dynamic projection for autoregressive models as discussed in Section 3.3. With the
segment-wise formulation, we can first compute the low-rank projection for each segment in parallel,
and each query will only attend to the tokens from segments that do not contain the future token
or the query token itself. The whole process is efficient and maintain the O(n) complexity, unlike
RFA [30] which causes a slow-down in training due to the requirement for cumulative sum. However,

*https://github.com/google/jax/pull/2026
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Table 11: Comparing the test scores and latency of models on LRA, implemented in JAX.

Model ListOps Text Retrieval

Acc. Latency (s) | Acc. Latency (s) | Acc. Latency (s)
Local Att 15.82 0.151 52.98 0.037 53.39 0.142
Linear Trans. 16.13 0.156 65.9 0.037 53.09 0.142
Reformer 37.27 56.10 53.40

Sparse Trans. 17.07 0.447 63.58 0.069 59.59 0.273
Sinkhorn Trans. 33.67 0.618 61.20 0.048 53.83 0.241

Linformer 35.70 0.135 53.94 0.031 52.27 0.117
Performer 18.01 0.138 65.40 0.031 53.82 0.120
Synthesizer 36.99 0.251 61.68 0.077 54.67 0.306
Longformer 35.63 0.380 62.85 0.112 56.89 0.486
Transformer 36.37 0.444 64.27 0.071 57.46 0.273
BigBird 36.05 0.269 64.02 0.067 59.29 0.351

Transformer-LS ~ 37.65 0.187 76.64 0.037 66.67 0.201
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Figure 4: An illustration of effective attention span (colored regions) in Transformer-LS when the
segment size for the low-rank attention is ¢ = 4, and the segment size for the sliding window attention
is w = 2. Left: the attention span of only the low-rank attention (segment-wise dynamic projection).
Right: the attention span of the aggregated attention.

in this way, some of the most recent tokens are ignored, as shown in Figure 4 (left). The window
attention (with segment size w > 1/2) becomes an indispensable component in this way, since it fills
the gap for the missing recent tokens, as shown in Figure 4.

Experimental Setup. Throughout training, we set the window size w = 512, the segment length
[ = 16, and the dimension of the dynamic low-rank projection = 1, which in our initial experiments
achieved better efficiency-BPC trade-off than using [ = 32,7 = 1 or [ = 64, = 4. Our small and
large models have the same architecture as Longformer [14], except for the attention mechanisms.
We use similar training schedules as Longformer [14]. Specifically, for all models and both datasets,
we train the models for 430k/50k/50k steps with 10k/5k/5k linear learning rate warmup steps, and use
input sequence lengths 2048/4096/8192 for the 3 phases. We use constant learning rate after warmup.
We compared learning rates from {1.25e-4, 2.5e-4,5e-4,1e-3} for 100k iterations and found 2.5e-4 to
work the best for both models on enwik8, and 5e-4 to work the best on text8. The batch sizes for the
3 phases are 32, 32, 16 respectively. Unlike Longformer and Transformer-XL, we remove gradient
clipping and found the model to have slightly faster convergence in the beginning while converging
reliably. For smaller models, we use dropout rate 0.2 and weight decay 0.01. For the larger model,
we use dropout 0.4 and weight decay 0.1.
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Figure 5: An illustration of our sliding window attention in 1D autoregressive and bidirectional
models. Here, we use a group size w = 2. Each token inside each group are restricted to attend to at
most 2w tokens. In the bidirectional model, they attend to w tokens from the home segment, and
w/2 tokens to the left and right of the home segment respectively. In the autoregressive model, they
attend to w tokens to the left of the home segment, as well as all tokens within the home segment that
is not a future token.

E Details for ImageNet Classification

The CvT Architecture. We implement the CvT model based on a public repository,  because this
is a concurrent work with no official implementation when we conduct this work. In Table 5, since
our CvT re-implementation gets worse test results than reported ones in their arxiv paper, we still list
the best test accuracy from Wu et al. [6] for fair comparisons. We report the FLOPs of CvT with our
implementation for reasonable comparisons, because our CvT*-LS implementation is based on that.
Same as CvT, all the models have three stages where the first stage downsamples the image by a factor
of 4 and each of the following stages downsamples the feature map by a factor of 2. CvT*-LS-13 and
CvT*-LS-21 have the same configuration as CvT-13 and CvT-21. CvT*-LS-17 and CvT*-LS-21 are
our customized models with more layers and higher embedding dimensions in the first two stages
([3,4,10], [3, 4, 14] layers respectively and [128, 256, 768] dimensions). We train the model for 300
epochs using a peak learning rate of 5e — 4 with the cosine schedule [65] with 5 epochs of warmup.
We use the same set of data augmentations and regularizations as other works including PVT [5]
and ViL [11]. In general, CvT*-LS-13 and CvT*-LS-21 closely follow the architectural designs of
CvT for fair comparisons. Specifically, in CvT*-LS, we feed the token embeddings extracted by
the depth-wise separable convolution [66] of CvT to our long-short term attention. For dynamic
projection, we replace W, in Eq. (3) with a depth-wise separable convolution to maintain consistency
with the patch embeddings, but we change its BN layer into a weight standardization [67, 68] on the
spatial convolution’s weights for simplicity. We do not use position encoding. All of our models have
3 stages, and the feature map size is the same as CvT in each stage when the image resolutions are
the same. CvT*-LS-13 and CvT*-LS-21 follow the same layer configurations as CvI-13 and CvT-21,
i.e., the number of heads, the dimension of each head and the number of Transformer blocks are
the same as CvT in each stage. For all models on resolution 224 x 224, we set r = [64, 16, 4] and
w = [8, 4, 2]. For higher resolutions, we scale up  and/or w to maintain similar effective receptive
fields for the attentions. At resolution 384 x 384, we use r = [64, 16, 4] and w = [12, 6, 3] for the 3
stages. At resolution 448 x 448, we use r = [128, 32, 8] and w = [16, 8, 4].

Besides maintaining the CvT architectures, we also try other architectures to further explore the
advantage of our method. With the efficient long-short term attention, it becomes affordable to
stack more layers on higher-resolution feature maps to fully utilize the expressive power of attention
mechanisms. Therefore, we have created two new architectures, CvT*-LS-17 and CvT*-LS-21S,
that have more and wider layers in the first two stages, as shown in Table 12. Compared with
CvT-21, CvT*-LS-17 has 25% fewer parameters, less FLOPs, but obtained the same level of accuracy.
CvT*-LS-21S has fewer parameters than CvT*-LS-21, more FLOPs, and 0.4% higher accuracy,
demonstrating the advantage of focusing the computation on higher-resolution feature maps.

The effect of DualLN. We trained the CvT*-LS-13 model without DualLN, which has a test
accuracy of 81.3, lower than the 81.9 with DualLLN.

*https://github.com/rishikksh20/convolution-vision-transformers
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Table 12: Architectures of our CvT*-LS-17 and CvT*-LS-21S models. LSTA stands for our Long-

Short Term Attention.
Output Size | Layer Name CvT*-LS-17 CvT*-LS-21S
56 x 56 Conv. Embed. 7 x 7,128, stride 4
Stage 1 Conv. Proj. 3x3,128
56 x 56 | LSTA H=2D=128] 4
r=64,w=2_8
MLP L R=14 ]
28 x 28 Conv. Embed. 3 x 3, 256, stride 2
Stage 2 Conv. Proj. [ 3 x3,256 ]
28 x 28 | LSTA H=4,D=256
r=16,w =4
MLP L R=14 ]
14 x 14 Conv. Embed. 3 x 3,384, stride 2
Conv. Proj. 3x3,384 [ 3 x3,384 T
Stage 3 H=6,D — 334 H=6,D = 384
14 x 14 LSTA ’ x 10 ; x 14
7":4711}:2 7":4,11):2
MLP R=14 L R=14 ]
0.85 —*— CvT Trained
Ours Trained
CvT Init.
0.80 Ours Init.
% 0.75
g 0.70
0.65
1 2 3 5 6 7 8 9 10 11 12 13

Layer

Figure 6: Pairwise cosine similarity between patch embeddings at different layers of CvI-13 and
CvT*-LS-13, averaged on 50k images of ImageNet validation set. The larger cosine similarities at
deeper layer suggest that the feature representation is less diverse.
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Figure 7: Running memory consumption of full self-attention (CvT-13) and Long-Short Transformer
on different tasks. We increase the sequence length resolution until the model is out of memory on a
V100 GPU with 32GB memory.
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F Evaluate the robustness of models trained on ImageNet-1k.

Table 13: Corruption Error (CE) on ImageNet-C

Noise Blur Weather Digital
Gauss. Shot Impulse|Defocus Glass Motion Zoom |Snow Frost Fog Bright|Contrast Elastic Pixel JPEG

ResNet-50 | 34.24 49.25 55.84 | 56.24 57.04 63.53 63.68|64.02 64.04 64.89 69.25| 70.72 73.14 7529 75.76
DeiT-S 26.93 36.81 36.89 | 39.38 40.14 43.32 43.80|44.36 45.71 46.90 47.27 | 48.57 52.15 57.53 62.91
CvT*-LS-13|25.64 36.89 37.06 | 38.06 43.78 43.78 44.62|45.92 47.77 4791 49.60 | 49.66 54.92 57.24 68.72
CvT*-LS-17| 2526 35.06 3548 | 37.38 41.37 43.95 44.47|46.05 46.17 46.38 49.08 | 49.37 54.29 54.54 69.54
CvT*-LS-21|24.28 34.95 35.03 | 35.93 39.86 40.71 41.27|41.78 44.72 45.24 4550 | 47.19 51.84 53.78 67.05

Arch.

Table 14: Robustness evaluation on ImageNet-9. We report Top-1 Accuracy.

ImageNet-9 [59](%)

Model ‘ Params (M) ‘ ImageNet (%) Original Mixed-same Mixed-rand
ResNet-50 [35] 25.6 76.2 94.9 87.1 81.6
DeiT-S [36] 22.1 79.8 97.1 89.1 84.2
CvT*-LS-13 20.3 81.9 97.0 90.7 85.6
CvT*-LS-21 32.1 82.7 97.2 91.5 85.8

For a fair comparison, we choose models with similar number of parameters. We select two
representative models, including the CNN-based model (ResNet) and the transformer-based model
(DeiT). We give detailed results on all types of image transforms on ImageNet-C in Table 13. We
evaluate our method on various ImageNet robustness benchmarks as follows:

* ImageNet-C. ImageNet-C refers to the common corruption dataset. It consists of 15 types of
algorithmically common corruptions from noise, blur, weather, and digital categories. Each type
contains five levels of severity. In Table 4, we report the normalized mean corruption error (mCE)
defined in Hendrycks and Dietterich [56]. In Table 13, we report the corruption error among
different types. In both tables, the lower value means higher robustness.

» ImageNet-A. ImageNet-A is the natural adversarial example dataset. It contains naturally
collected images from online that mislead the ImageNet classifiers. It contains 7,500 adversarially
filtered images. We use accuracy as our evaluation metric. The higher accuracy refers to better
robustness.

* ImageNet-R. ImageNet-R (Rendition) aims to evaluate the model generalization performance
on out-of-distribution data. It contains renditions of 200 ImageNet classes (e.g. cartoons, graffiti,
embroidery). We use accuracy as the evaluation metric.

* ImageNet-9. ImageNet-9 aims to evaluate the model background robustness. It designs to
measure the extent of the model relying on the image background. Following the standard
setting [59], we evaluate the two categories, including MIXED-SAME and MIXED-RAND. MIXED-
SAME refers to replace the background of the selected image with a random background of the
same class by GrabCut [59]; MIXED-RAND refers to replace the image background with a
random background of the random class.

From table 6, we find that our method achieves significant improvement compared to CNN-based
network (ResNet). For instance, our method improves the accuracy by 23.6%, 22.1%, 9.7% compared
to ResNet on ImageNet-C, ImageNet-A, and ImageNet-R, respectively. For ImageNet-9, our method
also achieves favorable improvement by 4.3% on average (Mixed-same and Mixed-rand). It indicates
that our method is insensitive to background changes. We guess the potential reasons for these
improvements are (1) the attention mechanism and (2) the strong data augmentation strategies during
the training for vision transformer [4, 36]. The first design helps the model focus more on the
global context of the image as each patch could attend to the whole image areas. It reduces the
local texture bias of CNN. The latter design increases the diversity of the training data to improve
model’s generalization ability. Compared to DeiT, we also surprisingly find that our method achieves
slightly better performance. One plausible explanation is that our long-term attention has a favorable
smoothing effect on the noisy representations. Such improvements also indicate that different designs
of attention and network architecture can be essential to improve the robustness. As the goal of this
paper is not to design a robust vision transformer, the robustness is an additional bonus of our method.
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We believe that our observation opens new directions for designing robust vision Transformers. We
leave the in-depth study as an important future work.

The detailed results of ImageNet-C and ImageNet-9 are shown in Table 13 and Table 14 respectively.
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