Towards Understanding the Mixture-of-Experts
Layer in Deep Learning

Zixiang Chen Yihe Deng
Department of Computer Science Department of Computer Science
University of California, Los Angeles University of California, Los Angeles
Los Angeles, CA 90095, USA Los Angeles, CA 90095, USA
chenzx19@cs.ucla.edu yihedeng@cs.ucla.edu
Yue Wu Quanquan Gu
Department of Computer Science Department of Computer Science
University of California, Los Angeles University of California, Los Angeles
Los Angeles, CA 90095, USA Los Angeles, CA 90095, USA
ywu@cs.ucla.edu qgu@cs.ucla.edu
Yuanzhi Li

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

yuanzhil@andrew.cmu.edu

Abstract

The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a
router, has achieved great success in deep learning. However, the understanding of
such architecture remains elusive. In this paper, we formally study how the MoE
layer improves the performance of neural network learning and why the mixture
model will not collapse into a single model. Our empirical results suggest that
the cluster structure of the underlying problem and the non-linearity of the expert
are pivotal to the success of MoE. This motivates us to consider a challenging
classification problem with intrinsic cluster structures. Theoretically, we proved
that this problem is hard to solve by a single expert such as a two-layer convolutional
neural network (CNN). Yet with the MoE layer with each expert being a two-layer
CNN, the problem can be solved successfully. In particular, our theory shows
that the router can learn the cluster-center features, which helps divide the input
complex problem into simpler classification sub-problems that individual experts
can conquer. To our knowledge, this is the first theoretical result toward formally
understanding the mechanism of the MoE layer for deep learning.

1 Introduction

The Mixture-of-Expert (MoE) structure (Jacobs et al.,|1991} Jordan and Jacobs, |1994)) is a classic
design that substantially scales up the model capacity and only introduces small computation overhead.
In recent years, the MoE layer (Eigen et al.,|2013};|Shazeer et al.,|2017), which is an extension of the
MoE model to deep neural networks, has achieved remarkable success in deep learning. Generally
speaking, an MoE layer contains many experts that share the same network architecture and are
trained by the same algorithm, with a gating (or routing) function that routes individual inputs to a
few experts among all the candidates. Through the sparse gating function, the router in the MoE layer

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

can route each input to the top-K (K > 2) best experts (Shazeer et al.;[2017), or the single (K = 1)
best expert (Fedus et al.,[2021)). This routing scheme only costs the computation of K experts for a
new input, which enjoys fast inference time.

Despite the great empirical success of the MoE layer, the theoretical understanding of such architecture
is still elusive. In practice, all experts have the same structure, initialized from the same weight
distribution (Fedus et al., [2021)) and are trained with the same optimization configuration. The
router is also initialized to dispatch the data uniformly. It is unclear why the experts can diverge to
different functions that are specialized to make predictions for different inputs, and why the router can
automatically learn to dispatch data, especially when they are all trained using simple local search
algorithms such as gradient descent. Therefore, we aim to answer the following questions:

Why do the experts in MoE diversify instead of collapsing into a single model? And how can the

router learn to dispatch the data to the right expert?
In this paper, in order to answer the above question, we consider the natural “mixture of classification”
data distribution with cluster structure and theoretically study the behavior and benefit of the MoE
layer. We focus on the simplest setting of the mixture of linear classification, where the data
distribution has multiple clusters, and each cluster uses separate (linear) feature vectors to represent
the labels. In detail, we consider the data generated as a combination of feature patches, cluster
patches, and noise patches (See Definition[3.1]for more details). We study training an MoE layer based
on the data generated from the “mixture of classification” distribution using gradient descent, where
each expert is chosen to be a two-layer CNN. The main contributions of this paper are summarized as
follows:

* We first prove a negative result (Theorem [.T)) that any single expert, such as two-layer CNNs
with arbitrary activation function, cannot achieve a test accuracy of more than 87.5% on our data
distribution.

* Empirically, we found that the mixture of linear experts performs better than the single expert but
is still significantly worse than the mixture of non-linear experts. Figure [I|provides such a result
in a special case of our data distribution with four clusters. Although a mixture of linear models
can represent the labeling function of this data distribution with 100% accuracy, it fails to learn so
after training. We can see that the underlying cluster structure cannot be recovered by the mixture
of linear experts, and neither the router nor the experts are diversified enough after training. In
contrast, the mixture of non-linear experts can correctly recover the cluster structure and diversify.

* Motivated by the negative result and the experiment on the toy data, we study a sparsely-gated
MoE model with two-layer CNNs trained by gradient descent. We prove that this MoE model can
achieve nearly 100% test accuracy efficiently (Theorem |4.2)).

* Along with the result on the test accuracy, we formally prove that each expert of the sparsely-
gated MoE model will be specialized to a specific portion of the data (i.e., at least one cluster),
which is determined by the initialization of the weights. In the meantime, the router can learn the
cluster-center features and route the input data to the right experts.

* Finally, we also conduct extensive experiments on both synthetic and real datasets to corroborate
our theory.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to
denote scalars, vectors, and matrices respectively. We denote a union of disjoint sets (A; : i € I)
by U;erA;. For a vector x, we use ||x||2 to denote its Euclidean norm. For a matrix W, we use
|[W || to denote its Frobenius norm. Given two sequences {z,,} and {y, }, we denote z,, = O(y,)
if |x,,| < C1|yn| for some absolute positive constant Cy, x,, = Q(y,,) if |x,| > Ca|y,| for some
absolute positive constant Cs, and z,, = O(y,) if Cslyn| < |2,| < C4lyn| for some absolute
constants C3, Cy > 0. We also use Og) to hide logarithmic factors of d in O(-). Additionally, we
denote x,, = poly(y,) if z, = O(y;) for some positive constant D, and z,, = polylog(y,,) if
x,, = poly(log(yy,)). We also denote by x,, = o(yy,) if limy, 00 Zn/yn = 0. Finally we use [N] to
denote the index set {1,..., N}.

2 Related Work

Mixture of Experts Model. The mixture of experts model (Jacobs et al.,[1991];|Jordan and Jacobs|
1994) has long been studied in the machine learning community. These MoE models are based

Mixture of nonlinear experts

8%

06 -04 -62 00 02 04 06 08

06 -04 -62 00 02 04 06 08

Initialization
Mixture of linear experts

—) Finished

% _
R e \
-06 -04 -02 00 02 04 06 08 -06 -04 -02 00 02 04 06 0.8 -06 -04 -02 00 0.2 04 0.6 08

Figure 1: Visualization of the training of MoE with nonlinear expert and linear expert. Different colors
denote router’s dispatch to different experts. The lines denote the decision boundary of the MoE model. The
data points are visualized on 2d space via t-SNE (Van der Maaten and Hinton| [2008). The MoE architecture
follows sectionwhere nonlinear experts use activation function o(z) = 2°. For this visualization, we let the
expert number M = 4 and cluster number K = 4. We generate n = 1, 600 data points from the distribution
illustrated in Section 3| with a € (0.5,2), 8 € (1,2), v € (1,2), and o}, = 1. More details of the visualization
are discussed in Appendix@

on various base expert models such as support vector machine (Collobert et al,[2002) , Gaussian
processes 2001), or hidden Markov models (Jordan et al.,[1997). In order to increase the
model capacity to deal with the complex vision and speech data, |[Eigen et al.| (2013)) extended the
MOoE structure to the deep neural networks, and proposed a deep MoE model composed of multiple
layers of routers and experts. Shazeer et al.|(2017) simplified the MoE layer by making the output of
the gating function sparse for each example, which greatly improves the training stability and reduces
the computational cost. Since then, the MoE layer with different base neural network structures
(Shazeer et al.,[2017; [Dauphin et al.| 2017; [Vaswani et al},[2017) has been proposed and achieved
tremendous successes in a variety of language tasks. Very recently, [Fedus et al.| (2021) improved the
performance of the MoE layer by routing one example to only a single expert instead of K experts,
which further reduces the routing computation while preserving the model quality.

Mixture of Linear Regressions/Classifications. In this paper, we consider a “mixture of clas-
sification” model. This type of models can be dated back to (De Veaux) [1989} [Jordan and Ja]
[cobs], [1994; [Faria and Soromenho], 2010) and has been applied to many tasks including object
recognition (Quattoni et al.,2004) human action recognition (Wang and Mori, [2009), and machine
translation (Liang et al.l [2006). In order to learn the unknown parameters for mixture of linear
regressions/classification model, (Anandkumar et al, 2012} [Hsu et al.,[2012}; [Chaganty and Liang]
2013}, [Anandkumar et al., 2014} [Li and Liang} [2018)) studies the method of moments and tensor
factorization. Another line of work studies specific algorithms such as Expectation-Maximization

(EM) algorithm (Khalili and Chenl 2007} Yi et al.| 2014} Balakrishnan et al.| 2017; [Wang et al., 2015).

Theoretical Understanding of Deep Learning. In recent years, great efforts have been made to
establish the theoretical foundation of deep learning. A series of studies have proved the convergence

(Jacot et al., 2018} [Li and Liang| 2018 Du et al., 2019} [Allen-Zhu et al.l 2019b; Zou et al.l 2018) and
generalization (Allen-Zhu et al.l [2019a} |Arora et al., [2019alb; |Cao and Gul [2019) guarantees in the

so-called “neural tangent kernel” (NTK) regime, where the parameters stay close to the initialization,
and the neural network function is approximately linear in its parameters. A recent line of works
(Allen-Zhu and Li, 2019} Bai and Lee], 2019} [Allen-Zhu and Li, [2020alblc}, [Li et al.| 2020} [Cao et al.l
[2022}[Zou et al} 2021 [Wen and Li, [2021) studied the learning dynamic of neural networks beyond
the NTK regime. It is worthwhile to mention that our analysis of the MoE model is also beyond the
NTK regime.

3 Problem Setting and Preliminaries

We consider an MoE layer with each expert being a two-layer CNN trained by gradient descent (GD)
over n independent training examples {(x;, y;)}7_, generated from a data distribution D. In this
section, we will first introduce our data model D, and then explain our neural network model and the
details of the training algorithm.

3.1 Data distribution

We consider a binary classification problem over P-patch inputs, where each patch has d dimensions.
In particular, each labeled data is represented by (x, %), where input x = (x(), x® ... x(P)) ¢
(R4 is a collection of P patches and y € {#1} is the data label. We consider data generated from
K clusters. Each cluster k € [K| has a label signal vector v}, and a cluster-center signal vector ¢,
with ||vg |2 = |lck 2 = 1. For simplicity, we assume that all the signals {v } e[x] U {ck }re[k] are
orthogonal with each other.

Definition 3.1. A data pair (x,y) € (R%)F x {41} is generated from the distribution D as follows.

* Uniformly draw a pair (k, k') with k # k' from {1,..., K}.
* Generate the label y € {£1} uniformly, generate a Rademacher random variable ¢ € {£1}.
* Independently generate random variables «, 3, v from distribution D, Dg, D~ . In this paper, we
assume there exists absolute constants C, C'y such that almost surely 0 < C; < «, 8,7 < Cs.
* Generate x as a collection of P patches: x = (x(V), x® ... x(P)) ¢ (R, where
— Feature signal. One and only one patch is given by yavy.
— Cluster-center signal. One and only one patch is given by Scy.
— Feature noise. One and only one patch is given by eyvy.
— Random noise. The rest of the P — 3 patches are Gaussian noises that are independently drawn
from N (0, (o7/d) - 1) where o, is an absolute constant.

How to learn this type of data? Since the positions of signals and noises are not specified in
Definition[3.1] it is natural to use the CNNGs structure that applies the same function to each patch. We
point out that the strength of the feature noises - can be as large as the strength of the feature signals
a. As we will see later in Theorem4.1] this classification problem is hard to learn with a single expert,
such as any two-layer CNNs (any activation function with any number of neurons). However, such
a classification problem has an intrinsic clustering structure that may be utilized to achieve better
performance. Examples can be divided into K clusters Uy (k€2 based on the cluster-center signals:
an example (x,y) € {2 if and only if at least one patch of x aligns with cj. It is not difficult to show
that the binary classification sub-problem over {2; can be easily solved by an individual expert. We
expect the MoE can learn this data cluster structure from the cluster-center signals.

Significance of our result. Although this data can be learned by existing works on a mixture of
linear classifiers with sophisticated algorithms (Anandkumar et al.| 2012; Hsu et al., 2012} Chaganty
and Liang}, [2013)), the focus of our paper is training a mixture of nonlinear neural networks, a more
practical model used in real applications. When an MoE is trained by variants of gradient descent, we
show that the experts automatically learn to specialize on each cluster, while the router automatically
learns to dispatch the data to the experts according to their specialty. Although from a representation
point of view, it is not hard to see that the concept class can be represented by MoEs, our result is
very significant as we prove that gradient descent from random initialization can find a good MoE
with non-linear experts efficiently. To make our results even more compelling, we empirically show
that MoE with linear experts, despite also being able to represent the concept class, cannot be trained
to find a good classifier efficiently.

3.2 Structure of the MoE layer

An MOoE layer consists of a set of M “expert networks” f1, ..., fis, and a gating network which is
generally set to be linear (Shazeer et al.,[2017; [Fedus et al.,2021). Denote by f,, (x; W) the output of
the m-th expert network with input = and parameter W. Define an M -dimensional vector h(x; ®) =
> pelP] © "x(P) as the output of the gating network parameterized by ©® = [0, ...,0,,] € R>*M,
The output F' of the MoE layer can be written as follows:

F(X; ng) = ZmeTxﬂ-m<X; Q)fM<X§ W)a

where T, C [M] is a set of selected indices and 7, (x; @)’s are route gate values given by

exp(hm(x; O
ep(n(5O)
2 =1 €xp (s (x; ©))
Expert Model. In practice, one often uses nonlinear neural networks as experts in the MoE layer. In

fact, we found that the non-linearity of the expert is essential for the success of the MoE layer (see
Section [6). For m-th expert, we consider a convolution neural network as follows:

Tm(X;©) =

P
fm (G W) =3 Y10 (Wi 5, xP))), (3.1
where w,,, ; € R4 is the weight vector of the j-th filter (i.e., neuron) in the m-th expert, J is the
number of filters (i.e., neurons). We denote W,,, = [Wy, 1,..., Wy, j]| € R*7 ag the weight matrix

of the m-th expert and further let W = {W,, },,,c[a) as the collection of expert weight matrices. For
nonlinear CNN, we consider the cubic activation function o(z) = 23, which is one of the simplest

nonlinear activation functions (Vecci et al.,[1998)). We also include the experiment for other activation
functions such as RELU in Appendix Table

Top-1 Routing Model. A simple choice of the selection set Ty is the whole experts set Tx = [M]
(Jordan and Jacobs), [1994), which is the case for the so-called soft-routing model. However, it will
be time consuming to use soft-routing in deep learning. In this paper, we consider “switch routing”,
which is introduced by [Fedus et al.|(2021) to make the gating network sparse and save the computation
time. For each input x, instead of using all the experts, we only pick one expert from [M], i.e.,
|7x| = 1. In particular, we choose Tx = argmax,, {h., (x; ®)}.

Output B . .
utpu Algorithm 1 Gradient descent with ran-
I dom initialization
ﬁ® Require: Number of iterations 7', expert
Expert 1 Expert 2 Expert3 | - . . | Expert M learmng I:ate , router leapyng rate Trs
initialization scale o, training set S =
.- »(_Router {(xi,yi) bim1-
e 1: Generate each entry of w© indepen-
Gating 2
Network x dently from N (0, o).
2: Initialize each entry of ©® as zero.
Input x 3: fOI’tZO,Q,...,TfldO

»

: Generate each entry of r*) indepen-
Figure 2: Illustration of an MoE layer. For each input x, the deer?tf;afri)fr? (I:JnffIEOr };]0 T indepent

router will only select one expert to perform computations. The 141 .
choice is based on the output of the gating network (dotted line). Update vai +1)) asm G
The expert layer returns the output of the selected expert (gray Update © as in (3.3).
box) multiplied by the route gate value (softmax of the gating /- end for (T) wr(T)
function output). : return (@7, W),

3.3 Training Algorithm

Given the training data S = {(x;, y;)}_, we train F’ with gradient descent to minimize the following
empirical loss function:

L
LOW) = 351 Ly (xi: ©, W), (3.2)

where / is the logistic loss defined as £(z) = log(1 + exp(—z)). We initialize @®) to be zero and
initialize each entry of W(®) by i.i.d A'(0, 03). Zero initialization of the gating network is widely
used in MoE training. As discussed in|Shazeer et al.|(2017), it can help avoid out-of-memory errors
and initialize the network in a state of approximately equal expert load (see (5.1)) for the definition of
expert load).

Instead of directly using the gradient of empirical loss (3.2) to update weights, we add perturba-
tion to the router and use the gradient of the perturbed empirical loss to update the weights. In

particular, the training example x; will be distributed to argmax,,, { h,, (x;; ©1)) + 7"7(7?1} instead,

where {r%?i}me[M],ie[n] are random noises. Adding noise term is a widely used training strategy

for sparsely-gated MoE layer (Shazeer et al., 2017 |Fedus et al.l 2021)), which can encourage explo-
ration across the experts and stabilize the MoE training. In this paper, we draw {rfﬁ%i}me[M i€[n]

independently from the uniform distribution Unif[0, 1] and denotes its collection as r(*). Therefore,
the perturbed empirical loss at iteration ¢ can be written as

1
LB, W(t)) = Ezizlﬁ(ymmm (x4 ®(t))fmm (xi; W(t)))7 (3.3)

where m; ; = argmax,, {1, (x;; @M) + r,(,?l} Starting from the initialization W), the gradient
descent update rule for the experts is '

WD — WO _ . Ty £O@O W) /| Vw, LO(O@D WD) p,Vm e [M], (3.4)

where 7 > 0 is the expert learning rate. Starting from the initialization ©(?), the gradient update rule
for the gating network is

Ol =0 — 1, - Vo, £ (©D W) vm € [M], (3.5)

where 7, > 0 is the router learning rate. In practice, the experts are trained by Adam to make sure
they have similar learning speeds. Here we use a normalized gradient which can be viewed as a
simpler alternative to Adam (Jelassi et al., [2021]).

4 Main Results

In this section, we will present our main results. We first provide a negative result for learning with a
single expert.

Theorem 4.1 (Single expert performs poorly). Suppose D, = D, in Deﬁnition then any function
with the form F(x) = Zle f(xP) will get large test error Py ,yp (yF(x) < 0) > 1/8.

Theorem [.1] indicates that if the feature noise has the same strength as the feature signal i.e.,
Do = Dy, any two-layer CNNs with the form F/(x) = > .25 a5 2_,¢p| J(WJ-TX(”) + b;) can’t
perform well on the classification problem defined in Definition [3.1] where o can be any activation
function. Theorem 4.1 also shows that a simple ensemble of the experts may not improve the

performance because the ensemble of the two-layer CNNss is still in the form of the function defined
in Theorem [4.1]

As a comparison, the following theorem gives the learning guarantees for training an MoE layer that
follows the structure defined in Section[3.2] with cubic activation function.

Theorem 4.2 (Nonlinear MoE performs well). Suppose the training data size n = €(d). Choose
experts number M = O(K log K loglog d), filter size J = O(log M log log d), initialization scale
oo € [d~1/3,d=001), learning rate n = O(0g),n, = ©(M?2)n. Then with probability at least
1—o(1), Algorithmis able to output (©T), W(T)) within T' = O(y~!) iterations such that the
non-linear MoE defined in Section [3.2] satisfies that

« Training error is zero, i.e., y; F (x;; ©™), W(T)) > 0,Vi € [n].
» Test error is nearly zero, i.e., P(x ,)op (yF(x; O, W) < 0) = o(1).

More importantly, the experts can be divided into a disjoint union of K non-empty sets [M] =
Ukel K]Mk and

* (Each expert is good on one cluster) Each expert m € M} performs good on the cluster £y,
P e~ (4 (3 WD) < 0[(x,y) € Q1) = o(1).

* (Router only distributes example to good expert) With probability at least 1 — o(1), an example
x €) will be routed to one of the experts in M.

Theorem[d.2]shows that a non-linear MoE performs well on the classification problem in Definition[3.}
In addition, the router will learn the cluster structure and divide the problem into K simpler sub-
problems, each of which is associated with one cluster. In particular, each cluster will be classified
accurately by a subset of experts. On the other hand, each expert will perform well on at least one
cluster.

Furthermore, together with Theorem .1} Theorem [4.2] suggests that there exist problem instances in
Deﬁnition (i.e., Do = D) such that an MoE provably outperforms a single expert.

5 Overview of Key Techniques

A successful MoE layer needs to ensure that the router can learn the cluster-center features and
divide the complex problem in Definition [3.T]into simpler linear classification sub-problems that
individual experts can conquer. Finding such a gating network is difficult because this problem is
highly non-convex. In the following, we will introduce the main difficulties in analyzing the MoE
layer and the corresponding key techniques to overcome those barriers.

Main Difficulty 1: Discontinuities in Routing. Compared with the traditional soft-routing model,
the sparse routing model saves computation and greatly reduces the inference time. However, this
form of sparsity also causes discontinuities in routing (Shazeer et al., 2017). In fact, even a small
perturbation of the gating network outputs h(x; ®) + d may change the router behavior drastically if
the second largest gating network output is close to the largest gating network output.

Key Technique 1: Stability by Smoothing. We point out that the noise term added to the gating
network output ensures a smooth transition between different routing behavior, which makes the
router more stable. This is proved in the following lemma.

Lemma 5.1. Let h, h € RM o be the output of the gating network and {r,,, }2/_, to be the noise
independently drawn from Unif[0,1]. Denote p, p € RY to be the probability that experts get routed,
ie., pm = P(argmaxm,e[M]{hm/ +rm } =m), Dm = P(argmaxm,e[M]{hm/ + 7} = m). Then
we have that [|p — Plloc < M2||h — hw.

Lemmaimplies that when the change of the gating network outputs at iteration ¢ and ¢’ is small, i.e.,
[h(x; @®)) —h(x; ©))]|| ., the router behavior will be similar. So adding noise provides a smooth
transition from time ¢ to ¢'. It is also worth noting that ® is zero initialized. So h(x; ®(®)) = 0 and
thus each expert gets routed with the same probability p,, = 1/M by symmetric property. Therefore,
at the early of the training when ||h(x; ©@®) — h(x; ©())||, is small, router will almost uniformly
pick one expert from [M], which helps exploration across experts.

Main Difficulty 2: No “Real” Expert. At the beginning of the training, the gating network is zero,
and the experts are randomly initialized. Thus it is hard for the router to learn the right features
because all the experts look the same: they share the same network architecture and are trained by the
same algorithm. The only difference is the initialization. Moreover, if the router makes a mistake at
the beginning of the training, the experts may amplify the mistake because the experts will be trained
based on mistakenly dispatched data.

Key Technique 2: Experts from Exploration. Motivated by the key technique 1, we introduce an
exploration stage to the analysis of MoE layer during which the router almost uniformly picks one ex-
pert from [M]. This stage starts at £ = 0 and ends at Ty = [~ '00-3| < T = O(n") and the gating
network remains nearly unchanged ||h(x; ©®)) —h(x; ©(?)||, = O(c}-°). Because the experts are
treated almost equally during exploration stage, we can show that the experts become specialized to

some specific task only based on the initialization. In particular, the experts set [M] can be divided into
K nonempty disjoint sets [M] = LIy My, where M}, := {m|argmax, (1 je[J] (vk/,wfg’)ﬁ = k}.
For nonlinear MoE with cubic activation function, the following lemma further shows that experts in
different set M, will diverge at the end of the exploration stage.

Lemma 5.2. Under the same condition as in Theorem 4.2] with probability at least 1 — o(1), the
following equations hold for all expert m € My,

P (s (4 (0 WD) <0|(x,) € Q1) = o(1),

Py (3 (s W) < 0| (x,) € Q) = Q(L/K), VK # k.
Lemma[5.2)implies that, at the end of the exploration stage, the expert m € M, can achieve nearly
zero test error on the cluster 2, but high test error on the other clusters Qy/, &' # k.

Main Difficulty 3: Expert Load Imbalance. Given the training data set S = {(x;,y;)}", the
load of expert m at iterate ¢ is defined as

Loadt) = 3. . P(m;, = m), (5.1)

where P(m; ; = m) is probability that the input x; being routed to expert m at iteration ¢. |[Eigen
et al.| (2013) first described the load imbalance issues in the training of the MoE layer. The gating

i€[n]

network may converge to a state where it always produces large Loadgfl) for the same few experts.
This imbalance in expert load is self-reinforcing, as the favored experts are trained more rapidly
and thus are selected even more frequently by the router (Shazeer et al.,[2017; Fedus et al., |[2021)).
Expert load imbalance issue not only causes memory and performance problems in practice, but also
impedes the theoretical analysis of the expert training.

Key Technique 3: Normalized Gradient Descent. Lemmal[5.2]shows that the experts will diverge
into Uec[x)My. Normalized gradient descent can help different experts in the same M}, being
trained at the same speed regardless of the imbalance load caused by the router. Because the self-
reinforcing circle no longer exists, the load imbalance issue will get mitigated. In particular, the router
will treat different experts in the same M, almost equally and dispatch almost the same amount of
data to them during the early stage of training (See Section[E.2]in Appendix for detail), which is
enough for the router to learn the cluster-center features. However, we can’t guarantee load balance
for an arbitrary long training period if we only use normalized gradient descent. That’s the reason
Theorem 4.2 requires early stopping. This load imbalance issue can be further avoided by adding
load balancing loss (Eigen et al.,[2013;|Shazeer et al., 2017; [Fedus et al.,[2021), or using advanced
MoE layer structure such as BASE Layers (Lewis et al.,|2021; |Dua et al.| 2021)) and Hash Layers
(Roller et al., [2021)).

Road Map: Here we provide the road map of the proof of Theorem .2]and the full proof is presented
in Appendix [E] The training process can be decomposed into several stages. The first stage is
called Exploration stage. During this stage, the experts will diverge into K professional groups
UK | M, = [M]. In particular, we will show that M, is not empty for all k € [K]. Besides, for all
m € My, fm 18 a good classifier over ;. The second stage is called router learning stage. During
this stage, the router will learn to dispatch x € €2 to one of the experts in M. Finally, we will give
the generalization analysis for the MoEs from the previous two stages.

6 Experiments

In this section, we conduct experiments to validate our theory. The code and data for our experiments
can be found on Github[]

Setting 1:a € (0.5,2), B € (1,2), v € (0.5,3),0, = 1

Test accuracy (%) Dispatch Entropy 14

Single (linear) 68.71 NA 1.2
Single (nonlinear) 79.48 NA 10
MoE (linear) 92.99 + 2.11 1.300 £ 0.044 -
MOoE (nonlinear) 99.46 + 0.55 0.098 + 0.087 g

— Linear-1
Nonlinear-1

— Linear-2

—— Nonlinear-2

Setting 2: « € (0.5,2), 8 € (1,2),v € (0.5,3), 0 = 2 04
Test accuracy (%) Dispatch Entropy 02
Single (linear) 60.59 NA I 200 300 400 500
Single (nonlinear) 72.29 NA reining Epochs
MOoE (linear) 88.48 +£1.96 1.294 £+ 0.036 Figure 3: Illustration of router dis-

MOoE (nonlinear) 98.09 +1.27 0.171+£0.103 patch entropy. We demonstrate the
change of entropy of MoE during train-
Table 1: Comparison between MoE (linear) and MoE (nonlinear) ing on the synthetic data. MoE (linear)-
in our setting. We report results of top-1 gating with noise for both 1 and MoE (nonlinear)-1 refer to Set-
linear and nonlinear models. Over ten random experiments, we report ting 1 in Table[I] MoE (linear)-2 and
the average value + standard deviation for both test accuracy and MoE (nonlinear)-2 refer to Setting 2 in
dispatch entropy. Table|[T]}

6.1 Synthetic-data Experiments

Datasets. We generate 16, 000 training examples and 16, 000 test examples from the data distribution
defined in Deﬁnitionwith cluster number K = 4 , patch number P = 4 and dimension d = 50.
We randomly shuffle the order of the patches of x after we generate data (x,y). We consider two

"https://github.com/uclaml/MoE

https://github.com/uclaml/MoE

Table 2: Comparison between MoE and single model on CIFAR-10 and CIFAR-10-Rotate datasets. We report
the average test accuracy over 10 random experiments =+ the standard deviation.

CIFAR-10 (%) CIFAR-10-Rotate (%)

CNN Single 80.68 & 0.45 76.78 & 1.79
MoE 80.31 «+ 0.62 79.60 + 1.25

. Single 92.45 +0.25 85.76 + 2.91
MobileNetV2 “\y'E™ 9993 1 0.72 89.85 + 2.54
Single 95.51 = 0.31 88.23 + 0.96

ResNet18 MoE 95.32 + 0.68 92.60 + 2.01

parameter settings: 1. o ~ Uniform(0.5, 2), 8 ~ Uniform(1, 2), v ~ Uniform(0.5, 3) and 0, = 1; 2.
o ~ Uniform(0.5, 2), 8 ~ Uniform(1, 2), v ~ Uniform(0.5, 3) and ¢, = 2. Note that Theorem [4.1]
shows that when a and -y follow the same distribution, neither single linear expert or single nonlinear
expert can give good performance. Here we consider a more general and difficult setting when o and
~ are from different distributions.

Models. We consider the performances of single linear CNN, single nonlinear CNN, linear MoE, and
nonlinear MoE. The single nonlinear CNN architecture follows with cubic activation function,
while single linear CNN follows (3.1)) with identity activation function. For both linear and nonlinear
MoEs, we consider a mixture of 8 experts with each expert being a single linear CNN or a single
nonlinear CNN. Finally, we train single models with gradient descent and train the MoEs with
Algorithm[I] We run 10 random experiments and report the average accuracy with standard deviation.

Evaluation. To evaluate how well the router learned the underlying cluster structure of the data, we
define the entropy of the router’s dispatch as follows. Denote by 1y, ,,, the number of data in cluster K
that are dispatched to expert m. The total number of data dispatched to expert m is n,,, = Zszl Nh,m
and the total number of data is n = Z,{;l Zﬂf:l Nk, m. The dispatch entropy is then defined as
M K 2 m ¢, m
entropy = _Zm:an;ﬁO% D k=1 nn’ -log (nrtm) (6.1)

k
m

When each expert receives the data from at most one cluster, the dispatch entropy will be zero. And a
uniform dispatch will result in the maximum dispatch entropy.

As shown in Table [T} the linear MoE does not perform as well as the nonlinear MoE in Setting 1,
with around 6% less test accuracy and much higher variance. With stronger random noise (Setting 2),
the difference between the nonlinear MoE and linear MoE becomes even more significant. We also
observe that the final dispatch entropy of nonlinear MoE is nearly zero while that of the linear MoE is
large. In Figure|3] we further demonstrate the change of dispatch entropy during the training process.
The dispatch entropy of nonlinear MoE significantly decreases, while that of linear MoE remains
large. Such a phenomenon indicates that the nonlinear MoE can successfully learn the underlying
cluster structure of the data while the linear MoE fails to do so.

6.2 Real-data Experiments

We further conduct experiments on real image datasets and demonstrate the importance of the
clustering data structure to the MoE layer in deep neural networks.

Datasets. We consider the CIFAR-10 dataset (Krizhevsky, 2009) and the 10-class classification task.
Furthermore, we create a CIFAR-10-Rotate dataset that has a strong underlying cluster structure
that is independent of its labeling function. Specifically, we rotate the images by 30 degrees and
merge the rotated dataset with the original one. The task is to predict if the image is rotated, which
is a binary classification problem. We deem that some of the classes in CIFAR-10 form underlying
clusters in CIFAR-10-Rotate. In Appendix[A] we explain in detail how we generate CIFAR-10-Rotate
and present some specific examples.

Models. For the MoE, we consider a mixture of 4 experts with a linear gating network. For the
expert/single model architectures, we consider a CNN with 2 convolutional layers (architecture details
are illustrated in Appendix [A]) For a more thorough evaluation, we also consider expert/single models

with architecture including MobileNetV2 (Sandler et al., 2018) and ResNet18 (He et al.l|2016). The
training process of MoE also follows Algorithm [I]

The experiment results are shown in Table[2] where we compare single and mixture models of different
architectures over CIFAR-10 and CIFAR-10-Rotate datasets. We observe that the improvement of
MoEs over single models differs largely on the different datasets. On CIFAR-10, the performance
of MoEs is very close to the single models. However, on the CIFAR-10-Rotate dataset, we can
observe a significant performance improvement from single models to MoEs. Such results indicate
the advantage of MoE over single models depends on the task and the cluster structure of the data.

Visualization. In Figure] we visualize the latent embedding learned by MoEs (ResNet18) for the
10-class classification task in CIFAR-10 as well as the binary classification task in CIFAR-10-Rotate.
We visualize the data with the same label y to see if cluster structures exist within each class. For
CIFAR-10, we choose y = 1 ("car"), and plot the latent embedding of the data using t-SNE on the
left sub-figure, which does not show an salient cluster structure. For CIFAR-10-Rotate, we choose
y = 1 ("rotated") and visualize the data using t-SNE in the middle sub-figure. Here, we can observe
a clear clustering structure even though the class signal is not provided during training. We take a
step further to investigate what is in each cluster in the right sub-figure. We can observe that most of
the examples in the “frog” class fall into one cluster, while examples of “ship” class mostly fall into
the other cluster.

06
’% 0.75
0.4 HE TR
‘ké:{'- B n .| o050
PR undp
0.2 ’ﬁf{? 0.25
R e
0.0 A 0.00
~0.25
-0.2
" -0.50
—04 ’
~075
-06 -04 02 00 02 04 Z05 00 05 To =35 00 05 To
y=1 (car) y=1 (rotated) (frog, ship)

Figure 4: Visualization of the latent embedding on CIFAR-10 and CIFAR-10-Rotate with chosen label y. The
left sub-figure denotes the visualization of CIFAR-10 when label y is chosen to be 1 (car). The central sub-figure
represents the visualization of CIFAR-10-Rotate when label y is chosen to be 1 (rotated). On the right sub-figure,
red denotes that the data is from the ship class, and blue denotes that the data is from the frog class.

7 Conclusion and Future Work

In this work, we formally study the mechanism of the Mixture of Experts (MoE) layer for deep
learning. To our knowledge, we provide the first theoretical result toward understanding how the MoE
layer works in deep learning. Our empirical evidence reveals that the cluster structure of the data plays
an important role in the success of the MoE layer. Motivated by these empirical observations, we
study a data distribution with cluster structure and show that Mixture-of-Experts provably improves
the test accuracy of a single expert of two-layer CNNs.

There are several important future directions. First, our current results are for CNNss. It is interesting
to extend our results to other neural network architectures, such as transformers. Second, our data
distribution is motivated by the classification problem of image data. We plan to extend our analysis
to other types of data (e.g., natural language data).

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and area chair for their helpful comments. ZC, YD, YW and
QG are supported in part by the National Science Foundation CAREER Award 1906169, BIGDATA
IIS-1855099, IIS-2008981, and the Sloan Research Fellowship. YL is supported in part by the NSF
RI2007517. The views and conclusions contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

10

References

ALLEN-ZHU, Z. and LI, Y. (2019). What can ResNet learn efficiently, going beyond kernels? In
Advances in Neural Information Processing Systems.

ALLEN-ZHU, Z. and L1, Y. (2020a). Backward feature correction: How deep learning performs
deep learning. arXiv preprint arXiv:2001.04413 .

ALLEN-ZHU, Z. and L1, Y. (2020b). Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190 .

ALLEN-ZHU, Z. and L1, Y. (2020c). Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816 .

ALLEN-ZHU, Z., L1, Y. and LIANG, Y. (2019a). Learning and generalization in overparameterized
neural networks, going beyond two layers. In Advances in Neural Information Processing Systems.

ALLEN-ZHU, Z., L1, Y. and SONG, Z. (2019b). A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning.

ANANDKUMAR, A., GE, R., Hsu, D., KAKADE, S. M. and TELGARSKY, M. (2014). Tensor
decompositions for learning latent variable models. Journal of machine learning research 15
2773-2832.

ANANDKUMAR, A., Hsu, D. and KAKADE, S. M. (2012). A method of moments for mixture
models and hidden markov models. In Conference on Learning Theory. JIMLR Workshop and
Conference Proceedings.

ARORA, S., DU, S., Hu, W., LI, Z. and WANG, R. (2019a). Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In International Conference
on Machine Learning.

ARORA, S., DU, S. S., Hu, W., L1, Z., SALAKHUTDINOV, R. and WANG, R. (2019b). On exact
computation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems.

BAL Y. and LEE, J. D. (2019). Beyond linearization: On quadratic and higher-order approximation
of wide neural networks. arXiv preprint arXiv:1910.01619 .

BALAKRISHNAN, S., WAINWRIGHT, M. J. and YU, B. (2017). Statistical guarantees for the em
algorithm: From population to sample-based analysis. The Annals of Statistics 45 77-120.

BLARD, T. (2020). French sentiment analysis with bert. https://github.com/TheophileBlard/
french-sentiment-analysis-with-bert.

CAo0, Y., CHEN, Z., BELKIN, M. and GU, Q. (2022). Benign overfitting in two-layer convolutional
neural networks. arXiv preprint arXiv:2202.06526 .

Cao0, Y. and GU, Q. (2019). Generalization bounds of stochastic gradient descent for wide and deep
neural networks. In Advances in Neural Information Processing Systems.

CHAGANTY, A. T. and LIANG, P. (2013). Spectral experts for estimating mixtures of linear
regressions. In International Conference on Machine Learning. PMLR.

COLLOBERT, R., BENGIO, S. and BENGIO, Y. (2002). A parallel mixture of svms for very large
scale problems. Neural computation 14 1105-1114.

DAUPHIN, Y. N., FAN, A., AULI, M. and GRANGIER, D. (2017). Language modeling with gated
convolutional networks. In International conference on machine learning. PMLR.

DE VEAUX, R. D. (1989). Mixtures of linear regressions. Computational Statistics & Data Analysis
8 227-245.

DEVLIN, J., CHANG, M., LEE, K. and TouTANOVA, K. (2018). BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR abs/1810.04805.

11

https://github.com/TheophileBlard/french-sentiment-analysis-with-bert
https://github.com/TheophileBlard/french-sentiment-analysis-with-bert

Du, S. S., ZHAI, X., Poczos, B. and SINGH, A. (2019). Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations.

DuA, D., BHOSALE, S., GoswaMI, V., CROSS, J., LEWIS, M. and FAN, A. (2021). Tricks for
training sparse translation models. arXiv preprint arXiv:2110.08246 .

EIGEN, D., RANZATO, M. and SUTSKEVER, 1. (2013). Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314 .

FARIA, S. and SOROMENHO, G. (2010). Fitting mixtures of linear regressions. Journal of Statistical
Computation and Simulation 80 201-225.

FEDUS, W., ZOPH, B. and SHAZEER, N. (2021). Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961 .

Go, A., BHAYANI, R. and HUANG, L. (2009). Twitter sentiment classification using distant
supervision. CS224N project report, Stanford 1 2009.

HE, K., ZHANG, X., REN, S. and SUN, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

Hsu, D. J., KAKADE, S. M. and LIANG, P. S. (2012). Identifiability and unmixing of latent parse
trees. Advances in neural information processing systems 285.

JACOBS, R. A., JORDAN, M. 1., NOWLAN, S. J. and HINTON, G. E. (1991). Adaptive mixtures of
local experts. Neural computation 3 79-87.

JACOT, A., GABRIEL, F. and HONGLER, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems.

JELASSI, S., MENSCH, A., GIDEL, G. and LI, Y. (2021). Adam is no better than normalized sgd:
Dissecting how adaptivity improves gan performance .

JORDAN, M. 1., GHAHRAMANI, Z. and SAUL, L. K. (1997). Hidden markov decision trees.
Advances in neural information processing systems 501-507.

JORDAN, M. I. and JACOBS, R. A. (1994). Hierarchical mixtures of experts and the em algorithm.
Neural computation 6 181-214.

KHALILI, A. and CHEN, J. (2007). Variable selection in finite mixture of regression models. Journal
of the american Statistical association 102 1025-1038.

KINGMA, D. P. and BA, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

KRIZHEVSKY, A. (2009). Learning multiple layers of features from tiny images. Tech. rep.

LEWIS, M., BHOSALE, S., DETTMERS, T., GOYAL, N. and ZETTLEMOYER, L. (2021). Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning.
PMLR.

L1, Y. and LIANG, Y. (2018). Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems.

L1, Y., MA, T. and ZHANG, H. R. (2020). Learning over-parametrized two-layer neural networks
beyond ntk. In Conference on learning theory. PMLR.

LIANG, P., BOUCHARD-COTE, A., KLEIN, D. and TASKAR, B. (2006). An end-to-end discrim-
inative approach to machine translation. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics.

QUATTONI, A., COLLINS, M. and DARRELL, T. (2004). Conditional random fields for object
recognition. Advances in neural information processing systems 17.

12

ROLLER, S., SUKHBAATAR, S., WESTON, J. ET AL. (2021). Hash layers for large sparse models.
Advances in Neural Information Processing Systems 34 17555-17566.

SANDLER, M., HOWARD, A., ZHU, M., ZHMOGINOV, A. and CHEN, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

SHAZEER, N., MIRHOSEINI, A., MAZIARZ, K., DAVIS, A., LE, Q., HINTON, G. and DEAN, J.

(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538 .

SMETANIN, S. and KOMAROV, M. (2019). Sentiment analysis of product reviews in russian using
convolutional neural networks. In 2019 IEEE 21st conference on business informatics (CBI), vol. 1.
IEEE.

TRESP, V. (2001). Mixtures of gaussian processes. Advances in neural information processing
systems 654—660.

VAN DER MAATEN, L. and HINTON, G. (2008). Visualizing data using t-sne. Journal of machine
learning research 9.

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER,
L. and POLOSUKHIN, I. (2017). Attention is all you need. In Advances in neural information
processing systems.

VECCI, L., P1AzZA, F. and UNCINI, A. (1998). Learning and approximation capabilities of adaptive
spline activation function neural networks. Neural Networks 11 259-270.

WANG, Y. and MORI, G. (2009). Max-margin hidden conditional random fields for human action
recognition. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.

WANG, Z., GU, Q., NING, Y. and L1U, H. (2015). High dimensional em algorithm: Statistical
optimization and asymptotic normality. Advances in neural information processing systems 28.

WEN, Z. and LI, Y. (2021). Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning. PMLR.

Y1, X., CARAMANIS, C. and SANGHAVI, S. (2014). Alternating minimization for mixed linear
regression. In International Conference on Machine Learning. PMLR.

Zou, D., Cao0, Y., L1, Y. and GU, Q. (2021). Understanding the generalization of adam in learning
neural networks with proper regularization. arXiv preprint arXiv:2108.11371 .

Zou, D., Cao, Y., ZHOU, D. and GU, Q. (2018). Stochastic gradient descent optimizes over-
parameterized deep relu networks. arXiv preprint arXiv:1811.08888 .

13

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] This paper gives the first theoretical result toward
formally understanding the mechanism of the MoE layer for deep learning.

(b) Did you describe the limitations of your work? [Yes] We note in Section 5 that our
analysis of the MoE layer need early stopping which we believe can be waived by
adding some well-signed regularization. We will explore this in future work.

(c) Did you discuss any potential negative societal impacts of your work? We seek
to mathematically understand the MoE layer in Deep Learning, it is not clear what
potential negative impacts a deeper theoretical understanding of this algorithm would
bring.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See our Appendix.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Experiment Details

A.1 Visualization

In the visualization of Figure [T} MoE (linear) and MoE (nonlinear) are trained according to Algo-
rithm [T by normalized gradient descent with learning rate 0.001 and gradient descent with learning
rate 0.1. According to Definition 3.1 we set K = 4, P = 4 and d = 50 and choose a € (0.5,2),
B € (1,2), v € (1,2) and 0, = 1, and generate 3,200 data examples. We consider mixture of
M = 4 experts for both MoE (linear) and MoE (nonlinear). For each expert, we set the number of
neurons/filters J = 16. We train MoEs on 1, 600 data examples and visualize classification result
and decision boundary on the remaining 1,600 examples. The data examples are visualized via
t-SNE (Van der Maaten and Hinton, 2008)). When visualizing the data points and decision boundary
on the 2d space, we increase the magnitude of random noise patch by 3 so that the positive/negative
examples and decision boundaries can be better viewed.

A.2 Synthetic-data Experiments

Synthetic-data experiment setup. For the experiments on synthetic data, we generate the data
according to Definition[3.1|with K = 4, P = 4 and d = 50. We consider four parameter settings:

* « ~ Uniform(0.5, 2), 8 ~ Uniform(1, 2), v ~ Uniform(0.5, 3) and o), = 1;
* « ~ Uniform(0.5, 2), 8 ~ Uniform(1, 2), v ~ Uniform(0.5, 3) and o, = 2;
* « ~ Uniform(0.5, 2), 8 ~ Uniform(1, 2), v ~ Uniform(0.5, 2) and o, = 1;
* a ~ Uniform(0.5, 2), 8 ~ Uniform(1, 2), v ~ Uniform(0.5, 2) and o, = 2.

We consider mixture of M = 8 experts for all MoEs and J = 16 neurons/filters for all experts. For
single models, we consider JJ = 128 neurons/filters. We train MoEs using Algorithm[I] Specifically,
we train the experts by normalized gradient descent with learning rate 0.001 and the gating network
by gradient descent with learning rate 0.1. We train single linear/nonlinear models by Adam (Kingma
and Bal |2014) to achieve the best performance, with learning rate 0.01 and weight decay 5e-4 for
single nonlinear model and learning rate 0.003 and weight decay 5e — 4 for single linear model.

Synthetic-data experiment results. In Table [3|, we present the empirical results of single linear
CNN, single nonlinear CNN, linear MoE, and nonlinear MoE under settings 3 and 4, where o and y
follow the same distribution as we assumed in theoretical analysis. Furthermore, we report the total
number of filters for both single CNNs and a mixture of CNNs, where the filter size (equal to 50)
is the same for all single models and experts. For linear and nonlinear MoE, there are 16 filters for
each of the 8 experts, and therefore 128 filters in total. Note that in the synthetic-data experiment
in the main paper, we let the number of filters of single models be the same as MoEs (128). Here,
we additionally report the performances of single models with 512 filters, and see if increasing the
model size of single models can beat MoE. From Table 3] we observe that: 1. single models perform
poorly in all settings; 2. linear MoEs do not perform as well as nonlinear MoEs. Specifically, the
final dispatch entropy of nonlinear MoEs is nearly zero while the dispatch entropy of linear MoE:s is
consistently larger under settings 1-4. This indicates that nonlinear MoEs successfully uncover the
underlying cluster structure while linear MoEs fail to do so. In addition, we can see that even larger
single models cannot beat linear MoEs or nonlinear MoEs. This is consistent with Theorem [4.1]
where a single model fails under such data distribution regardless of its model size. Notably, by
comparing the results in Table[l|and Table |3} we can see that a single nonlinear model suffers from
overfitting as we increase the number of filters.

Router dispatch examples. We demonstrate specific examples of router dispatch for MoE (nonlin-
ear) and MoE (linear). The examples of initial and final router dispatch for MoE (nonlinear) are
shown in Table] and Table[5] Under the dispatch for nonlinear MoE, each expert is given either
no data or data that comes from one cluster only. The entropy of such dispatch is thus 0. The test
accuracy of MoE trained under such a dispatch is either 100% or very close to 100%, as the expert
can be easily trained on the data from one cluster only. An example of the final dispatch for MoE
(linear) is shown in Table [6] where clusters are not well separated and an expert gets data from
different clusters. The test accuracy under such dispatch is lower (90.61%).

15

Table 3: Comparison between MoE (linear) and MoE (nonlinear) in our setting. We report results of top-1
gating with noise for both linear and nonlinear models. Over ten random experiments, we report the average
value =+ standard deviation for both test accuracy and dispatch entropy.

Setting 1:a € (0.5,2), 8 € (1,2),v € (0.5,3),0p, =1

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 68.71 NA 128

Single (linear) 67.63 NA 512
Single (nonlinear) 79.48 NA 128
Single (nonlinear) 78.18 NA 512

MokE (linear) 92.99 + 2.11 1.300 £ 0.044 128 (16*8)
MoE (nonlinear) 99.46 + 0.55 0.098 + 0.087 128 (16*8)

Setting 2: a € (0.5,2), 8 € (1,2),v € (0.5,3), 0, = 2

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 60.59 NA 128

Single (linear) 63.04 NA 512
Single (nonlinear) 72.29 NA 128
Single (nonlinear) 52.09 NA 512

MoE (linear) 88.48 +£1.96 1.294 + 0.036 128 (16*8)
MOoE (nonlinear) 98.09 +£1.27 0.171 +0.103 128 (16*8)

Setting 3:a € (0.5,2), 8 € (1,2),7 € (0.5,2),0, =1

Test accuracy (%) Dispatch Entropy ~ Number of Filters

Single (linear) 74.81 NA 128

Single (linear) 74.54 NA 512
Single (nonlinear) 72.69 NA 128
Single (nonlinear) 67.78 NA 512

MoE (linear) 95.93 +1.34 1.160 + 0.100 128 (16*8)
MOoE (nonlinear) 99.99 + 0.02 0.008 +0.011 128 (16*8)

Setting 4: « € (0.5,2), 8 € (1,2), v € (0.5,2), 0, = 2

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 74.63 NA 128

Single (linear) 72.98 NA 512
Single (nonlinear) 68.60 NA 128
Single (nonlinear) 61.65 NA 512

MoE (linear) 93.30 £ 1.48 1.160 + 0.155 128 (16*8)
MOoE (nonlinear) 98.92 +1.18 0.089 +0.120 128 (16*8)

Table 4: Dispatch details of MoE (nonlinear) with test accuracy 100%.

Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1921 2032 1963 1969 2075 1980 2027 2033

Final dispatch 0 3979 4009 0 0 3971 0 4041
Cluster 1 0 0 0 0 0 3971 0 0
Cluster 2 0 0 4009 0 0 0 0 0
Cluster 3 0 0 0 0 0 0 0 4041
Cluster 4 0 3979 0 0 0 0 0 0

16

Table 5: Dispatch details of MoE (nonlinear) with test accuracy 99.95%.
Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1978 2028 2018 1968 2000 2046 2000 1962

Final dispatch ~ 3987 4 3975 6 0 1308 4009 2711
Cluster 1 0 0 3971 0 0 0 0 0
Cluster 2 0 0 0 0 0 4 4005 0
Cluster 3 8 4 4 6 0 1304 4 2711
Cluster 4 3979 0 0 0 0 0 0 0

Table 6: Dispatch details of MoE (linear) with test accuracy 90.61%.
Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1969 2037 1983 2007 1949 1905 2053 2097
Final dispatch 136 2708 6969 5311 27 87 4 758

Cluster 1 0 630 1629 1298 27 87 4 296
Cluster 2 136 1107 1884 651 0 0 0 231
Cluster 3 0 594 1976 1471 0 0 0 0

Cluster 4 0 377 1480 1891 0 0 0 231

MOoE during training. We further provide figures that illustrate the feature learning and center
learning process of each expert W,,, = [Wy, 1, ..., Wy, s] and the router @ = [0, ..., 0], with J
as the number of filters/neurons and M as the number of experts. We observe the feature learning
process (change of max;(w,,_ ;, vi)) and center learning process (change of max; (W, ;,cy)) of
each expert w,,, for each feature signal v, and center signal c;. Similarly, for the weight of the router
0., we observe the the feature learning process (change of (6,,, vi)) and center learning process
(change of (0,,, ci.)) for each feature signal v, and center signal c. In Figure[5] we demonstrate the
training process of MoE (nonlinear), and in Figure[6] we demonstrate the training process of MoE
(linear). Each colored line denotes a value of k. The data is the same as setting 1 in Table[I] with
a€(0.5,2),8€(1,2),y € (0.5,3) and 5, = 1. We can observe that, in the top left sub-figure of
Figure [5|for MoE (nonlinear), feature learning (max; (w.,, ;, vx)) exhibit a property that each expert
picks up one feature signal quickly. Similarly, as shown in the bottom right sub-figure, the router
picks up the corresponding center signal. Meanwhile, the nonlinear experts almost do not learn center
signals and the magnitude of the inner products between router weight and feature signals remain
small. However, for MoE (linear), as shown in the top two sub-figures of Figure[6] an expert does not
learn a specific feature signal, but instead learns multiple feature and center signals. Moreover, as
demonstrated in the bottom sub-figures of Figure [6] the magnitude of the inner products between
router weight and feature signals can be even larger than the inner products between router weight
and center signals.

Verification of Theorem[d.1} In Table[7] we provide the performances of single models with different
activation functions under setting 3, where «, y € (1, 2) follow the same distribution. In Table (8] we
further report the performances of single models with different activation functions under setting 1
and setting 2. Empirically, even when a and v do not share the same distribution, single models still
fail. Note that, for Tables[7|and B], the numbers of filters for single models are 128.

Load balancing loss. In Table[9} we present the results of linear MoE with load balancing loss and
directly compare it with nonlinear MoE without load balancing loss. Load balancing loss guarantees
that the experts receive similar amount of data and prevents MoE from activating only one or few
experts. However, on the data distribution that we study, load balancing loss is not the key to the
success of MoE: the single experts cannot perform well on the entire data distribution and must
diverge to learn different labeling functions with respect to each cluster.

Initialization and Expert Divergence. In Table[I0} we consider nonlinear MoE with load balancing
loss and the same initialization for all the experts. The synthetic data used in this experiments is
the same as setting 1 in Table[3] Recall that the data distribution we study cannot be learned by any
single model: experts must diverge to learn different labeling functions. We observe from Table

17

Inner product between expert weight and feature signal Inner product between expert weight and center signal

Expert 1 Expert 2 Expert 1 Expert 2
4{ — cluser1 4 025{ cluser 1 025
— cluser2 0.20] — cluser2 0.20
3{ — cluser3 - 3 _— — cluser 3
— cluser4 _— _— 015{ — cluser4 015
2 " 2 —
010) 010
N _ : |oes 0.05
= =0, 0.
§ T b 3 B § T H 3
Expert 3 %Expert 4 o B 0 B
Y . 025 025
020 020
3 3
_ 015 o1s
p 2
010 010
1 1 S~ g 0.05- 0.05- ~ _
— o.
g T 7 3 7 3 g T 7 7 7 3 g T B T 7 7 3 T 7 H 7 7
Expert 5 Expert 6 Expert 5 Expert 6
025 025
i .
_— 020 020
3 —)
015 — 0.15-
2 2 0.10 0.10
1 1 0.05- 0.05-
o 1 2 3 4 — 5 0 1 2 3 4 5 0 1 2 3 4 75 o 0 1 2 3 4 5
Expert 7 Expert 8 Expert 7 Expert &
02 02s
i .
020 020
3 3
015 015
2 2 0.10 0.10
1 1 005 005
— e - —_— 0.
0 1 2 3 a 5 0 1 2 3 a 5 0 1 2 3 4 5 0 1 2 3 4 5
Inner product between router weight and feature signal Inner product between router weight and center signal
Theta 1 Theta 2 Theta 1 Theta 2
—awsert o — cusert .
1.5{ — cluser2 —_— 15 — cluser 2
— cluser3 3] — cuser s —
— 4 —— cluser 4 —
10 cluser 4 10 — -
= p 2
0s{ — 05 N N
Theta 3 Theta 4 Theta 3 Theta 4
. .
1s 1s P
3 3 /
/
10 10 /
2 2 /
//
0s 0s -
. 1 1 /
. /
o l)' 1 2. 3 4 5 o 0 4 5 o — 1 2, 3 4 5 0 = 1 2, 3 4 5
Theta 5 Theta 5 Theta 6
. e .
15 15
3 3
10 10
2 2
osf 0s \ N
00T T B 7 7 3 007 R T 7 00 T : 3 7 3 1 3 H ; 3
Theta 7 Theta 8 Theta 7 Theta 8
. .
15 15
3 3
10 10
2 2
0s 0s N |
0. — 0. —
) T 7 I 7]) T T T 7 T T 7 3 7 3) T T T 7 7

Figure 5: Mixture of nonlinear experts. Upper: visualization of the feature learning (max; (W, j, Vi))
and center learning (max;(Wm,j, cx)) of each expert w,, for each feature v and cluster signal c;. Lower:
visualization of the feature learning ({6, vi)) and center learning ({6, ci)) of the router weight 6,,, for each
feature signal v, and cluster signal cy.

Table 7: Verification of Theorem(single expert performs poorly). Test accuracy of single linear/nonlinear
models with different activation functions. Data is generated according to Definition [3.1| with a, v € (1, 2),
ge(1,2)andop, = 1.

Activation Optimal Accuracy (%) Test Accuracy (%)

Linear 87.50% 74.81%
Cubic 87.50% 72.69%
Relu 87.50% 73.45%
Celu 87.50% 76.91%
Gelu 87.50% 74.01%
Tanh 87.50% 74.76%

18

Inner product between expert weight and feature signal
rt 1 Expert 2

Inner product between expert weight and center signal
Expert 2

0s 0s
o6 — cusers 06 JE—y
— auser o] — cuser2 04
cluser 3 duser 3
04{ — clusera 04 03{ — clusera 03
0.2 0.2
0.2 0.2 — —
— T} 01
T S Y L A N Y B A B Y B
Expert 3 Expert 4 Expert 3 Expert 4
0.5 05
0.6 0.6
04 04
04 04 03 03
B 02 02
02 02
01 01
o o e — o . R
g T b 3 7 : 3 1 E 3 7 3 3 T E 3 7 3 3 1 3 3 7 3
Expert 5 Expert 6 Expert 5 Expert 6
0s 0s
06 06
04 0.4
04 04 03 03
02 02
02 02 _—
01 01
o 0 1 2 3 4 5 o J 1 E 3 4 5 o J 1 = 3 4 5 o 0 1 2 3 4 5
Expert 7 %Expert 8 %Expert 7 Expert 8
0s 0s
06 06 .
s 04
04 04 d 03 03
_
d 0.2 0.2
02 02 S
01 01
0. o — 0. 0. 0. = — r
g T 7 3 7 7 3 T 3 b 7 7 3 T 3 I 7 7 g T 7 H ; g
Inner product between router weight and feature signal Inner product between router weight and center signal
Theta 1 Theta 2 Theta 1 Theta 2
of — ausert s — ausert ——
—— cluser 2 251 cluser2 25
3 — cluser 3 3 20f— cluser 20
— cluser4 — clusers
) s 15 1s
10 10
B 1 S— — 05 05
o 1 2, 3 4 5 0 1 2, 3 4 5 o J 1 2, 3 4 5 o 0 1 2 3 4 5
Theta 3 Theta 4 Theta 3 Theta 4
4 4
25 25
3 3 20 20
) , 15 15
10 10
1 1
[05 05
o 1 2 3 4 5 0 1 2, 3 4 5 o J 1 2, 3 4 5 o 0 1 2, 3 4 5
Theta 5° Theta 6 Theta 5 Theta 6
a 4
25 25
3 3 2.0 2.0
)) 15 1s
10 1.0
1 1
— 0s 0s
o 1 2, 3 4 5 0 1 2, 3 a 5 o J 1 2 3 4 5 o o 1 2, 3 4 5
Theta 7 Theta 8 Theta 7 Theta 8
4 4
25 25
3 3 20 20
) s 15 1s
10 10
B N 05 — 05
—_— — m— o. 0.
13 T 7 3 7 3 13 1 7 3 7 § 3 T H b 7 7 g T 7 7 7 g

Figure 6: Mixture of linear experts. Upper: visualization of the feature learning (max; (W, ;, vi)) and center
learning (max; (Wq,,;, cx)) of each expert w,,, for each feature vy, and cluster signal cj. Lower: visualization
of the feature learning ({0, vi)) and center learning ({0, cx)) of the router weight 6,,, for each feature signal
v, and cluster signal cy.

Table 8: Single expert performs poorly (setting 1&2). Test accuracy of single linear/nonlinear models with
different activation functions. Data is generated according to Definition [3.1) with « € (0.5,2), 8 € (1,2),
v € (0.5,3),0p = 1 for setting 1. And we have o € (0.5,2), 5 € (1,2), v € (0.5, 3), 0, = 1 for setting 2.

Activation Setting 1 ~ Setting 2
Linear 68.71% 60.59%
Cubic 79.48% 72.29%

Relu 72.28% 80.12%
Celu 81.75% 78.99%
Gelu 79.04% 82.01%
Tanh 81.72% 81.03%

19

Table 9: Load balancing loss. We report the results for linear MoE with load balancing loss and compare them
with our previous results on nonlinear MoE without load balancing loss. Over ten random experiments, we
report the average test accuracy (%) + standard deviation. Setting 1-4 follows the data distribution introduced
above.

Linear MoE with Load Balancing Nonlinear MoE without Load Balancing

Setting 1 93.81 £1.02 99.46 + 0.55
Setting 2 89.20 £ 2.20 98.09 +£1.27
Setting 3 95.12 £ 0.58 99.99 + 0.02
Setting 4 92.50 £ 1.55 98.92+1.18

Table 10: Nonlinear MoE with the same initialization and load balancing loss. The synthetic data is from
setting 1. We report the average value + standard deviation over 10 runs for both test accuracy and dispatch
entropy.

Number of experts M = 8 Number of experts M = 32
Load Balancing Coeff ~ Accuracy (%) Dispatch Entropy Accuracy (%) Dispatch Entropy
0.1 72.18 £ 1.16 1.358 £ 0.010 70.88 £ 0.60 1.381 £ 0.002
0.03 79.97 £1.61 1.237 £ 0.041 77.02 +0.51 1.252 £ 0.010
0.01 78.59 £ 2.19 1.252 4+ 0.048 79.15 £ 0.87 1.221 +£0.014

that, with the same initialization, nonlinear MoEs exhibit performances that are very similar to a
single nonlinear expert.

Load Balancing Loss and Normalized Gradient Descent. In Table |11} we report the average test
accuracy for nonlinear MoE with regard to using load balancing loss and/or normalized gradient
descent. The synthetic data is the same as in setting 1 and we choose number of experts M = 32.
All the experts are randomly initialized. We observe that using normalized gradient descent or load
balancing loss (or both) can lead to successful learning of the data distribution. However, without
using normalized gradient or load balancing loss will result in failure of learning the data distribution.

A.3 Experiments on Image Data

Datasets. We consider CIFAR-10 (Krizhevsky, 2009) with the 10-class classification task, which
contains 50, 000 training examples and 10, 000 testing examples. For CIFAR-10-Rotate, we design a
binary classification task by copying and rotating all images by 30 degree and let the model predict
if an image is rotated. In Figure[7] we demonstrate the positive and negative examples of CIFAR-
10-Rotate. Specifically, we crop the rotated images to (24, 24), and resize to (32, 32) for model
architectures that are designed on image size (32, 32). And we further apply random Gaussian noise
to all images to avoid the models taking advantage of image resolutions.

Models. For the simple CNN model, we consider CNN with 2 convolutional layers, both with kernel
size 3 and ReL.U activation followed by max pooling with size 2 and a fully connected layer. The
number of filters of each convolutional layer is respectively 64, 128.

CIFAR-10 Setup. For real-data experiments on CIFAR-10, we apply the commonly used transforms
on CIFAR-10 before each forward pass: random horizontal flips and random crops (padding the

Table 11: Ablation study of normalized gradient descent and load balancing loss. We report the average test
accuracy = standard deviation over 10 runs for nonlinear MoE. We consider the following four configurations:
1. normalized GD with load balancing; 2. GD with load balancing; 3. normalized GD without load balancing; 4
GD without load balancing.

Number of experts M = 32
Normalized GD GD

With Load Balancing 99.01 £0.97 98.64 £0.34
Without Load Balancing 99.47 £ 0.48 79.53 £1.41

20

0 5 10 15 20 25 30

5 10 15 20 25 30 0 20 25 30

Figure 7: Examples of the CIFAR-10-Rotate dataset. Both the original image and the rotated image are
processed in the same way, where we crop the image to (24, 24), resize to (32, 32) and apply random Gaussian
blur.

Table 12: The test accuracy of the single classifier vs. MoE classifier.

Single MoE
Accuracy 74.13% 76.22%

images on all sides with 4 pixels and randomly cropping to (32,32)). And as conventionally, we
normalize the data by channel. We train the single CNN model by SGD with learning rate 0.01,
momentum 0.9 and weight decay 5e-4. And we train single MobileNetV?2 and single ResNet18 by
SGD with learning rate 0.1, momentum 0.9 and weight decay 5e-4 to achieve the best performances.
We train MoEs according to Algorithm[T] Specifically, for MoE (ResNet18) and MoE (MobileNetV2),
we use normalized gradient descent with learning rate 0.1 and SGD with learning rate 1e-4, both with
momentum 0.9 and weight decay of Se-4. For MoE (CNN), we use normalized gradient descent with
learning rate 0.01 and SGD with learning rate le-4, both with momentum 0.9 and weight decay of
5e-4. We consider top-1 gating with noise and load balancing loss for MoE, where the multiplicative
coefficient of load balancing loss is set at 1e-3. All models are trained for 200 epochs to achieve
convergence.

CIFAR-10-Rotate Setup. For experiments on CIFAR10-Rotate, the data is normalized by channel
as the same as in CIFAR-10 before each forward pass. We train the single CNN, single MobileNetV2
and single ResNet18 by SGD with learning rate 0.01, momentum 0.9 and weight decay 5e-4 to
achieve the best performances. And we train MoEs by Algorithm [T with normalized gradient descent
learning rate 0.01 on the experts and with SGD of learning rate 1e-4 on the gating networks, both with
momentum 0.9 and weight decay of 5e-4. We consider top-1 gating with noise and load balancing
loss for MoE, where the multiplicative coefficient for load balancing loss is set at le-3. All models
are trained for 50 epochs to achieve convergence.

A.4 Experiments on Language Data

Here we provide a simple example of how MoE would work for multilingual tasks. We gather
multilingual sentiment analysis data from the source of English (Sentiment140 (Go et al., [2009))
which is randomly sub-sampled to 200, 000 examples, Russian (RuReviews (Smetanin and Komarovl
[2019)) which contains 90, 000 examples, and French (Blard,[2020) which contains 200, 000 examples.
We randomly split the dataset into 80% training data and 20% test data. We use a pre-trained BERT
multilingual base model (Devlin et al., 2018)) to generate text embedding for each text. For the single
model, we train an 1-layer neural network with cubic activation. For MoE, we let M = 4 with each

21

-1.0 -0.5 0.0 0.5 1.0

Figure 8: The distribution of text embedding of the multilingual sentiment analysis dataset. The embedding is
generated by the pre-trained BERT multilingual base model and visualized on 2d space using t-SNE. Each color
denotes a linguistic source, including English, French, and Russian.

Table 13: The final router dispatch details with regard to the linguistic source of the test data.
Expert1 Expert2 Expert3 Expert4
English 1,374 3,745 2,999 31,882

French 23,470 3,335 13,182 13
Russian 833 9,405 7,723 39

expert sharing the same architecture as the single model. In Figure[8] we show the visualization of
the text embeddings in the 2d space via t-SNE, where each color denotes a linguistic source. Here, -
represents a positive example and X represents a negative example. We can observe that data from
different linguistic sources naturally form different clusters.

In Table[T2] we demonstrate the test accuracy of the single classifier and MoE on the multilingual
sentiment analysis dataset, where we can observe an performance improvement of MoE over single
model. And in Table[I3] we show the final router dispatch details of MoE to each expert with regard
to the language of the text. Notably, MoE learned to distribute examples largely according to the
language.

B Proof of Theorem [4.1]

Because we are using CNNs as experts, different ordering of the patches won’t affect the value of
F(x). So for (x,y) drawn from D in Deﬁnition we can assume that the first patch x(1) is feature
signal, the second patch x(?) is cluster-center signal, the third patch x(®) is feature noise. The other
patches x(P) p > 4 are random noises. Therefore, we can rewrite x = [ayv, Bek, Yevy, €], where
€ = [£4,...,€&p] is a Gaussian matrix of size R4 (P=3),

Proof of Theorem[d.1} Conditioned on the event that y = —e, points ([ay vy, B¢k, =YYV, &, y),

([_ayvka Bcka VYV, 5]7 _y)v ([Pyyvk/v ﬂck/v —QYVg, 5]7 y)’ ([_’vik’v 6Ck’7 YV, E]» _y) fol-
low the same distribution because v and « follow the same distribution, and y and —y follow
the same distribution. Therefore, we have

4P(yF (x) < 0le = —y)

=E]l(yF([Oéil/kaﬂCh —’}’yvk'aﬁ]) S O) +]l(_qu_OéyV]c,ﬂCk,'Y:lekﬁﬁ]) S 0)

I I

+ L(yF([vyver, Ber, —ayvi, §]) < 0) + L(—yF([~yyvi, Bew, ayvi, €]) < 0)| .

I3

n

22

It is easy to verify the following fact
(yF([ayvka Bclm —YYVigr, éD) + (- yF([_akaa Bckn YYVir, ﬁ]))

+ (yF(hyvkuﬂcku *aka,E])) + (* yF([*ka/,ﬂck/,aka,E]D

= (yf(ayvk) +yf(Ber) + yf (—vyvi) + yf(Sp)>

p=4

P
+ (—yf(—ayve) —yf(Bek) —yf(vyvi) — Zzﬁ(@))
p=4

P
+ () + (B + s (aywe) + 3 07(6))

p=4

P
+ < — yf(—yyvir) — yf(Bew) — yf(oyvi) = > yf(Ep))

=0.
By pigeonhole principle, at least one of Iy, Is, I3, 14 is non-zero. This further implies that
4P(yF(x) < 0le = —y) > 1. Applying P(e = —y) = 1/2, we have that
P(yF(x) <0) > P(yF(x) < 0)e = —y)P(e = —y) > 1/8,
which completes the proof. O

C Smoothed Router

In this section, we will show that the noise term provides a smooth transition between different routing
behavior. All the results in this section is independent from our NN structure and its initialization.
We first present a general version of Lemma [5.1| with its proof.

Lemma C.1 (Extension of Lemma . Let h, h € RM to be the output of the gating network and
{rm}M_, to be the noise independently drawn from D,.. Denote p, p € R to be the probability that
experts get routed, i.e., pp, = P(argmax,,, cpr{hms + 1/} = m), pm = Plargmax,,,, ¢y {hm’ +
Tms} = m). Suppose the probability density function of D, is bounded by «, Then we have that
[P = Pllec < (kM?) - b — hw.

Proof. Given random variable {7, }*_,, let us first consider the event that argmax,,, {hm + 7 } #
argmax,, {hm + rm . Let my = argmax,, {hm + rm } and my = argmax,, {hy, + 7}, then we
have that

hm1 + T'my > hmg + Tmo s hmg + Tmo > hm1 + Ty s
which implies that

o~ ~

th - hml > Tmy — Tmg > hmg - hml- (C.1)
Define C(my,m2) = (Amy — By + fimg — him,) /2, then (C-T) implies that
[y = Py = Cmr,m2)| < [Bny = oy = hny + hiny /2 < R = bl (C2)

Therefore, we have that,
P(argmax{hy, + rm} # argmax{ﬁm +7m})

< P(Imy # ma € [M], s.t. |rm, — rm, — C(my,me)| < ||1A1 —hllx)
< > P(lrm, = rmy — C(ma,my)| < b — hl|)

mi<msg

- ¥ E{P(rmz + C(m1,m2) — ||B — hllae < Ty < Ty + Clma,ma) + B — huoo)‘rm}
mi<mo

< (kM?) - |h - |,

23

where the first inequality is by (C.2)), the second inequality is by union bound and the last inequality
is due to the fact that the probability density function of r,,, is bounded by . Then we have that for
i€ [M],

|pi — D] < ‘]E{]l (argmax{ﬁm +rm} = Z) -1 (argmax{hm +Trm} = z)} ’

< E' 1 (argmax{ﬁm +rm} =1i) — 1 (argmax{hn, + rmn} =)

<]P’(argmax{lAzm + 7 } # argmax{h,, + rm})

< (M%) |~ bl
which completes the proof. O

Remark C.2. A widely used choice of D, in Lemma @] is uniform noise Unif[a, b], in which
case the density function can be upper bounded by 1/(b — a). Another widely used choice of D,. is
Gaussian noise NV(0, 02), in which case the density function can be upper bounded by 1/(o,v/27).
Increase the range of uniform noise or increase the variance of the Gaussian noise will result in a
smaller density function upper bound and a smoother behavior of routing. In our paper, we consider
unif[0,1] for simplicity, in which case the the density function can be upper bounded by 1 (x = 1).

The following Lemma shows that when two gate network outputs are close, the router will distribute
the examples to those corresponding experts with nearly the same probability.

Lemma C.3. Let h € R be the output of the gating network and {r,,, }*_, be the noise in-
dependently drawn from Unif[0,1]. Denote the probability that experts get routed by p, i.e.,
pm = P(argmax,,,{hy + rm/ } = m). Then we have that

|pm - pm/| S M2|h7n - hm’ |

Proof. Construct h as copy of h and permute its m,m/-th element. Denote the corresponding
probability vector as p. Then it is obviously that |p,, —pm/| = [|[P—Dllco and | A —humr | = ||h—h|| .
Applying Lemma [5.T| completes the proof. O

The following lemma shows that the router won’t route examples to the experts with small gating
network outputs, which saves computation and improves the performance.

Lemma C.4. Suppose the noise {r,,, }*._, are independently drawn from Unif[0,1] and h,,, (x; ®) <
max,, hp (x; ©) — 1, example x will not get routed to expert m.

Proof. Because h,, (x; ©) < maxX,, by, (x; ©)— 1 implies that for any Uniform noise {7’ } e[
we have that

b (%5 ©) + 7, < max hy (x5 ©) < max{hy (x;0) + 7},

where the first inequality is by r,,, < 1, the second inequality is by 7,,,» > 0,Vm' € [M]. O

D Initialization of the Model

Before we look into the detailed proof of Theorem 4.2} let us first discuss some basic properties of
the data distribution and our MoE model. For simplicity of notation, we simplify (x;,y;) € Q as
i € Q.

Training Data Set Property. Because we are using CNNs as experts, different ordering of the
patches won’t affect the value of F'(x). So for (x,y) drawn from D in Definition we can assume
that the first patch x(1) is feature signal, the second patch x(?) is cluster-center signal, the third
patch x(3) is feature noise. The other patches x(), p > 4 are random noises. Therefore, we can
rewrite X = [ayvy, Bck, vevi, €], where € = (€4, ..., €p] is a Gaussian matrix of size R?*(P=3),
According to the type of the feature noise, we further divide €2, into {2, = US) ,» based on the
feature noise, i.e. x € Q1 if x = [ayvy, Bek, Yevi, &]. To better characterize the router training,

24

we need to break down Q. into Q;k, and ;... Denote by Qﬁk, the set that {y; = ¢;|i € Qg 1},
by Q, ., the set that {y; = —¢;|i € Qp i }.
Lemma D.1. With probability at least 1 — ¢, the following properties hold for all k € [K],

> v = O(Vn), > o =E[’] -n/K + O(v/n), > vien) = O(vn), (D.1)

1EQ 1EQ 1E€EQ
ierf’k, i€Q ieQ;k,
Y. @ =0(/n), Y B =E[f]-n/K + O(Vn). (D:3)
i€Q 1€Q

Proof. Fix k € [K], by Hoeffding’s inequality we have that with probability at least 1 — 6 /8K,

Z vy = Z%ﬁ? 1 ((xi,9:) € %) = O(v/n),

i€y i=1
where the last equality is by the fact that the expectation of y3° 1 ((x,y) € Q) is zero. Fix k € [K],
by Hoeffding’s inequality we have that with probability at least 1 — § /8K,

Z ol = Za?]l ((xi,95) € Q) = nEI[??’] +0(Vn),

i€Q i=1

where the last equality is by the fact that the expectation of o 1 ((x,y) € Qk) is E[a?]/K. Fix
k € [K], by Hoeffding’s inequality we have that with probability at least 1 — § /8K,

D viet = yienf 1 ((xiy) €) = O(V/n),
=1

1EQ

where the last equality is by the fact that the expectation of yey> 1 ((x, y) € Qk) is zero. Now we
have proved the bounds in (D.I). We can get other bounds in (D.2) and (D.3) similarly. Applying
union bound over [K] completes the proof. O

Lemma D.2. Suppose that d = Q(log(4nP/§)), with probability at least 1 — ¢, the following
inequalities hold for all ¢ € [n],k € [K],p > 4,

* [l&iplla = O(1),
’ (<,vk7)£i,p> < O(d™172), (er,&ip) < O(d™Y2), (&ips &) < O(d™2), W(i', 1) #
1,D).

Proof of Lemma|D.2] By Bernstein’s inequality, with probability at least 1 — §/(2n.P) we have

€012 — 02| < O(02\/d T log(4nP/s)).

Therefore, as long as d = Q(log(4nP/§)), we have ||€; ,||3 < 2. Moreover, clearly (£; ,,, & /) has
mean zero, V(i,p) # (i’,p'). Then by Bernstein’s inequality, with probability at least 1 — & /(612 P?)
we have

[{&i.ps &ir)| < 2071/d "L log (1202 P2/5).

Similarly, (v, &; p) and (c, &; ,) have mean zero. Then by Bernstein’s inequality, with probability
atleast 1 — ¢§/(3nPK) we have

|(€i.pr Vie)| < 2051/d 1 log(6nPE/0), |(€:p, k)| < 205\/d~ 1 log(6nPK/0).
Applying a union bound completes the proof. O

25

MOoE Initialization Property.

We divide the experts into K sets based on the initialization.
(0)

Definition D.3. Fix expert m € [M], denote (k;,, j;,) = argmax; , (vi, W, ;

[K], denote the profession experts set as My = {m|k}, = k}.

Lemma D.4. For M > ©(K log(K/¢)), J > ©(log(M/0)), the following inequalities hold with
probability at least 1 — .

). Fix cluster k €

. max(m#(j:wk:n)(wfg?j,vk) <(1- 6/(3MJ2K2))(W(0) v) forall m € [M]

m,jjjn7

e (w? Viz) > 0.010¢ for all m € [M].

m,Jgn’

o |[Mg| > 1forall k € [K].

Proof. Recall that w,, ; ~ N (0, o21;). Notice that signals vy, ..., v are orthogonal. Given fixed
m € [M], we have that {(wg?j, vi)|j € [J], k € [K]} are independent and individually draw from
N(0,02) we have that

P((w'”. vi) < 0.0100) < 0.9.

m7]7

Therefore, we have that

P(m%x<w§3>j,vk> < 0.0109) < 0.957.
1 ,

Therefore, as long as J > ©(K ~'log(M/d)), fix m € [M] we can guarantee that with probability
atleast 1 —6/(3M),
(0)
(L

Take G = §/(3M J?K?), by Lemma F.1| we have that with probability at least 1 — §/(3M),

Vi) > 0.0105.

(0) (0)
max w V) < 1—-@G W, ey Vis).
(j’k)i(‘j;uk:n)< m,J k> ()< sIm km,>

By the symmetric property, we have that for all k € [K],m € [M],
P(k=4k')=K '

Therefore, the probability that | M| at least include one element is as follows,

P(Myl21) 21— (1 - KM
By union bound we get that

P(My| > 1,Vk) >1 - K(1 - K)M >1 - Kexp(-M/K) >1-§/3,

where the last inequality is by condition M > K log(3K/¢). Therefore, with probability at least
1—-4/3, |Mg| > 1,VEk.
Applying Union bound, we have that with probability at least 1 — 4,

<W£r?,)javk> <(1- 5/<3MJ2K2))<W£27)1:”7V’“%>’

(G,R)# (G5 k7))
<W£2,)j::,pvk%> > 0.010¢,Ym € [M],
Myl > 1,k € [K].
O
Lemma D.5. Suppose the conclusions in Lemma hold, then with probability at least 1 —

we have that |<W£2’)J7V>| < 6(0’0) forall v € {Vk}ke[K] @] {Ck}ke[K] U {gi,p}ie[n]ﬁpe[[),g],m €
[M],5 € [J].

Proof. Fix v € {vi}rer) U {cktreix) U {&ipticm) peip-3,m € [M],j € [J], we have that

(w9 V) ~ N(0,02|v|2) and ||v|]2 = O(1). Therefore, with probability at least 1 — §/(nPM.J)

m,j’
(0)

we have that [(w,,";, v)| < O(0). Applying union bound completes the proof. O

26

E Proof of Theorem 4.2

In this section we always assume that the conditions in Theorem [#.2] holds. It is easy to show that
all the conclusions in this section D] hold with probability at least 1 — O(1/log d). The results in
this section hold when all the conclusions in Section [D]hold. For simplicity of notation, we simplify

(Xi7yi) S Q]“k/ as1 € Qk,k” and fl(yﬂfmi,,, (Xi; ®(t))fm”(xz,W(t))) as é;,t'

Recall that at iteration ¢, data x; is routed to the expert m,; ;. Here m; ; should be interpreted as a
random variable. The gradient of MoE model at iteration ¢ can thus be computed as follows

1
Vo, LY = = 5" 1(miy = m)l) .., (xi; 0D)(1 = 7, , (%33O D))y fn, , (x55 W)xP)
n “ ’ ’ ’ !
,p
1
- Z]l(mi,t 7& m)ei tTmy; ¢ (Xi; Q(t))ﬂ—m (xi; Q(t))ylfml t (Xi; W(t))x'gp)
,p

1
== " Umig = m)l 7, , (%330 fr,, (35 WO)x V)
1,p

1
- - Z £;7t777n13¢ (Xi; ®(t))77m (Xi; G(t))ylf’mbt (Xi; W(t))xl(‘p)7 (El)
n ip
1
Vi L0 = 37 M mi e = m)l o (xi: ©)yio (w1 x())x,?. (E2)
,p

Following lemma shows implicit regularity in the gating network training.

Lemma E.1. For all ¢ > 0, we have that an\le Vo, L® = 0and thus 3 6% = Yom 0% In
particular, when © is zero initialized, then) 6%) =

Proof. We first write out the gradient of 8,,, for all m € [M],

1
vem‘c(t) - ﬁ Z]l(mi7t = m)gli,tTr"Li,t (Xi; G(t))yifmqt(xﬂ W(t))xz(p)
i1€[n],pe[P]
1
— = D e (%O)T (x5 0y frn, (i W),
n , , ,
i€[n],pe[P]

Take summation from m = 1 to m = M, then we have

M
1
N Ve, L0 == Nl (xi00)yi fin,, (x5 WO)x P
m=1 " icmlpelP]

1
. Z éiﬁ,tﬂ-mi,t (X“ ®(t))yif7rli,t (th(t))xgl’)

n
i€[n],pe[P]
O]

Notice that the gradient at iteration ¢ in (E.I)) and is depend on the random variable m; ;, the
following lemma shows that it can be approximated by its expectation.

Lemma E.2. With probability at least 1 — 1/d, for all the vector v € {vi}rex] U {Ck }re(k)»
m € [M], j € [J], we have the following equations hold |(Vg, L) v) — E[(Ve, L) v)]| =
O(n=2(ao41t)%), (V. , LD, V) =E[(Vy,. . LD, ¥)]| = O(n~1/ (a9 +1t)?), forall t < d'%°.
Here E[(Vy,, . L® v)] and E[(Vg, £®)v)] can be computed as follows,

Wm,j

27

1
E[(Ve, L, v)] = - Zp(mi,f, = m)l; T (i3 OO)y, frn (15 W) (xP) v

i,p
- Z mz t = E ,tﬂ-m/(xi; G(t))ﬂ-m (Xi; ®(t))yif’m’ (Xi; W(t))<xgp)7 V>
i,p,m
1

E[(Vav,,, L0,)] = =3 Plmis = m) 0 (i © D)y (wy) . x7))) v).

4P
Proof. Because we are using normahzed gradient descent, ||Wm g 52)] l2 < O(nt) and thus by
Lemma.we have |(w fn) X >\ < O(0¢ + nt). Therefore,

(Var £0,3) = = 5757 Lo = 1)l 735 0 i (w2, X))),
? p

A

where A; are independent random variables with |A;| < O((oo + 77t)?). Applying Hoeffding’s
inequality gives that with probability at least 1 — 1/(4d'** M JK) we have that [(Vy,, ,£®),v) —
E[(Vw,, ,L",v)]| = O(n~/?(cq + nt)?). Applying union bound gives that with probability at
least 1 — 1/(2d), |(Vw,, , LD, v) — E[(Vyw,, ., LD v)]| = O(n~Y?(00 + nt)?),¥m € [M],j €
[J],t < d°. Similarly, we can prove |(Vg, L), v) —E[(Vg, LD v)]| = O(n~2(cq + nt)?).
O

Wim,j

E.1 Exploration Stage

Denote Ty = |1~ 109%|. The first stage ends when ¢ = T}. During the first stage training, we can
prove that the neural network parameter maintains the following property.

Lemma E.3. For all ¢ < T7, we have the following properties hold,

" (Wi vi) = O(a9), (wii) . er) = 0(08), (Wi €ip) = O(08),

mj’ m,J? m,)?

fm(oxi; W) = O(a§?),

|6, —1/2| < O(05”),

165][> < O(ad),

Ih(xi; ©) oo = O(0§), T (x53©1) = M~ + O(03 %),

forallm € [M],k € [k],i € [n],p > 4.

Proof. The first property is obvious since ||w(t)4 —w® l2 < O(nT1) = O(c®) and thus

m,J TYL]
(i WO < 37 3 Jo((wl); xiP)) = O(af?).
pE[P]jE[J]

Then we show that the loss derivative is close to 1/2 during this stage.
Let s = yiTum, , (xi; ©W) fn., (x5, W®), then we have that |s| = O(c}®) and

1
es+1

1
gé,t* ‘

5| =

(7) ~ -
- 1/2\ 2 1) = B(ob?),

where (7) can be proved by considering |s| < 1 and |s| > 1.

28

Now we prove the fourth bullet in Lemma Because | f,| = (aé %), we can upper bound the
gradient of the gating network by

1
V6., £ = Hn Z L(miy = m)l o, , (%5 ©D)yi fin, , (x5 WO)xP)

. Z Ez tTm ¢ sz))ﬂ-m(xi; G(t))yifmi,t (Xi; W(t))Xz('p)

2

= O(op’ 5),

where the last inequality is due to |£} ,| < 1, Ty, T, , € [0, 1] and HX,EP)HQ = O(1). This further
implies that

161> = [165) — 612 < O(o§*tn,) = O(o5®),

where the last inequality is by 7, = ©(M?)n. The proof of Ih(xi; 0| < O(a§®) and
T (i3 ©®) = M~ 4+ O(03-5) are straight forward given [|6 |2 = O(03-5). O

We will first investigate the property of the router.
Lemma E.4. max,,c(y [P(m;; =m) — 1/M| = O(ol®) forall t < Ty, i € [n] and m € [M].

Proof. By Lemmawe have that ||h(x;; @) < O(cd5). Lemmafurther implies that

_ 1.5
hax [P(m;; = m) — 1/M| = O(a}®).

Lemma E.5. We have following gradient update rules hold for the experts,

Ela3 +5 (J—0-005 _
(Vo 20, v =~ LD 01l i) + O(2),

<Vwm jﬁ(t) Ck> _ 6(d_0‘005)0 (< (t) >) + 0(00.5)’

(Ve , £, &1 p) = O(d~)0’ ((w S:i’],ezp» O(02?)

forallt < Ty,j € [J],k € [K],m € [M],p > 4. Besides, we have the following gradient norm
upper bound holds

Ela3 +5 (J—0.005 B
Vo, 20 < 3 BT (w0 vy + 3 0@) (w2)
ke[K] ke[K]
+ 3 0o (W), € p)) + O(03)
i€[n],p>4

forallt <Ty,j € [J],m € [M].

Proof. The experts gradient can be computed as follows,

1
Wm,j'c(t) == Z 1(mis = m)gli,tfm(xi;W(t))ﬂ'm(xi; O Myyio' ((w 7(7?37 (p)>) 7,

n
i€[n],p€[P]

\Y%

29

We first compute the inner product (V,, , L® ci). By Lemma we have that [(Vy,,, ,L®), ¢;)—
E[(Vw,,, LY, cr)]| = (“120) < O(03?).

El(Va,, £, c4)] =~ 37 Bl = m)6] om0 0o (w2, €16 e
Zer
1
T n Z P(m; = m)gg,tﬂ'M(Xﬁ ®(t))al(< mg’£l7p>)yz<ck7£z,p>
i€[n],p>4

= [_ 2n1M Z yiB3P(mi s = m) 4+ O(at®) |0’ ((w gfl)j’) + O(029)

1EQ
:6(n—1/2+01.5) /(<W(t) Ck>)+6(0§'5)

m,j
~ o . ~
= O(d™""®)o ()5, ex)) + O(0”)
where the second equality is due to Lemma[E3]and[D.2] the third equality is due to Lemma|[E-4] the
last equality is by the choice of n and 0. Next we compute the inner product (Vw,, i L vk> By

Lemma|E.2} we have that |V, , £0, v1.) — E[(Vw,, ;L0 vi)]| = O(n~"200) < O(027).

E[(Vw, LD, v =—f2 (mie = m)l] o (xi; D)o’ (Wi vi))a? [vi13
1€EQy

ﬁz Y Plmig = m)l mn(xi; 00)’ ((wiy) 1, vid v yie [vill3

k' #k i€,

ST Plmig = m)l mn(xi; D)o’ (W €0 wi (Vies €)

ie[n]p>4
_[517 2 P(mie=m)a] _2nM > Plmiy=m)ylyiei +O0(op?)|-
1€Qy ZEQk/k

o' (W, ex)) + O(2?)
= (E[0®] + O(n™V? + 0}%)) o' (W', vi)) + O(039)

_ (E[O[B] + 5(d0.005)>0_l(<w’£2j,vk>) + 6(0_35)

2K M?

where the second equality is due to Lemma[E3]and[D.2] the third equality is due to Lemma[E-4] the
last equality is by the choice of n and 0. Finally we compute the inner product (V,,, ; £, ;i p) as
follows

1
(Vo L0 &ip) = == L = m)l (x5 000" (w5 &3.0)) €113 + Olo0d™/2)

5(”5“’ 5
n

|) o (W £,)) + Olond™72)

= 0(d™"")o"((w),)j.&i0) + O(057),
where the first equality is due to Lemma|D.2| second equality is due to |/} ;[< 1,7, € [0, 1] and the

third equality is due to Lemma[D.2]and our choice of n, 0. Based on previous results, let B be the
projection matrix on the linear space spanned by {v }xe[x] U {Cr } e[k We can verify that

IV, , £z < 1BV, ,LO]l2 + (I = B) Vi, ,L]

Ela3 +5 J—0-005
<y Bl O it v+ 3 O ()
ke[K] kE[K]
+ 30 0 ((wi) €)) + O(03).
i€[n],p>4
O

30

Because we use normalized gradient descent, all the experts get trained at the same speed. Following
lemma shows that expert m will focus on the signal v .

Lemma E.6. For all m € [M] and ¢ < Ty, we have following inequalities hold,

(w fnb*, .) =0(a9),

(W) vi) = 0(00), V(5. k) # (i, ki)
(wil) cx) = O(oo), ¥j €[], k € [K],

(Wi &) = O(00),Vj € [J]i € [n],p > 4.

Proof. For t < Tj, the update rule of every expert could be written as,

(t+1) 0 U BE[0°] +O(d™)) 5 = o5
(Wi VE) = (Wy 5 Vi) + Vw, L0z 2K M2 (W g Vi)™ + 0(057) |
n ~/ 1—0.
<W£rtzj;1)7£i,p> = (w (t),]7€2p> m [O(d="%)(w ffl)]v&,ﬁ O(o? "],
<WSZ:&;1)’ c) = <W(t),3’) + # [O(d70.005)<WSrtz),ja Ck>2 + 6(035)] (E.3)

IVw,, LO

For ¢t < T, we have that <w§fl)7j, Viz) < O(c("). By comparing the update rule of (wgrtb),j, Vi)
and other inner product presented in (E3)) , We can prove that <w£2) i+ Vs,) will grow to o0® while
other inner product still remain nearly unchanged.

(®)

m,j’?

®)

Comparison with (w m,j

v.). Consider k # k. We want to get an upper bound of (w, ., v}, so

without loss of generality we can assume (wg)’j, vi) = Q(09). Since o9 < d~°°1, we have that

(W vi)2 4+ O(025) = (14 O(d=2005))(w') . v)2. Therefore, we have that

mJ’ m,)’
(t+1)) 77 3E[a?] + O(d~%%)))
<Wm,j Vix) = (wmj,v «)+ Sw_ Z0r KM <Wm’j,Vk:n> , (B4
D) oy pe® U BE[0®] + 0 "))
<Wm’j Vi) = (md-,vk} + Vw LO]r S <Wm’j,Vk> . (E.5)

m

Applying Lemma [F.2| by choosing C; = (3E[a3] + O(d~%9%%)) /(2K M2||[Vw , LD||r), S =

1+ O(d=09), G = 1/(3log(d)M?) and verifying (w'y | Vi) > S(1+ G~ (w Vi) (events
in Section@hold) we have that (w fﬂ)J,vk) < O(G~'ap) = O(0y).

()

m,j’

(®)

Comparison with (w m,j» Ck

ci).We want to get an upper bound of (w, . cx), so without loss of

generality we can assume (wg) i+ Vi) = Q(00). Because og < d~%"", one can easily show that
(t+1) 0) U BE[0®] + O(d—"%%)) 2
< m,j 7vkm> <W 7],V > ||VW E(t)”F 2K M2 <Wm7jvvk;‘n> 5
(Wit sen) < (wii) o) + o O M) (wy)).

IVw,, L0

Again, applying Lemmaby choosing C; = (3E[a3] + O(d=0995)) /(2K M2 ||V, LD).
S = 0(d=%%1), G = 2 and verifying (wgn),vk*) > S(1+ G 1) (w'y, cx) (events in Section
hold), we have that (w®, v) < O(G o) = O(ap).

(1)

Comparison with (w, ",

& p)- The proof is exact the same as the one with cg. O

Denote the iteration 7("™) as the first time that ||V, £L®) || > 0§8. Then Following lemma gives
an upper bound of 70" for all m € M.

31

Lemma E.7. Forall m € [M], we have that 7™ = O(n~100-8) and thus T(™) < 0.017}. Besides,

for all T}, < t < T% we have that

(Vs £02Vi,) 2 (1= 08D [V, £ .

m.ik
Proof. Let projection matrix B = v v,;r* € R?*4, then we can divide the gradient into two

orthogonal part

IV, . L2 =BV, . LD+ (I = B)V,, .
< 1BV, 5, £712 + [[(1 = B) Vs

(t)H2

ﬁ(t)||2

Woin s m,gn,

Recall that

1
Vi, 5 L0 =~ Z]l(mi,t =)] 7 (x50)y’ ((wi) . xP))xP)

mj’z

So we have that

1
(I~ B)Vw, . LO, = Hn Z]l(mm = m)l; T (X5 @(t))yig/(<wg),jm’ xP))(I - B)x®

wit) (P)>)(I B)x! (p)

m]*7 X

2
S 0(00)7

where the first inequality is by |} ,| < 1,7, € [0, 1] and the second equality is because

1. when x(p) align with vy , (I — B)XEP) =0.

2. when x") doesn’t align with Vi, (w® %Py = O(ay).

m,jr? X
Therefore, we have that
vam,j;n £(t) ”2 < HBva,jfn £(t) ||2 + 6(08) = <vwm,j;‘n L(t)’ kan> + 6(08)

We next compute the gradient of the neuron W, j, 5 # j5,,

= 0(ap),

1
[V, £ =]’nzn<mi,t=m>f;,mm<xi;@<t>>yia<< mi x|
4

(E.6)

where the inequality is by (w ® x(p)> = O(0y),Vj # ji, which is due to Lemma Now we can

m _])
upper bound the gradient norm,

IVw,, LN < > Ve, , £9]2 < |V
JEJ]

Oy + O(c?). (E.7)

Sx
m,jr,

When || Vw,, L8| > od-8, it is obviously that

m

(Vw,, o £3Viz) 2 [V

Wm,,]

where the first inequality is by (E:6) and the second inequality is by (EZ7). Now let us give an
upper bound for 7(™). During the period t < T, |[Vw, L®)|r < ¢4®. On the one hand, by
Lemmal[E3] we have that

3E[a?] — O(d—0%)

t t _ () 2 2.5
IVw, L2 > (Y, ;LY v,) = s Wass Vi)2 = O(05)

32

2

LDy = 0(a3) = |Vw,, L |lr = O(03) = (1 = o) [Vw,, LV,

which implies that the inner product (w,(fl) oo Vi) < O(c09). On the other hand, by Lemma
we have that /

1 (t)

K M?) Wonjs, > Vis,)

(t+1) > (w v . ©
maig Vi) Z Wi Vi) + 15— r O

® n 0 2
(Wi vie) + 0 M20548)<wmj Vi)

(w

v

(t) n (t)
ft < m,jx ,,L> + @(KM208,8><Wm,j* vvk;‘”>a

(®)

where last inequality is by (w,, x

()

m,]7

vk;) > 0.10g. Therefore, we have that the inner product

—1.0.8

(W, Vi) grows exponentially and will reach O(c3?) within O(~1698) iterations.

O

Recall that Ty = |~ 10§®|, following Lemma shows that the expert m € [M] only learns one
feature during the first stage,

Lemma E.8. Forallt < Tj,m € [M], we have that

(w, w, Vi) = 0(00),

(Wi vie) = 0(00), V(5. k) # (i K3),
(Wi ex) = O(00),¥j € [J].k € [K],

(wl) €)= O(o9),Vj € [J],i € [n],p > 4.

Besides (wﬁ,?] Vi) > (1= o0)nt, forall ¢t > Ty /2.

Proof. By Lemma , we have T(™) = O(n~ 169®) < 092 -Ty. Notice that (Vy, , L) v;.) >

(1 - oY Vw,, LY g, for all T,,, <t < Ty. Therefore, we have that

Wi s

(WD vy > (W v) (1= 03V, <t < T,

* *
™M)’ msdm

which implies <W7(7t1) oo Vis) = (1-0(o§1))nt, vVt > Ty /2. Finally, applying Lemmacompletes
the proof.

O

E.2 Router Learning Stage

Denote Ty = |1~ M ~2], The second stage ends when t = T5. Given x = [ayV}, BCk, VeV, &),
we denote by Z = [0, B¢y, 0, . .., 0] the one only keeps cluster-center signal and denote by & =
[ayvi, 0, vevy, 0] the one that only keeps feature signal and feature noise.

For all T} <t < T5, we will show that the router only focuses on the cluster-center signals and the
experts only focus on the feature signals, i.e., we will prove that | f,,, (x;; W®) — f,,. (X;; W(®)| and
[h(x;; ©®)) — h(x;, ®")]|», are small. In particular, We claim that for all 7} < t < Ty, following
proposition holds.

Proposition E.9. For all 71 <t < T, following inequalities hold,

|fn(x; W) — £ (X W) < 0@, vm € [M],i € [n], (E.8)
Ih(x; ") — h(x; @)oo < O(d~%"), Vi € [n], (E.9)
P(mye = m), mm (% O1) = Q(1/M),¥m € [M],i € Q. (E.10)

Proposition implies that expert will only focus on the label signal and router will only focus
on the cluster-center signal. We will prove Proposition [E.9 by induction. Before we move into the
detailed proof of Proposition[E.9] we will first prove some important lemmas.

33

Lemma E.10. For all T} <t < T5, the neural network parameter maintains following property.
* |fm(xzaw(t))| = O(l),Vm € [M]’
o Ty, (xi;00) = Q(1/M), Vi € [n].

Proof. Because we use normalized gradient descent, the first bullet would be quite straight forward.
t @)
[, W) = 37 37 al(wl) x™)) = 0(1),
jelJlpelP]
where (i) is by ||w££)] - ng,)jng = O(nTy) = O(M~?) and xl(p) =0(1).

Now we prove the second bullet. By Lemma we have that Ay, , (x; ©) > max,, by, (x;0) — 1,
which implies that

exp(hm,, (x:0")) _ exp(hm,,(x;;O0Y)) 1
> €xp(hu (x; 1)) — M max,, exp(hm (x;©®)) — eM’

Tm; ¢ (Xi; @(t)) =

O

Lemma E.11. Denote dg = max; ||h(X;; ®) — h(x;; ©®)||« and let the random variable 7, ; be
expert that get routed if we use the gating network output h(x;; 6(”) instead. Then we have following
inequalities,
[T (%43 ©) — 7, (X4; ©)| = O(de), Y € [M],i € [n],. (E.11)
IP(m; = m) — P(im;; = m)| = O(M?ée),¥m € [M],i € [n]. (E.12)

Proof. By definition of dg, we have that ||h(x;; ®®) — h(x;; ®®)| ., < de. Then applying
Lemmamgives [P(m;; = m) — P(my, = m)| = O(de),¥m € [M],i € [n], which completes
the proof for (E-I2).
Next we prove @), which needs more effort. For all i € [n], we have

T (Xi; ©) exp(hu (%43 O) — hyp (X3 O))
Zm’ Wm’(izﬁ 9) eXp(hm’(Xi§ 9) — I (iﬁ @)) .

Let 8, = exp(hpm (%43 ©) — A/ (X3 0)) = 1+ O(de). Then for sufficiently small dg, we have
that 6,,» > 0.5 . Then we can further compute

Tm (%33 ©) =

1)
@My — %.: @) = %t m 1
|7Tm(X27 ®) Tm (Xza)| 7Tm(x1,7 6) Zm/ Wm’()_(i; ®)§m’
| 2 T (X33 ©) (G — 6|
Zm’ Tlm! (ii; 9)5m’

Yo Tt (Xi5 ©) |6 — O]

= T (Xi; ©)

< m _i; © <

ST (X) Zm’ T/ (Xi; @)6m/

< 0(%e),
where the last inequality is by |6,y — 0| < O(0@), T (X;0) < 1and) T (Xi; ©) 0y >
D T (%45 ©)] /2 = 0.5. O

Following Lemma implies that the pattern learned by experts during the first stage won’t change in
the second stage.

Lemma E.12. Suppose (E-8), (E9), (E.I0) hold for all ¢ € [T3,T] C [T, T> — 1], then we have
following inequalities hold for all ¢ € [T, T + 1],

(Wi Vie) > (1= 0@),

(Wl vi) = O(00), ¥, k) # (s 5,

(wiy) i ex) = O(00),Vj € [J], k € [K),

(W) &) = Olov),Vj € [J],k € [K],i € [n],p > 4.

34

Proof. Most of the proof exactly follows the proof in the first stage, so we only list some key steps
here. Recall that

Vaw,. £ Zﬂmzt_) (x5 © V)i (wiy) . x7).

mg’

In the proof of Lemma we do Taylor expansion at the zero point. Now we will do Taylor
expansion at f,(X;; W) and 7(X;; ©®) as follows,

[(i3 ©1) fin (i3 W) — 0, (%3 ©1) fr (35 W)

< [(%33 ©9) [(3¢ W) = i (Res W] + [(3635 1)) — 1 (%5 ©D)) frn (xi; W)

< (s WD) = £ (%5 W) 4+ O(|mn (353 O1) — 1, (%5 ©1))))
S O(d_0'001),

where the first inequality is by triangle inequality, the second inequality is by 7,, (X;; ©@(Y)) < 1 and
| frn(x; W) | = O(1) in Lemma|E. 10| the third inequality is by (E-8), (E9) and (E.TT).
Then follow the proof of Lemma|[E.3] we have that

1
B[V, , L0, i) = == 37 Plmiy = m)l; mn (xi:)0’ (w,) . vi, Vo |vi, I3

m,j
= D Blmiy = m)l (i ©0)o! (wy) v)Pl v, I3
1 P(m, » = m)/ O ((w®) g . .
n Z (ml-,t - m) i,tﬂ—m(xlv)U (<Wm,jv61,p>)y1<vk;‘na£z,p>
,p

=[8(3) 32 rmc=mier -8(3) 3 et =mniuc

iGQk;xn ieﬂk’,k;*n
00| o' (i) + O)

@ 7(:)(1)0’((w(t)- Vi),

m,j’

where (i) is due to (ET0): P(m;, = m) > ©(1/M), Vi € Q. ,m € [M]. Again follow Lemma E.5|
and Lemmal[E.6] we further have that

(Ve , £, vi) = O (W vi)]2,
<vwmj£“>) = OM)[(w . e,

(
(Ve s £9, &ip) = O(

D{wi s &)

Thus for all 71 <t < T, the update rule of every expert could be written as,

W v) = (02 vk)+ O o Wi v)
(i) =) O e v
(WD g) = (W, g,) + 5(1)m< wi, &)
(Wit ex) = (i en) + O o (wy))

35

By the first stage of training we have that <W(T1-) Vi) = O(00 "), while others remains O(0y).

mﬂl)] J
Then we can use Lemma by choosing S = O(1) and G = 2, then we have that
(Wi Vi) = O(1).
(Wi Vi) = O(00), Vk # &,
(wy,) ;- ex) = O(oo).
(W), &) = O(00)

(W vie) > (1- 09),
(Wi vi) = O(00), V(5. k) # (i)
<W(t)’j,Ck> = O(09),Yj € [J], k € [K],
(w mg>£%1’> = O(0v),Vj € [J],i € [n],p > 4.

By the result of expert training we have following results

Lemma E.13. Suppose (E3), (E.9), (E-I0) hold for all ¢ € [T, T] C [Ty, T> — 1], then we have that
| fon (i W) — £, (X5, WB)| = O(03) forall m € [M] and i € [n], t € [Ty, T + 1]. Besides,

il &is W) = 37 [ado (Wil vi)) +3io((wie) vio))] Vi € 9f om € [M],
JjelJ]

yifm @i W) = 37 [ado((wii) . vi)) = vl ((win . vio)) | Vi € Q5 m € (M),
JEl]

Proof. For all i € (), we have that

(i W) = fu & W) < [S oW e+ S o(w? &,

€] J€lI],p=4
< O(J) - maxa((wy)j,ex) + O(J) - max|o((wy);. &)
= 5(03)7
where the first inequality is by triangle inequality and the last equality is by Lemma[E.12] O

Next we will show that router only focus on the cluster-center signal rather than the label signal
during the router training.

Lemma E.14. Suppose (E3), (E.9), (E-I0) hold for all ¢ € [T, T] C [T3,T> — 1], then we have that
[h(x;, @) — h(x;; ©V)||o = O(d~29%%) hold for all i € [n] and t € [T}, T + 1]. Besides, we
have that max,, 1, |(0%), vi)|, max, ; p | (6 0%, &, o) =0(d=00%) forall t € [Ty, T + 1].

Proof. Recall the definition of dg in Lemma , we need to show that g = 6(d’0'005) for all
t € [Ty, T + 1]. We first prove following router parameter update rules,

(Vo, LY vi) = 0(0ew K2) + O(d™00%) (Ve LB €&) = O(d~"0%), (E.13)

forallTy <t <T,m e [M], k€ [K],i€[n]andp > 4.

36

Consider the inner product of the router gradient and the feature vector and we have

Kve LY v

— Z mzt = i, tyzﬂ'm(xu 6())fm(xww())yz%
ZGQk
I
+ — Z]P mz gt = ‘ei tylﬂ-m(xz»@())fm(xz W())EZAM
ZEQk/ k
Iz

1
- = Z P(mi s = m)l i (x5 OD) 1, (x5 OW) fr (x5, W)y
" 1€QE,m'€[M]

I3

1
- Z P(m;e = m’)fé,tvrm/ (xi; @(t))yiﬂm(xi; @(t))fm’ (Xi,W(t))Gz"Yi

n.
1€Qs ,m' €[M]

Iy

1
T D Blmie = m)lyimn (xi ©0) i (s W)) vi)

" i€[n],p>4

I

1

- E Z P(mi,t = m/)ggj,tyiﬁnL’ (Xu ®(t)>7rm(xi; Q(t))fm’ (Xh W(t))<xl(p)’ Vk’> .
i€[n],p>4,m’'€[M]
Is

(E.14)

Denote y;mp, (Xi; ©D) fr, (X; W), Vi € QF %k BY F ,j' - We next show that the output of the MoE
multiplied by label: y;m, (xi; @) fn (xi; W), Vi € Qf , can be approximated by F .

[T (%33 D) fin (xi3 W) — 71, (Ri5 ©1) £ (Ri; W)

< | (%55 ©1) — 7 (%63 ©D)] £ (33 W) 4 [(33 D) [fin (3255 WD) — 0 (%is WD)
< O (x5 01)) = 710 (%5 ©D)|) + | frn (i WD) — f (%5, W)

< 0(dem) + O(ap),

where the first inequality is by triangle inequality, the second inequality is by 7, (X;; O®) < 1and
| fm (xi; W) | = O(1) in LemmalE. 10} the third inequality is by (E.TT) and Lemma

Similarly, denote y;7,, (X;; @) f,,(X;; W1, i € Q. by F,_,, and we can show that value
YiTm (Xi; G)(t))fm(xq;; W(t)), Vi € Q, ., can be approximated by Fk_k,. Now we can bound I; as

37

follows,

U (Fr o) Fi N
L= Z Tk,k Z [P(mie = m)yscii + O(bgm)] + O(od)
g
Fk k'~ k k' ~
+ Z Z [P(miﬂf = m)y;c; + 0(5@@)] + O(0p)
e €9,
) s~ O Pl)
e ZEQZ—M
Fk k= k k' B B) ~
+ Z Z [P(mm =m)y;a; + O(M 5@(t))] + O(0p)
e ZGQ; k!

D 0(M25e) + O(n~Y? + o?)

= O(M dom) + O(d 0'005)

where (i) is due to (E12) and (ii) is by), .+ wiax = O(y/n) and Eiesr yio = O(y/n) in
'RY%
Lemma Similarly we can prove that I5, I3, I, = O(M?§g)) + O(d—o.oos) Since (x; (p) , Vi) =

O(d="?),¥p > 4, Ty, Tm,, < 1and fr,, = O(1), we can upper bound I5, I by O(—1/2),
Plugging those bounds into the gradient computation (E-14) gives

E[(Ve, LD, vi)] = O(M?$g) + O(d™%00%).
We finally consider the alignment between router gradient and noise

1
(Vo LY, &) = - S© 0 Umis = m)l yimm, , (xi500) fn, , (x5 W) (xP) €40 1)

i€[n],p>4

1
= Y i, (@) (3 ©D) (i WO (P 1),

n
i€[n],p>4
9 5() +0(d1?)

o),

where the (i) is by considering the cases (¢, p') = &; , and &,y # &, ,, respectively and (ii) is due to
our choice of n. Now, we have completed the proof of (EI3)

Plugging the gradient estimation (E.13) in to the gradient update rule for the gating network (3:3)
gives

max [(9), vi)| < max [(6]), vi)| + O(n- M) + O(mpd ") (E.15)
m, m,

max [(0511), &,V < max[(0), &)| + O(n,d="%) (E.16)
m,i,p m,t,p

Combining (E-T3)) and (E-16)), we have that there exist C; = O(M?) and Cy = O(d~%-9°%) such that
deutn < dgw + Cinrdgw + Can,. Therefore, we have that

Souin +CT 0y < (14 Cin)[dew + CT1CY)
< exp(Cuy) Bow + C7 ' Cal,
where the last inequality is due to exp(z) > 1 + z for all z € R. Then we further have that
Jew < exp(C1n,t)[0ew + C7 ' Ca] < exp(Cin,n ' M=) [0gw + C7 ' Ca] = O(d="0%),
where the last equality is by 1, = O(M?)n. O

38

Define Ag := maxje[x] MaAXyn m/c M, MAX(x, .y)€y |Am (Xi; @) — Ry (X35 ©)], which measures
the bias of the router towards different experts in the same M. Following Lemma shows that the
router will treats professional experts equally when Ag is small.

Lemma E.15. For all t > 0, we have that following inequality holds,
m/ (Xi] Q(t) — Tm \ X3 G(t) <2Ag)
l?el% m,vIrIll’?/(\/lk (Xig/lg)e(ﬂk e (¢) = mm(x < o

P(m;y = m) — P(m;, = m/)| = O(M?*)Ag .
ax | WAX o max [P(mie=m)=P(mi, =m)| = O(M")Aew

Proof. By Lemma|[C.3] we directly have that
[P(mi g = m) = P(miy = m")| < O(M?)|hm(xi; ©1) — s (xi; ©1))].
Then, we prove that
[T (%43 ©) = T (%55 ©)| < 2/ (35 OF)) — Ty (x5; @) (E.17)

When |h,, (xi; O®) — Ry (x5 ©M)| > 1, it is obvious that (E.17) is true. When |h,, (x;; @) —
By (x5 ©®))| < 1 we have that

exp(hm (x5; M) — exp(hyy (x;; O
o (11 ©) — 1 (355 @) = P (hm () — exp (s ())‘

> XD (s (2 ©))

B exp(hpy (x;;01))
Y €xXD (B (x5, ©0)))
< 2l (x5 0D — hyp (x5 0D

’ | exp(m (i3 ©W) — iy (x5 01)) — 1

which completes the proof of (E.I7). O

Notice that the gating network is initialized to be zero, so we have Ag = 0 at initialization. We can
further show that Ag = O(1/poly(d)) during the training up to time 7' = O(n ™).

Lemma E.16. Suppose (E-8), (E-9), (E-I0) hold for all ¢t € [Ty, T] C [T, T> — 1], then we have that
Agw < O(d=991) holds for all t € [Ty, T + 1].

Proof. One of the key observation is the similarity of the m-th and the m/-th expert in the same
expert class M. Lemma|E.12|implies that max;cq, | fin (xi, W) — f,.(x;, W®)| = O(091) <

5(d—0-001),
Another key observe is that, we only need to focus on the k — th cluster-center signal. Lemma [E.14]
implies that,

Aew = B (X, ©) — hyr (x5, O
o) knel[af}((] m,rIrrLl’ae}/(\/(k (XIIEg)éQIJ m(Xu) m/(xu)‘

< max max max |hy (Xi; O) — by (Ri;)| + 266

ke[K] m,m'e My (x;,y:)€Q

= — ’ 9 2
mex | max [0 — O, Bick)| + 20

<C 0,, — 0,y 200
< O 05 13, O = B0l + 20,

39

where the first inequality is by Lemma[E.T4]and the second inequality is by 8; < C. We now prove
that following gradient difference is small

<V9 ﬁ(t) —Vg ﬁ(t) Ck>

i 1
) Z Z mzt = tﬂ'm(xﬁ@(t))yifm(xz';W(t))<xz(‘p)aCk)
le[n] pE[P]
- = Z Z P(m;,; = EZ tﬂm’(Xl,e(Vi fm (xi;W(t))<x§p),ck>
ZG[”] p€E[P]

1
T SN Y [(xi00) — (x5, 0N P(ms y = ")l 7 (xi5OD)-

1€Q pe[P] m’ €[M]

Yi fror (X4, W)(XEP)7 c) + 6(d—0.001)

- O(%) Z [P(m; = m’) - P(mi,t = m)]lfé,ﬂm(xi; O) By fm (X4 W(t))| + 6(‘170‘001)
1€EQ

+0(1) max |7 (x5 OW) — 71,0, (335 @) + O(1) max (6, W) — fs (x5, W]
1E3 Lk
= O(1)|P(m;; =m') — P(m;; =m)]| + O(1)max|7rm (x5; ©D) — 71, (x5 ©D)]
+ 0(1)mgX\fm(xi,W<t>) — For (1, WD) 1 O(d—0-001)
1682k

(11) O(M?*Ag) + 5(d’0'001),

where the (i) is by Lemma and (ii) is by Lemma [E.I5 Tt further implies that Age+1 <
O(n-M*)Agwy + O(n,.d=%%1). Following previous proof of dg, we have that Agr+1) =
O(d—0-001). O

Together with the key technique 1, we can infer that each expert m € M}, will get nearly the same
load as other experts in M. Since Ag keeps increasing during the training, it cannot be bounded if
we allow the total number of iterations goes to infinity in Algorithm[I} This is the reason that we
require early stopping in Theorem 4.2 which we believe can be waived by adding load balancing
loss (Eigen et al., 2013} [Shazeer et al.,[2017; Fedus et al., 2021}, or advanced MoE layer structure
such as BASE Layers (Lewis et al.,[2021; |Dua et al.,2021)) and Hash Layers (Roller et al., 2021)).

Lemma E.17. Suppose (E-8), (E9), (EI0) hold for all ¢ € [Ty, T] C [T}, T> — 1], then for m ¢ M
and t € [T1,T],if (0%, c;) > max,,, (6, ci) — 1 we have that

3t3

(Vo LB ;) > Q(U

7Y oo,

Proof. The expectation of the inner product (Vg, £(*), c;) can be computed as follows,

1
E[(Ve, L1, cx)] = ~ Z Py = m)t, o (xi3 ©)y fin (s W) (7, 1)

- = Z (e = 1) T (33 © D)0 (363 © D)y fros (325, W) (P)

i,p,m’
ol Z (mi e = M)l 1T (%i; ©) By frn (x:3 W) 4 O(d=00%%)

zEQk

L Z Z P(mie = m/)l o (x5O0), (%33O0 By frs (x5, W).
1€Q, m/€[M]

(E.18)
where (i) is due to |(€; ,, cx)| = O(d~%).

40

We can rewrite the inner product (E-I8) as follows,

E[(Ve, L"), cr)] = ~ Z (mi e = M)l 7 (xi; ©) By fin (xi W) 4+ O(d=0%)
ZEQk

B % Z Z P(miy = m')l] 7 (x5 OD) 1 (353 O By fr (%1, W)

1€QE m/€[M]

- Z mz t =m)l i, tﬂ-m(xi; G(t))yi/@if7rz(Xi§ W(t)) +6(d70'005)
ZEQk

I
1
—= Z P(mie = m/) ;T (X4 O W), (%43 1) By frn (x:, W)
n 1€EQE ,m' E My

I
(E.19)
1
= D Plmiy =)l (xi; 0 (xi3 ©9) By frns (xi, W)
1E€EQE,mM' EMy,

I3
(E.20)
To calculate I, I, I3, let’s first lower bound I>. We now consider the case that m € M, m' € M,,.

Because (07(7?, Ck) > max,, (05,?, ci) — 1, we can easily prove that 7, (x;; ©®)) = Q(1/M),Vi €
Q. Then we have that

1
L=—— > Plmig=m)mm (i 00)mn (xi: 0) 5y fon (xi, W)
1E€EQE,m' EMy
3t3

= Q(:ZM?’) > b

1€QE,m' E My
343

n°t)

>

= Q(KM3 ’

where the first inequality is by 7, (x;; @) = Q(1/M), P(m;; = m') > O(1/M), Vi €

Qs ,m € [M], y; frr (x; W) = ?13(1 — O(08!)) and ¢/ = —O(1) for all i € Qp,m’ € My,

due to Proposition [E.9and LemmalE.12] and the last inequality is by [M,| > 1 in Lemma[D.4Jand
> icq, Bi = Q(n/K) in Lemma|D.]]

Then we consider the case that m, m’ ¢ M. Applying Taylor expansion of £, = 1/2 4+ O(Jn’t?)
gives

- Z (mi e = M) 7o (%5 ©)yi B frn (355 W)
zEQk
1
= — > P(miy = m)mm (xi; 0Dy B; frn (xi3 W) + O(20%1%)
n
1€Qy

= Z Z mz t = 7Tm (xi; Q(t))yi/gifm(xi; W(t)) + O(J2U6t6)

k’ +
zEQk o

+ om Z Z P(mie = m)mm (X3 Q(t))yiﬁifm(xi; W(t))
MUY

= O(J*nt%) + O(d~°0%). (E.21)

where the last inequality is by the technique we have used before in Lemmal[E.T6] By (E.21)), we can
get upper bound |I1], | I3] by O(J?15t%) + O(d=0-005),

41

Plugging the bound of I, I, I5 into (E:20) gives,
£ Pt
>
<V9 ck> Q <KM3

nt3 5/ 1-0.005
< —U. 1s]
_Q(KM3>+O(d),

> + O(J*n%%) 4+ O(d~02%%)

where the last inequality is by t < Ty = [p~ 1M ~2]. O

Now we can claim that Proposition[E.9]is true and we summarize the results as follow lemma.
Lemma E.18. For all T} < t < Ty, we have Proposition holds. Besides, we have that

<07(7?2), Ck) < Max,, c[m] (07(71,) — QKM 9) for all m ¢ Mj,..

Proof. We will first use induction to prove Proposition[E:9] It is worth noting that proposition [E.9]
is true at the beginning of the second stage ¢ = T3. Suppose (E-8), (E9), (EI0) hold for all
t € [Th,T] C [T1,T» — 1], we next verify that they also hold for ¢ € [T7,T + 1]. Lemma shows
that (E-8) holds for ¢ € [T, T + 1]. Lemma urther shows that (E.8) holds for ¢t € [T1,T + 1].
Therefore, we only need to verify whether (E.10) holds for ¢ € [T},T + 1]. Therefore, for each
pair i € §, m € My, we need to estimate the gap between expert m and the expert with
best performance A, (x;; @®)) — max,, hy (x;; ©®). By Lemma and Lemma [E.14} we
can induce that h,,(x;; @*) is small therefore cannot be the largest one. Thus h,, (x;; @) —
maX,, Mo (X453 O = hy (x5 O1)) — max,, hyy (x4 OM) < Agey < O(d%01). Therefore,
by Lemma|C.3|we have (E-10) holds. Now we have verified that (E-I0) also holds for ¢ € [T1,T + 1],
which completes the induction for Lemma[E-9}

Finally, we carefully characterize the value of 07(n), c), for n,n~t = O(M?) and m ¢ M,,. If
<07(f1)7ck> > max, <0() cy) — 1, by Lemmawe have that

m’

(0 c0) < 0. c0) — (L) 4 Ol) <. (E.22)

If there exists ¢t < T2 — 1 such that (0(t+1),ck> < maxm/<0,(,tl),,ck> — 1, clearly we have that
<0(T2 k) < —Q(K M ~9) since <0§n , ¢y will keep decreasing as long as <07(,t1+1), ck) > —1and

our step size 7, = O(M?)n is small enough. If (9(”1) Ck) > maX, <0£fb),, ci) — 1 holds for all
t < T, — 1, take telescope sum of (E:22)) from ¢t = 0 to t = T, — 1 gives that

Tz 1
(052) cr) < (8, ¢ Z of 1 + O(d~0-00)
mo k) KM?3

T5-1
® 1S 7 (,7—0.005
© @(e) + O(d—0-005)

< —QKIMTY),

where the (i) is by 6% = 0 and (ii) is by 3.7~ i* = n2(n — 1)2/4 and the last inequality is due to

Ty = |n~'M~2] and n, = ©(M?2)5. Now we have proved that (85>, ¢;) < —Q(K~1M~°) for
all m ¢ M. Finally, by Lemma we have that

1
max <0g2),Ck> > — Z <0g2)7ck> =0.

m/€[M] m e [M]
Therefore, we have that (052, ¢;) < —Q(K~1M~9) < MAaX,, (1] (0$2),ck> - Q(K—1M~9),
which completes the proof.
O

42

E.3 Generalization Results

In this section, we will present the detailed proof of Lemma[5.2]and Theorem [4.2]based on analysis
in the previous stages.

Proof of Lemma We consider the m-th expert in the MoE layer, suppose that m € My. Then if
we draw a new sample (x,y) € . Without loss of generality, we assume x = [ay vy, B¢k, YeVir, €]
By Lemma|[E.§] we have already get the bound for inner product between weights and feature signal,
cluster-center signal and feature noise. However, we need to recalculate the bound of the inner
product between weights and random noises because we have fresh random noises i.i.d drawn from
N(0, (62 /d) - 13). Notice that we use normalized gradient descent for expert with step size 7, so we
have that

Iwil) —wl |, <9y = 0(a3).

m,J

Therefore, by triangle inequality we have that HW(T1 Il2 < ||wm Lill2+0(a0) < O(o0V/d). Because
the inner product (w (&) p) follows the distribution N(0, (o3/d) - [|w,, Tl) /113), we have that with

m,]’

probability at least 1 — 1/(dPM J),

(Wil €0 = O(0pd ™ /2||wi. ||z log(dPM J)) < O(o0).

m,j

Applying Union bound for m € [M], j € [J],p > 4 gives that, with probability at least 1 — 1/d,

[(w™) €,)| = O(00),Vm € [M],j € [J],p > 4. (E.23)

m,j

Now under the event that (E.23) holds, we have that
yfm(x W(t _y Z Z me)>)

JElJ] pe[P]
= yo((Wm,jz , ayVi)) +y Z (Wi, X(P)>)
(3,0)# (51
> O} (1 = of")’og® — O(a})
> O0g7),

where the first inequality is due to (E.3). Because (E.23)) holds holds with probability at least 1 — 1/d,
so we have prove that

P(x,y)ND(yfm(X; W(Tl)) < O’(X7 y) € Qk) < 1/d

On the other hand, if we draw a new sample (x,y) € Qi , k" # k. Then we consider the special set
Q,;,_’ « € Qi where feature noise is v, and the sign of the feature noise € is not equal to the label y.

Without loss of generality, we assume it as x = [ayvy, B¢cgr, =YYV, €]. Then under the event that
(E-23) holds, we have that

yfm(xwt) _yz Z WmJ7Xp)>)

JELJ] pe[P]
=yo(Wmje, =7ve) +y Y o((Wp;,xP))
(3,2)#(55,53)
~C¥(1 =o' oh® + O(a7)
—Q(0p°),

where the first inequality is due to (E-3). Because (E.23)) holds holds with probability at least 1 — 1/d,
so we have prove that

<
<

]P(x,y)ND (yfm(XvW(Tl)) S 0|(X7 y) € Q;/7k‘) Z 1-— 1/d

43

Then we further have that
P(x,y)ND (yfm (X; W(T1)> < 0‘ (X7 y) € Qk’)

Z FPx,y)~D YT mX; > X,y]:-/,k) ~D (XY l:-',k X,y k!
>P (yfm(x WID) <0|(x,9) € Q) - P ((x,9) € Q1| (x,9) € W)
> Q1/K),

which completes the proof.

Proof of Theorem We will give the prove for T = T5, i.e., at the end of the second stage.

Test Error is small. We first prove the following result for the experts. For all expert m € My, we
have that

]P(x,y)ND (yfm(wi(T)) < 0’<Xa y) € Qk:) = 0(1) (E.24)

The proof of is similar to the proof of Lemma[5.2] We consider the m-th expert in the MoE layer,
suppose that m € M. Then if we draw a new sample (x,y) € ;. Without loss of generality, we
assume x = [ayvg, B¢k, eV, €]. By Lemma we have already get the bound for inner product
between weights and feature signal, cluster-center signal and feature noise. However, we need to
recalculate the bound of the inner product between weights and random noises because we have fresh
random noises i.i.d drawn from (0, (o7 /d) - Iz). Notice that we use normalized gradient descent
with step size 7, so we have that

lw' — wlO ||y < T = O(1).

m,j

Therefore, by triangle inequality we have that ||wm Glla < Hw lle + O() < O(00V/d). Because

the inner product (an) ;+&p) follows the distribution (0, (o o / d) - ||w m7 j ||2), with probability at
least 1 — 1/(dPM J) we have that ,

(Wil €] = O(apd2||wiY ||z log(dPMJ)) < O(ay).

m,j)

Applying Union bound for m € [M],j € [J],p > 4 gives that, with probability at least 1 — 1/d,
(Wi &p)| = Olo0). Y € [M],j € [J].p > 4. (E25)

Now, under the event that (E.23)) holds, we have that
yfm(x WT) _y Z Z TYL,j’ p)>)

jelJ] pelP]
=yo((wil) ogvi) +y Y o((wi) x@))
(4:p) A5 1)
> CY(1— 09"’ M~ = O(a?)
= Q(l),
where the first inequality is by Lemmal|E.12] Because (E-23) holds with probability at least 1 — 1/d,
so we have prove that

P yyop (4 fm (3 W) < 0](x,y) € Qi) < 1/d.

We then prove that, with probability at least 1 — o(1), an example x € € will be routed to one
of the experts in M. For x = [ayvy, B¢k, vevi, €], we need to check that h,, (x; ©™T)) <
max,, b (x; O Vm & M. By Lemma@ we know that <0§,:‘LF), ck) < max,, (053,), cL) —
—Q(K~*M~?). Further by Lemma we have that max,, |<0£,LT), vi)| = O(d=%901). Again
to calculate test error, we need to give an upper bound (6 SnT), &,), where &, is a fresh noise drawn
from A(0, (072/d) - I5). We can upper bound the gradient of the gating network by

44

1
V6, £l = Hn S Wiy = m)l T, (%33 0Dy, fin, , (x5 WO)xP)
4P

1
= = (5 O (x5 ©)y fn, (i WO
&P

2

=0(1),

where the last inequality is due to |€] ,| < 1, T, T, , € [0, 1] and HXEP)HQ = O(1). This further
implies that

1001, = |67 — 0Dy < O(tn,) < Oy~ n,) = O(1),

m

where the last inequality is by 1, = ©(M?)n. Because the inner product (0,(,LT), &,) follows the
distribution NV'(0, (o2 /d) - 165]12), we have that with probability at least 1 — 1/(dPM),

(05, &,) = O(opd™'72||65 |2 log(dPM)) < O(d~'/?).
Applying Union bound for m € [M],p > 4 gives that, with probability at least 1 — 1/d,

(85D, €,) = O(d~/?),¥m € [M],p > 4. (E.26)

Now, under the event that holds, we have that
P (x; ©T)) — max hys (x; @)
m’
< (6D ¢;) — max(Hg)7ck> + 4ma}§(OT) vi)| + 4P max |((1) ¢,)]
m/ m, m,p

S _Q(K—lM—Q) + 6(d—0.001)

< 0.
Because holds holds with probability at least 1 — 1/d, so we have prove that with probability
at least 1 — 1/d, an example x € 2, will be routed to one of the experts in M.

Training Error is zero. The prove for training error is much easier, because we no longer need
to deal with the fresh noises and we no longer need to use high probability bound for those inner
products with fresh noises. That’s the reason we can get exactly zero training error. We first prove the
following result for the experts. For all expert m € My, we have that

Yi o (xi3 WD) < 0,Vi € Q.

Without loss of generality, we assume that the feature patch appears in xgl). By Lemma we
have that for all 7 € €},

T
yifm(xi7W(T)) =Y Z Z U(<W£n,;"xz(’p)>)
jelJ] pelP]
T T
= pio((wi e agvid)) +u . o((wl x®))
(4:P)# (53 1)

> CF(1 - 00> M ™" = O(a})

>0,
where the first inequality is Lemma We then prove that, and example (x;,y;) € € will be
routed to one of the experts in M. Suppose the m-th expert is not in Mj. We only need to check

the value of f,,, (x;; ©T)) < max,, hp (x;; ©T)), which is straight forward by Lemma and
LemmalE.14]

O

45

F Auxiliary Lemmas

Lemma F.1. Let {a,,}}_, are the random variable i.i.d. drawn from N(0,1). Define the non-

increasing sequence of {am},]‘,/f:1 as a(M) > ... > a™) | Then we have that

P(a® > (1 - G)aM) < GM?

Proof. Let ¥ be the CDF of A/(0, 1) and let p be the PDF of A/(0, 02). Then we have that,

P(a® > (1 —G)aW)

_ / 1(a® > (1 - @)a) ML, p(a™)da
>, >a(D)

= / 1(a® > (1 - G)aWYM(M —1)p(a™)p(a?)T (a®)M~2daM da®
a)>a®

1
< / 1(a? > (1 - @)a)YM(M —1)p(aV)——=daV da®
aM)>q(2) v

Y8
_ / GMM =1) 1) (4 0)gg®
aM>0 v 2T

< GM?.

For normalized gradient descent we have following lemma,

Lemma F.2 (Lemma C.19|Allen-Zhu and Li[2020c). Let {x:, y:}+—1,.. be two positive sequences
that satisfy

Tep1 > mp + 1 Coay
Yrr1 < e+ Sn - Coy,
and 2441 — 24|? + |yer1 — ve|* < 2. Suppose 2o, yo = o(1), 20 > yoS(1 + G),
G?z G2y

log(A/z0) " l0g(1/C)

Then we have for all A > x, let T, be the first iteration such that z; > A, then we have yp, <
O(yoG™1).

7 < min{

Proof. We only need to replace O(1nA?~1) in the proof of Lemma C.19 by O(7), because we use
normalized gradient descent, i.e, C’txf < 1. For completeness, we present the whole poof here.

forallg =0,1,2,...,, let 7, be the first iteration such that z; > (1 + §)9z0, let b be the smallest
integer such that (1 + §)®z > A. For simplicity of notation, we replace x; with A whenever z; > A.
Then by the definition of 7,4, we have that

Z 7701‘/[(1 + 6)‘(]370}2 < x7'g+1 - ng < 6(1 + 5)gx0 + O(n)»
t€[Tg,Tg+1)

where the last inequality holds because we are using normalized gradient descent, i.e., max; |x;y1 —
2¢| <. This implies that

1
> nCtS(lf(s)gx+OgC(;’).
t€[Tg,Tg+1) 0 0

Recall that b is the smallest integer such that (1 + 5)%0 > A, so we can calculate

Y oG < [bzl(fS 1] O(m), _ 1+ Omh _ 1+ On)log(4/x)

146)9 zo z3 T 3 T @ z3log(1 +6)

t>0,2:, <A 9=0

46

Let T,, be the first iteration ¢ in which x; > A. Then we have that

T
= 1+6 O(n)log(A

cht < + n (n) ogg /l‘o). (E.1)

— Zo ox

On the other hand, let A’ = G~y and b’ be the smallest integer such that (1 + 6)¥’x¢ > A’. For
simplicity of notation, we replace y; with A’ when y; > A’. Then let 7 be the first iteration such

that y; > (14 0)9yo, then we have that

> nSC(1+6)7] >y

g+l yTg’ > 5(1 + 5)gy0 - 0(77)
telT1T741)

Therefore, we have that

g 1 O
SnCy > — - .
- g 2 2
i O T
Recall that b/ is the smallest integer such that (1 + 6)? 4o > A’. wo we have that

b’ —2

)
s>y — 2
2 t—;(lw)guwm %

t>0,0, <A

Let T, be the first iteration ¢ in which y, > A’, so we can calculate

T,
- 1-00W+G) O(n)log(4
P Yo Y56
Compare (FI) and (F2). Choosing 6 = G and n < min{logc(i%o), logG(zf;OG)}, together with

zo > yoS(1+ G)
O

47

	Introduction
	Related Work
	Problem Setting and Preliminaries
	Data distribution
	Structure of the MoE layer
	Training Algorithm

	Main Results
	Overview of Key Techniques
	Experiments
	Synthetic-data Experiments
	Real-data Experiments

	Conclusion and Future Work
	Experiment Details
	Visualization
	Synthetic-data Experiments
	Experiments on Image Data
	Experiments on Language Data

	Proof of Theorem 4.1
	Smoothed Router
	Initialization of the Model
	Proof of Theorem 4.2
	Exploration Stage
	Router Learning Stage
	Generalization Results

	Auxiliary Lemmas

