
LSSInst: Improving Geometric Modeling in LSS-Based BEV Perception with
Instance Representation

Supplementary Material

The supplementary document is organized as follows:

• Sec. A depicts the 3D geometric projection details of the
instance branch.

• Sec. B provides the detailed module network architec-
tures and design rationality.

• Sec. C describes the generation details of BEV proposals.
• Sec. D provides extensive experimental details and addi-

tions of LSSInst.
• Sec. E provide the qualitative results and visualization

analysis.

A. Instance-level 3D Geometric Projection

For the 3D position ego coordinates Ppos ∈ RN×3 at the
current time, below are the detailed multi-view geometric
projection for instance-level representations. Firstly, on the
spatial hand, Ppos, i.e., (x, y, z) is warped into the camera
coordinate system by using the per-view extrinsics Mcam =
[R|t] ∈ SE3 and intrinsics as 2D points pχ, i.e., (u, v) as
follows: 
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where xc, yc, zc are the coordinates in camera system,
fx, fy, cx, cy are camera intrinsic parameters, and R ∈
R3×3, t ∈ R3×1 denote the spatial rotation and translation
matrices.

Secondly, on the temporal hand, we warp pχ to the
target coordinate system at time t, and for the unified ex-
pression, the set of target systems includes the current sys-
tem, i.e., 0 ∈ {t}. On the basis of Sec. 3.3 and Eqn. 5,
below is the detailed formulation of Mt. Given both ex-
trinsic calibration matrices to the world coordinate system
Mcur2w,Mtgt2w ∈ SE3, we can construct the transforma-
tion matrix Mt from the current system to the target one
by

Mt = M−1
tgt2w ×Mcur2w =

[
Rtgt ttgt
03 1

]
(9)

where Rtgt ∈ R3×3, ttgt ∈ R3×1 denote the overall tem-
poral rotation and translation matrices.

B. Network Architectures
Feature Converter The detailed architecture of the fea-
ture converter module is the combination of a 3× 3 kernel-
size convolution layer with 1 padding and batch normaliza-
tion, aiming to learn an inter-space adaptation from resam-
pled BEV feature to sparse instance features. Here we con-
vert the whole BEV feature into the adaptive space at first
in practice for implementation convenience, and we give a
short proof to show the equivalence as follows:
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where F̂α denotes the converted feature from the set of F i
α,

and we omit the specific resampling multipliers in Eqn. 2
for simplicity.

Sparse Temporal Encoder The specific architecture of
the sparse temporal encoder is a naive three-layer MLP with
GeLU [15] for sparse temporal fusion from 2C to C. Be-
low are the detailed procedures in Alg. 1. As shown in the
algorithm, when the iterative fusion ends, the accumulated
highest order of λ will come to (t−1), i.e., the impact equals
to a λt−1 multiplier for every Fδt, which indeed acts as the
desirable long-term suppression.

Algorithm 1 The pseudo-code of sparse temporal fusion

Require: Tχ ∈ N+, 0 < Tχ ≤ T, 0 < λ < 1
1: t← Tχ

2: while t ̸= 0 do
3: Fδt ← λFδt ▷ Fδt is formulated by Eqn. 5
4: Fδ(t−1) ← concat[Fδ(t−1), Fδt]
5: Fδ(t−1) ← fenc(Fδ(t−1))
6: t← t− 1
7: end while

C. Proposal Generation
We describe the generation pipeline for BEV proposals
from the proposal head in this section. The proposal head



Table 8. Comparison results of LSS-based detectors for 3D detection on the nuScenes val set. All methods in the table are trained with
CBGS.

Method Backbone Image Size mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet [17] ResNet50 256 × 704 0.298 0.379 0.725 0.279 0.589 0.860 0.245
BEVDet4D [16] ResNet50 256 × 704 0.322 0.457 0.703 0.278 0.495 0.354 0.206
BEVDepth [25] ResNet50 256 × 704 0.351 0.475 0.639 0.267 0.479 0.428 0.198
STS [47] ResNet50 256 × 704 0.377 0.489 0.601 0.275 0.450 0.446 0.212
BEVStereo [24] ResNet50 256 × 704 0.372 0.500 0.598 0.270 0.438 0.367 0.190
AeDet [11] ResNet50 256 × 704 0.387 0.501 0.598 0.276 0.461 0.392 0.196
SA-BEV [52] ResNet50 256 × 704 0.386 0.512 0.612 0.266 0.351 0.382 0.200
SOLOFusion [34] ResNet50 256 × 704 0.427 0.534 0.567 0.274 0.511 0.252 0.188
LSSInst ResNet50 256 × 704 0.429 0.537 0.595 0.281 0.423 0.273 0.202

can be a very lightweight BEV detection head, like Center-
Head [51], only for generating the raw BEV proposals with
their scores {ρi, si}i. With the non-maximum suppression
(NMS) operation with a score threshold, we can obtain the
3D bounding box candidates Co. Here the threshold is set
as 0.1. Considering the variable amount of candidates, we
re-filter them by top-k as follows, and here k is set as 450,
half of the classical total number of 3D queries.

Co := top-k
(
NMS

[
{ρi, si}i

])
(10)

Notably, there also exists the possibility that the amount
is smaller than k. We add the blank padding for the rest,
where the position is random with a π/2 yaw, and both scale
and velocity are zero.

D. Experimental Settings and Extensions

Evaluation Metrics For 3D object detection in the
nuSense benchmark, our study utilizes a set of official
predefined metrics to evaluate the performance of our ap-
proach. These metrics include mean Average Precision
(mAP), Average Translation Error (ATE), Average Scale
Error (ASE), Average Orientation Error (AOE), Average
Velocity Error (AVE), Average Attribute Error (AAE), and
nuScenes Detection Score (NDS). Different from direct 3D
IoU usage, here mAP is based on the BEV center dis-
tance and is calculated by averaging over distance thresh-
olds of 0.5m, 1m, 2m, and 4m for ten different classes of
objects, including car, truck, bus, trailer, construction ve-
hicle, pedestrian, motorcycle, bicycle, barrier, and traffic
cone. In addition to mAP, NDS is a comprehensive metric
that takes into account other indicators to assess the overall
detection performance. The remaining metrics are designed
to measure the precision of positive results in concerned as-
pects, such as translation, scale, orientation, velocity, and
attribute.

D.1. Experimental Settings

Our implementation is conducted in MMDetection3D [7]
with one NVIDIA A100 40G GPU node. The adoption of
data augmentation strategies follows the setting of the BEV
branch. Specifically, the augmentation strategies can be ran-
dom flips along the X and Y axes, random scaling and ro-
tation in a limited range in the image or BEV level. As
for the FPN [29] before each branch, we follow the set-
tings of BEVDepth [25] and DETR3D [46], respectively
and choose SECONDFPN [48] with 128-dimensional out-
put and standard FPN [29] with 256-dimensional output.
We select AdamW [32] as the optimizer and set the learn-
ing rate as 2e-4. Notably, in the ablation study, we selected
BEVDepth [25] as the BEV branch in the ablation base-
line for convenient experimental conduction. Here the BEV
branch used 1+2 frames and the sparse branch of the abla-
tion baseline didn’t use temporal information except for the
frame ablation.

D.2. Experimental Extensions

In this section, we conducted the experimental extensions
to show more persuasive performance results and ablation.

D.2.1 Performance Extension

CBGS strategy as an incremental trick is popular in sev-
eral works to further increase model performance. In or-
der to further compare with the LSS-based state-of-the-art
methods trained with CBGS, we conducted a performance
evaluation in the nuScenes val set. As shown in Tab. 8,
our LSSInst achieves an mAP of 42.9% and an NDS score
of 53.8%, outperforming all existing methods. These re-
sults further demonstrate the missing details improvement
and inherent effectiveness of our method despite the class
imbalance compensation using CBGS.



Table 9. The experimental verification of mATE improvement.

Method mAP↑ mATE↓

LSSInst

Out Box Num
300 42.2 0.620
250 42.2 0.619
200 42.1 0.617
150 42.0 0.614
100 41.4 0.608

SOLOFusion [34] 40.6 0.609
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Figure 3. Comparison results of per-classes mAP on nuScenes val
set.

D.2.2 Verification for Translation Improvement

The mA*E is designed to measure a property (here we use
* to denote this) by the mean statistical error. It should be
pointed that it’s actually based on the predicted instances,
which does not consider the confidence threshold. In other
words, the comparison of mean average errors mA*E is
more persuasive and meaningful based on the same AP
which indicates the same level of detecting boxes accord-
ing to the calculation formulas [1]. Considering that we in-
troduce more queries to capture the missing objects, it also
means we are more likely to yield lower mATE for those
low-score predictions. In practice, we enhance the confi-
dence level and decrease the output box number to show
the mATE variation as shown in the table below. When we
change to the 100 output number, we can easily observe the
better mATE as well as higher mAP than the baseline [34].

D.2.3 Results of Category-level Improvement

This section shows the per-class comparison results be-
tween SOLOFusion and LSSInst on the nuScene val and

Table 10. Box-level Embedding

Center Box Box w/ BE mAP↑ NDS↑

0.343 0.458
✓ 0.354 0.467

✓ 0.354 0.466
✓ 0.362 0.474

test set. As illustrated in Fig. 3, we can observe the BEV-
insensitive categories such as the traffic cone and bicycle,
especially pedestrian have been detected with a remarkable
margin. It’s favorable for the improvement of the classes
with variable movements or dispersed locations since there
is a large proportion of human beings (pedestrians) in the
auto-driving scenario.

D.2.4 Ablation Extension of Whistles and Bells

The ablation study below reveals the role and function of
each component in our framework. Notably, we select
BEVDepth as the BEV branch in the ablation baseline for
convenient experimental conduction. The sparse branch of
the ablation baseline does not use temporal information ex-
cept for the frame ablation.

Box-level embedding In order to showcase the impact
of box-level embedding, we conducted the ablation experi-
ment, and the results are presented in Tab. 10. In this exper-
iment, we compared different approaches: utilizing only the
center points (referred to as Center) or the bounding boxes
(Box) predicted in the BEV detection and incorporating the
bounding boxes along with their corresponding box embed-
ding (BE). We can both find the same increase by a margin,
which indicates that there is no difference between the two
types of offset regression, excluding the possibility of using
Box to bring additional information compared with Cen-
ter. However, by incorporating the box-level embedding,
we observed a further remarkable improvement over cen-
ter point inheritance alone. This significant improvement
clearly demonstrates the encoding of candidate boxes helps
enhance the geometric priors of the queries, thereby im-
proving the extraction of detailed object features from the
image. This compensates for the limitations of the BEV
representation and enables a more comprehensive under-
standing of instances.

Offline Temporal Sampling Here we particularly change
the frame from 3 to 4 for a more comprehensive observing
range. As shown in Tab. 11, the results reveal a fluctuat-
ing trend. The performance improves gradually as the num-
ber of frames increases up to 3, but when the number of



Table 11. The ablation results of frame-level extensions

Frame mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓

BEV Only 0.366 0.477 0.661 0.278 0.625
1 0.381 0.494 0.662 0.271 0.473
2 0.382 0.495 0.654 0.271 0.470
3 0.389 0.497 0.652 0.270 0.454
4 0.383 0.496 0.659 0.273 0.462

Table 12. adapter Ablation

BDR FC mAP↑ NDS↑

0.3623 0.4741
✓ 0.3647 0.4769

✓ 0.3651 0.4753
✓ ✓ 0.3661 0.4779

Table 13. Point Ablation

Points mAP↑ NDS↑

1 0.365 0.477
2 0.369 0.478
4 0.361 0.472
6 0.364 0.479

Table 14. Weight Ablation

Weight mAP↑ NDS↑

1 0.365 0.477
2 0.370 0.478
3 0.366 0.480
4 0.362 0.474

frames reaches 4, the performance starts to decline, reflect-
ing a bottleneck. This observation not only indicates that
our geometric-guided temporal fusion is helpful for short-
term matching and alignment but also shows the theoreti-
cal long-term error and verifies the limited approximation
mentioned in Sec. 3.3 even though adding the suppression.
It can be inferred that as the look-back window increases
longer, the objects have moved a larger distance within the
interval of much more than 3∼4τ = 1.5∼2 seconds, and the
variable movement makes it challenging to align the fea-
tures under short-term geometric constraints, leading to a
continuous decrease in performance. In the future, we will
adopt online temporal sampling to acquire a wider temporal
range to improve the problem.

Instance adapter To showcase the effectiveness of the in-
stance adapter module in LSSInst, we conducted a series of
ablation experiments, as depicted in Tab. 12. In this ta-
ble, BDR denotes the BEV feature deformable resampling,
and FC represents the feature converter. The results indi-
cate that both sub-modules achieved a 0.2% improvement
in both mAP and NDS compared to the baseline. When
combined, they contributed to a total improvement of 0.4%.
This indicates that our instance adapter module effectively
preserves the semantic coherence between BEV and in-
stance representations, enabling effective improvement of
BEV features using instance-level information.

Figure 4. Qualitative comparison between baseline proposals
(red), predictions (blue), their superposition (purple), and GT
(white).

Spatial Sampling and Fusion As for spatial sampling,
we utilize deformable attention to aggregate features from
multiple sampling points. As shown in Tab. 13, when
we increase the number of sampling points to 2, there is
a 0.4% improvement in mAP, indicating that richer spa-
tial sampling helps enrich features and optimize intermedi-
ate representations. However, further increasing the num-
ber of sampling points results in a performance decline,
which may be owing to the smaller resolution of the fea-
ture map. As shown in Tab. 14, We explore the perfor-
mance of different weights assigned to image features. The
results reveal that increasing the weight of image features to
2 leads to a 0.5% improvement in mAP. This indicates that
increasing the weight of image features during spatiotem-
poral sampling helps enhance the representation ability of
queries. The network tends to utilize a larger weight of im-
age features, which further verifies the effectiveness of our
designed instance branch for improving intermediate repre-
sentations.

E. Qualitative Results
E.1. Qualitative comparison of BEV-to-Instance

Coherence

Despite the semantic segmentation mIoU result between
LSSInst and the baseline is 66.21% which indicates that
our method possesses a desirable semantic scene-layout ba-
sis and keeps better semantic coherence, to illustrate this
point apparently, here visualize the comparison results be-
tween proposals and predictions. It can be more clearly ob-
served not only the coherence but also extra improvement
on the basis. As shown in Fig. 4, where blue is yielded by
BEVInst, red denotes the proposals, purple means their su-
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Figure 5. Comparison of LSSInst, the ground truth, and SOLOFusion on nuScenes val set.

perposition, and white means GT. We can first conclude that
purple boxes occupy the majority. Then there are many red
boxes for false or missed detection and some blue boxes for
orientation correction or additional detection which match
the white boxes much more, which directly proves the im-
provement.

E.2. Visualization

In this section, we show the visualization comparison re-
sults for 3D object detection among LSSInst, ground truth,
and current SOTA method SOLOFusion. As shown in Fig.
5, LSSInst has a higher recall and detects more inapparent
and occluded objects. For example, our model successfully



detects distant cars and trucks in the CAM FRONT LEFT and
CAM FRONT RIGHT views, especially the vehicle occluded
by trees and the inapparent car with dark color which is
highly similar with the background. Significantly, as the
yellow arrow shown in the CAM FRONT RIGHT view, we sur-
prisingly find the pedestrian, who is so tiny and indistinct
that he/she is even ignored by the ground truth, is captured
by LSSInst. Besides, our methods yield a more consistent
orientation and box scale with the ground truth in every
view. In contrast, for example, there is a severe rotation shift
(the red curved arrow) of the bus both in the CAM FRONT and
CAM FRONT LEFT views as well as the box misalignment
among those cars that are turning past the left traffic lights
in the CAM FRONT RIGHT view. These observations above
fully demonstrate the improvement of missing details, no
matter the wider-range perception breadth or own more re-
fined property.
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