
Appendix

A Detailed Algorithm for AdvLatGAN-qua and AdvLatGAN-div

The algorithms for AdvLatGAN-qua in Section. 3.2 and AdvLatGAN-div in Section. 3.3 are presented
in Alg. 1 and Alg. 2 .

Algorithm 1 AdvLatGAN-qua tz, tD: the number of steps, other symbols are consistent with vanilla
GAN.

Input: pz e.g. Gaussian, pr e.g. real images distribution, randomly initialized G and D
Output: trained generator G and discriminator D
while G has not converged do

// update D:
for i = 1 to tD do

Sample {z(k)0 }mk=1 ∼ pz;
// the proposed sampling shift (t-step I-FGSM):
for i = 1 to tz do

Obtain {z(k)i }mk=1 by Eq. 5;
end for
Sample {x(k)

i }mk=1 ∼ pr;
Calculate lossD with {x(k)

i }mk=1 and {z(k)tz }
m
k=1;

Update D with lossD;
end for
// update G:
Sample {z(k)}mk=1 ∼ pz;
Calculate lossG with {z(k)}mk=1;
Update G with lossG;

end while

Algorithm 2 AdvLatGAN-div tz, tD: the number of steps, other symbols are consistent with vanilla
GAN.
Input: pz e.g. Gaussian, pr e.g. real images distribution; λms is a hyper-parameter; randomly

initialized G and D;
Output: trained generator G and discriminator D;
1: while G has not converged do
2: // update D:
3: for i = 1 to tD do
4: Sample {z(k)i }mk=1 ∼ pz;
5: Sample {(x(k)

i , c
(k)
i)}mk=1 ∼ pr;

6: Compute lossD with {(x(k)
i , c

(k)
i), z

(k)
i }mk=1;

7: Update D with lossD;
8: end for
9: // update G:

10: Randomly generate labels {c(k)}mk=1;
11: Sample {z(k)0 }mk=1 ∼ pz;
12: // the proposed sampling shift (t-step I-FGSM):
13: for i = 1 to tz do
14: Obtain {z(k)i }mk=1 by Eq. 8;
15: end for
16: Calculate lossG and lossms (Eq. 3) with {c(k)}mk=1, {z(k)0 }mk=1 and {z(k)tz }

m
k=1;

17: loss← lossG + λmslossms;
18: Update G with loss;
19: end while

15

B Proofs

We first recall the notations: G(·) : Z → X denotes the generative mapping where Z and X
denote subsets in latent space and pixel space; G[·] : P(Z) → P(X) denotes the image-of-set
function corresponding to G(·); G−1[·] : P(X) → P(Z) denotes the preimage function such that
G−1[X] = {z|G(z) ∈ X}, distinguished from the inverse function G−1(·) : X → Z.

To prove Proposition. 3.2, we first show Lemma. B.1 for latter use.

Lemma B.1. If G : Z → X is a continuous function, then for any open set U in X , G−1[U] is an
open set in Z.

Proof. Let z0 ∈ G−1[U], then G(z0) ∈ U . Since U is open, there exists a ϵ > 0 such that
{x|d(x, G(z0)) < ϵ} ⊆ U . Here d(·, ·) denotes the Euclidean distance metric function. On the other
hand, since G is a continuous function, there exists a δ > 0 such that for any z ∈ {z|d(z, z0) < δ},
G(z) ∈ {x|d(x, G(z0)) < ϵ} ⊆ U . So that for any z ∈ {z|d(z, z0) < δ}, G(z) ∈ U and
z ∈ G−1[U], i.e. {z|d(z, z0) < δ} ⊆ G−1[U].

Concludingly put, for any z0 ∈ G−1[U], there exists a δ > 0 such that {z|d(z, z0) < δ} ⊆ G−1[U].
According to the definition of open set, G−1[U] is open, completing the proof.

Proposition B.2. For any given continuous G whose codomain includes multiple manifolds, Zop(G)
is a union of disconnected subsets in the latent space.

Proof. Recall that the targeted real-data subset in the high-dimensional pixel space Xr =
⋃nr

i=1 Mi

where M1 to Mnr
are disconnected to each other and here we require the splitting of Xr to such an

extent that each submanifold Mi keeps connected.

Since M1 to Mnr
are disconnected to each other and maintain connected themselves, there exist

open sets U1 to Unr
such that Mi ⊆ Ui and ∀i ̸= j : Ui

⋂
Uj = ∅.

Since G[G−1[Mi]] = Mi ⊆ Ui, we obtain G−1[Mi] ⊆ G−1[Ui]. And according to Lemma. B.1,
G−1[Ui] is open in Z. Then to show that G−1[Ui] to G−1[Unr

] are disconnected to each other, we
need to prove that ∀i ̸= j : G−1[Ui]

⋂
G−1[Uj] = ∅.

We will aim for a contradiction. If there exists an element a such that a ∈ G−1[Ui] and a ∈ G−1[Uj],
then G(a) ∈ Ui and G(a) ∈ Uj . This implies that G(a) ∈ Ui

⋂
Uj , which contradicts the condition

that Ui

⋂
Uj = ∅.

Till now, we have shown that G−1[Mi] ⊆ G−1[Ui] where G−1[Ui] is open in Z and ∀i ̸= j :
G−1[Ui]

⋂
G−1[Uj] = ∅. This implies that G−1[Mi] to G−1[Mnr] are disconnected to each other.

On the other hand, we have

Zop(G) = G−1[Xr] = G−1[

nr⋃
i=1

Mi] =

nr⋃
i=1

G−1[Mi]

Thus we obtain Zop(G) is a union of disconnected subsets in the latent space, completing the
proof.

Proposition B.3. Optimizing GAN’s training criterion i.e. minG maxD{Ez∼p0
z
[log(1−D(G(z)))]+

Ex∼pr
[log(D(x))]} is to minimize JSD(popz (G), p0z).

Proof. We introduce popz (G) to vanilla GAN’s training criterion and denote the target function as
V (G,D), then

V (G,D)

=Ez∼p0z
[log(1−D(G(z)))] + Ex∼pr [log(D(x))]

=Ez∼p0z
[log(1−D(G(z)))] + Ez∼p

op
z
[log(D(G(z)))]

=

∫
z

p0z(z) log(1−D ◦G(z)) + popz (z) log(D ◦G(z))dz

16

Similar to the derivation of Thm. 1 in [1], we assume that with the fixed G, D have reached optimal
with a derivative of zero. Let ∂V

∂D = 0, we obtain

D∗ ◦G(z) =
popz

popz + p0z
(9)

Then the criterion turns to be C(G):

C(G)

=KLD

(
popz ∥p

op
z + p0z

2

)
+KLD

(
p0z∥

popz + p0z
2

)
− 2 log 2

=2JSD(popz ∥p0z)− 2 log 2

where KLD(·) denotes the Kullback-Leibler divergence and JSD(·) denotes the Jensen-Shannon
divergence. Since the JSD of two distributions is always non-negative and reaches zero if and only if
the two distributions are the same, completing the proof.

C Overhead Discussion

We conduct experiments to show the overhead of our proposed techniques on both the in-training
(-qua as an example) and post-training sampling shift method (-z) on STL10. We evaluate training
time for 1000 generator steps for -qua and time for shifting 1000 samples for -z, in seconds. The
comparison involves baselines in Table.3, with the same parameters. We compare two version of -z
w.r.t. #iteration (correspond to Fig. 8). The results show -z’s high computational efficiency.

Table 7: Results for -qua.
Method STL-32 STL-64

SNGAN 71.01 ± 0.32 526.52 ± 0.51
SNGAN-qua 95.96 ± 0.26 685.83 ± 1.06

WGANGP 103.20 ± 0.25 794.48 ± 0.24
WGANGP-qua 127.39 ± 0.20 955.02 ± 0.37

Table 8: Results for -z.
Method SNGAN WGANGP

EvolGAN 628.70 ± 1.76 630.55 ± 1.61
DOT 68.20 ± 0.10 69.78 ± 0.08

DDLS 267.41 ± 34.99 749.91 ± 185.91

-z (it=100) 34.12 ± 0.11 42.03 ± 0.42
-z (it=20) 6.96 ± 0.26 8.40 ± 0.27

D Relation to Adversarial Attacks/Defenses

Our approach is closely related to adversarial attacks and defenses. As for works in adversarial
attacks, the fundamental standpoint is that deep neural networks’ performance can vary significantly
in face of small perturbations. This scenario can be very similar to our starting point as described
in Sec 1 that a small perturbation of the latent vectors can lead to massive quality variation. Thus
it is quite natural to combine the adversarial methods with generative adversarial networks, and
specifically, AdvLatGAN-z achieves the implicit latent transform using I-FGSM to overcome the
quality discontinuity.

The proposed GAN training pipelines AdvLatGAN-qua and AdvLatGAN-div can be analogous to
adversarial training techniques in the adversarial defense field. Adversarial training is a proactive
defense approach that strengthens the model against attacks or enhances its performance by modifying
the inputs to adversarial samples to train the model, making it naturally robust and defensive against
attacks. This process involves conducting adversarial sample mining during training which can be
optimization-friendly for the robustness purpose. While in AdvLatGAN-qua and AdvLatGAN-div,
we conduct z transform in GAN training referencing adversarial sample mining, which can be viewed
as the same process as adversarial training. The training involves optimization of three components z,
G and D, among which the introduced z transform can mine the latent space during training, to some
extent leading to the superiority of the method.

Adopting different adversarial perturbation methods. Though we adopt I-FGSM for its sim-
pleness, our framework is agnostic to the choice of adversarial techniques. We try and compare
other means for adversarial mining, and below we give experiments using other adversarial methods
including PGD [62], MI-FGSM [43]. We involve backbones as WGAN-GP and SNGAN, adopting
IS and FID as the evaluation metrics. The results are presented in Table. 9 and Table. 10. I-FGSM

17

marginally outperforms other methods. This may stem from that the low dimensional latent space
has a simpler structure than image space.

Table 9: Results for -qua.
Method Metric WGAN-GP SNGAN

I-FGSM IS↑ 7.63± 0.09 7.56± 0.07
FID↓ 22.2± 0.3 21.9± 0.3

MI-FGSM IS↑ 7.63± 0.03 7.47± 0.05
FID↓ 22.9± 0.2 22.4± 0.6

PGD IS↑ 7.63± 0.06 7.50± 0.07
FID↓ 22.5± 0.2 22.2± 0.4

Table 10: Results for -z.
WGAN-GP SNGAN

I-FGSM IS↑ 8.84± 0.08 8.33± 0.03
FID↓ 16.6± 0.4 18.1± 0.1

MI-FGSM IS↑ 8.71± 0.07 8.26± 0.01
FID↓ 16.6± 0.3 18.2± 0.1

PGD IS↑ 8.56± 0.07 8.11± 0.01
FID↓ 16.7± 0.2 18.8± 0.1

E Description of Constraints for Iteration

There are two basic types of constraint used in adversarial attacks: 1) ℓ2 norm constraint; 2) ℓ∞ norm
constraint. In this paper, we follow the well-known attack method, iterative fast gradient sign method
(I-FGSM) [17] to conduct the iterations of latent variables, adopting the ℓ∞ norm as our constraint.

F Universality of Fig. 3’s phenomenon.

StyleGAN2-ada is just an example, and the issue exists for any network-based generator due to the
continuous nature of net-based mappings as claimed in the main paper. Yellow box below shows
similar artifacts phenomenon in BigGAN [12].

Figure 11: BigGAN results corresponding to Fig. 3.

G Comparisons to Other Algorithms

We present the differences between our approaches and other previous works, involving two topics i.e.
latent exploration and GAN model with adversarial training. An overview is presented in Table 11.
Meanwhile, we conduct experiments to show our superiority over other representative works.

G.1 Latent Exploration

EvolGAN [25], Tarsier [26]. These two models both use the well-known quality evaluator Kon-
cept512 (which is actually a classifier) to guide the latent vector optimization. Their drawback is
that they do not consider or exploit the real distribution but turn to a general quality estimator for
optimization guidance, which leads to the criterion of sampling quality not for the proximity to the
real distribution, but to match the data trained for the Koncept512 classifier. Our approach uses a
discriminator to guide the latent variable updating, which makes full use of the information from the
real distribution, while further achieving novel training algorithm to improve the generative mapping.

DDLS [30]. DDLS analyzes GAN and develops the sample-improving approach from the perspective
of the energy-based model, achieved by Markov Chain Monte Carlo, which differs from ours in
terms of methodology. Besides, it does not particularly notice that when we enhance the quality,
we hope that the image is changed as little as possible. Combing the above two points, we explain
the problem from the perspective of continuous mapping and view the latent vector transform as
adversarial sample mining, which is quite different from DDLS.

DOT [53]. Mining the residual value of the discriminator after training, DOT proposes optimal
transport in the pixel space and latent space to improve the generated images. The motivation of

18

Table 11: Differences from Other Algorithms

Proposed Method Compared Existing Method Different Point Detailed Description

Theirs Ours

-z

EvolGAN

Guidance for the
transform

Quality estimator
Koncept512

D ·G

Technical
implementation

Evolutionary
algorithm

I-FGSM iterations

Tarsier

Guidance of the
transform

Quality estimator
Koncept512

D ·G

Technical
implementation

Diagonal Covariance
Matrix Adaptation

I-FGSM iterations

Targeted Task Super-resolution
generation tasks

General generation
tasks

AE-OT-GAN

Timing for the
transform

Before training G
and D

After training G and
D

Technical
implementation

First train an
Auto-Encoder to

learn a latent
distribution then use
optimal trasport to

achieve the transform

I-FGSM iterations

Calculating cost Need additionally
train an

Auto-Encoder for
fitting the targeted
latent distribution

No extra networks
are trained (guided

by G and D)

DDLS

Basis of theoretical
analysis

Energy-based theory General GAN theory

Technical
implementation

Markov Chain Monte
Carlo

I-FGSM iterations

DOT

Motivation Mining D’s residual
value after training

Quality discontinuity

Technical
implementation

Optimal transport I-FGSM iterations

-qua vanilla GAN z in the training of D Samples from
Gaussian

Transform of the
original sampling

-div MSGAN

z pair used in
ms-regularizer

Individually sampled
from Gaussian

Randomly choose z1,
then transform z1 to

get z2, forming a
hard sample pair

-qua and -div
Existing methods

introducing AT or robustness
learning in GAN training

Objects to which
perturbations are

added

x z

further mining the discriminator after training differs from ours to overcome the quality discontinuity,
while again the technical implementation being optimal transport differs from ours.

G.2 GAN Model with Adversarial Training

Our GAN training algorithm can be considered as a kind of adversarial training, and we differ from
several previous works that combine adversarial training and GAN.

ASGAN [42], FastGAN [41], Rob-GAN [40]. These methods add perturbations to the real images
(the latter is an improvement in the loss function compared to the former), while we focus on the
latent space, perturbing latent space vectors.

Robust GAN training [63]. This algorithm shows that a robust discriminator can benefit training
and this robustness only need to be enforced in expectation over the generated samples, again without
focusing on the latent space compared to us.

19

Table 12: Experimental comparisons over GAN with adversarial training evaluated on CIFAR-10.
Metrics Framework ASGAN RobDis AdvLatGAN-qua AdvLatGAN-qua+

IS

DCGAN 6.21± 0.07 6.03± 0.03 6.28± 0.04 6.58± 0.34
WGAN 4.10± 0.01 6.84± 0.04 7.21± 0.04 7.76± 0.07

WGAN-GP 6.80± 0.02 7.41± 0.06 7.60± 0.06 8.59± 0.10
SNGAN 7.21± 0.03 6.30± 0.06 7.58± 0.03 8.13± 0.06

FID

DCGAN 45.3± 0.4 41.9± 0.4 41.7± 1.0 40.1± 1.5
WGAN 89.7± 1.3 1.3± 0.4 27.3± 0.7 27.2± 0.5

WGAN-GP 32.3± 0.3 24.5± 0.1 22.6± 0.4 18.3± 1.1
SNGAN 26.7± 0.5 50.9± 2.7 22.3± 0.5 21.9± 0.3

G.3 Experimental Comparison over Latent Exploration

We compare AdvLatGAN-z with representative works EvolGAN, DOT, DDLS that interplaying
latent space exploration and GANs. The results are presented in Table. 3. For detailed experimental
settings, please refer to Appendix H.3.

G.4 Experimental Comparison over GAN Model with Adversarial Training

We compare AdvLatGAN-qua and AdvLatGAN-qua+ with two representative works ASGAN and
Robust GAN training that combine adversarial training and GANs. These two methods are related to
perturbations on the generated samples and the real samples respectively. The experimental setting
is aligned with Table 4 and we evaluate on CIFAR-10 with four frameworks: DCGAN, WGAN,
WGANGP and SNGAN. Inception Score and Fréchet Inception Distance are adopted as the evaluation
metrics. The experimental results are presented in Table 12.

H Experimental Details for Post-training Latent Sampling: AdvLatGAN-z

H.1 Details for Synthetic Data Experiment

Protocols for Synthetic Experiment. We simulate two synthetic datasets. Ring dataset is a mixture
of 8 2-D Gaussians with mean {(2 cos (iπ/4), 2 cos (iπ/4))}8i=1 and standard deviation 0.001. 12.5K
samples are simulated from each Gaussian distribution. 50K samples from p(z) are used to generate
x for test. Grid dataset is a mixture of 25 2-D isotropic Gaussians with mean {(2i, 2j)}2i,j=−2 and
standard deviation 0.0025. 4K samples are simulated from each Gaussian. 20K samples from p(z) are
used to generate target samples {x̃} for test. In the synthetic experiments, we apply fully-connected
networks for generation and the architectures are shown in Table 13 and Table 14.

Table 13: Architecture of generator G.

Layer Output size Activation

Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 2 -

Table 14: Architecture of discriminator D.
Layer Output size Activation

Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 1 -

Details for Ring Data Experiment. To better demonstrate the practical effectiveness, we insuffi-
ciently train the model with 2,000 iterations (1 epoch). The generated results by 20,000 samples
in the 2D-Gaussian distribution of the insufficiently trained model are presented in Fig. 12 (a).
AdvLatGAN-z is then applied to the latent samples under ℓ∞ constraint. The step size is set as 0.003
and the transform is conducted by 8,000 iterations. The results of AdvLatGAN-z is presented in
Fig. 12 (b) while Fig. 12 (c) presents the generated results of the sufficient trained model with 100
epochs. As the targeted real-data locates in 8 separate modes, samples from a continuous distribution
via a continuous mapping cannot avoid invalid samples in the between of the targeted modes, even
for the sufficiently trained model. While the latent distribution transform can well address the issue.

20

(a) Insufficient Train (b) Latent Transform (c) Sufficient Train
Figure 12: Left: generated results of insufficiently trained networks. Middle: generated results of
AdvLatGAN-z transformed samples. Right: generated results of insufficiently trained networks.

.

(a) vanilla points (b) iterate 10 times (c) iterate 30 times (d) iterate 8000 times

Figure 13: Results of AdvLatGAN-z for sufficiently trained nets on Grid dataset.
.

Details for Grid Data Experiment. Complementary to the Ring experiment, in Grid setting, we
show that AdvLatGAN-z is also effective for sufficiently trained networks. The generative networks
are trained by 50 epochs while other hyper-parameters maintain consistent with Appendix H.1. The
results are presented in Fig. 12, proving the effectiveness of AdvLatGAN-z in boosting generative
performance.

H.2 Details for MNIST Experiment in Fig.5

DCGAN and WGAN-GP are adopted as the backbones. The model structures are consistent with
those used in Appendix J.1.1. AdvLatGAN-z is conducted with a total of 30 iterations, each with a
step size of 0.03 and a batch size of 8000. The configuration of the trained DCGAN model: batch
size is 128; D-learning rate and G-learning rate are both 0.0002; the loss function is BCE loss;
the discriminator updates one step per generator iteration; the latent dimension is 2; and the total
training step is 20,000. The configuration of training WGAN-GP model: the batch size is 128; the
D-learning rate and G-learning rate are both 0.0002; the parameters of discriminator updates one step
per generator iteration; the latent dimension is 2; and the total training step is 50,000.

H.3 Details for STL-10 Experiment in Table 3

DCGAN, SNGAN and WGAN-GP are adopted as the backbones. The model structures are consistent
with those used in Appendix J.1.1. AdvLatGAN-z is conducted for a total of 20 iterations, each with
step size of 0.05 and the batch size is set as 10000.

The training configuration of DCGAN model: the batch size is 128; the D-learning rate and G-
learning rate are both 0.0002; the loss function is bce loss; the discriminator updates one step per
generator iteration; the latent dimension is 100; and the total training step is 100,000. The training
configuration of SNGAN model: the loss function is hinge loss and other configurations are the
same with DCGAN. The training configuration of the trained WGAN-GP model: the loss function is
wasserstein loss and other configurations are the same with DCGAN. The visualization results of
WGANGP for AdvLatGAN-z are presented in Fig. 14.

21

Figure 14: Visualization results of AdvLatGAN-z on STL-10. The left column shows the raw samples
from the Gaussian, while samples from left to right present the generative results of the process of
AdvLatGAN-z transform.

Figure 15: Results of AdvLatGAN-z on FFHQ dataset. First row: generated results of the interpolation
of raw samples from Gaussian in Fig. 3. Second row: generated results under AdvLatGAN-z.
AdvLatGAN-z can effectively mitigate defects.

H.4 Details for AFHQ and FFDQ Experiment in Fig. 10

We adopt the pre-trained StyleGAN2-ada as the backbone referencing the official implementation.
We initialize six latent space vectors from Gaussian which deliver bad generation and then perform
AdvLatGAN-z to the original sampling. The generative results of the newly mined zs are presented
in the second row. The step size of AdvLatGAN-z is set as 0.001 and the number of steps is set as
150. Taking the second row of Fig. 3 as example, we also apply AdvLatGAN-z to all steps in the
interpolation as the supplementary results to Fig. 10. The results are presented in Fig. 15.

I Experiment for Hard Sample Pair Mining for Diversity

The proposed AdvLatGAN-div involves mining the hard sample pair for diversity using z transform
guided by Eq. 8 in GAN’s bi-level optimization process. In Table. 1 and Fig. 6, we show the
effectiveness of the proposed hard sample mining approach. Here we provide details for the conducted
experiments and supplement the visualization results of CIFAR-10.

22

(a) Original (b) Mined by Eq. 8 (c) Mined by Eq. 8-inv
Figure 16: Results of diversity driven iterative transform scheme in latent space by using DCGAN [47]
pre-trained on CIFAR-10. The pair obtained by solving Eq. 8 tend to collapse (as they are hard
samples), while the opposite leads to better diversity by using the inverse form of Eq. 8.

Table 15: ϵ in AdvLatGAN-qua for CIFAR-10 and STL-10 datasets

ϵ DCGAN WGAN WGAN-GP SNGAN LSGAN WGAN-div ACGAN

CIFAR-10 0.03 0.01 0.015 0.04 0.01 0.03 0.03

STL-10 0.04 0.02 0.015 0.05 0.03 0.03 -

Details for CIFAR-10 Experiment. For an initial random latent vector of batch size 64, we
respectively conduct 300-step gradient sign descent and 300-step gradient sign ascent on the ratio of
the distance between the original image and the newly obtained image to the distance of the original
input vector and the newly obtained input vector (which denoted as Eq. 8). The results are presented
in Fig. 16. The step size is set as 0.03. The model is a pre-trained CIFAR-10 DCGAN model.

Details for FACADES Experiment. Basically following the same pipeline as in Sec. I, we select
six initial latent space vectors and utilize Eq. 8 and its inverse form to obtain the corresponding hard
pair and easy pair. The hyper-parameters remain the same as Sec. I while the backbone is MSGAN
trained on FACADES.

J Details of Experiment for Generative Map Improvement:
AdvLatGAN-qua/div

J.1 Experiment for AdvLatGAN-qua

To reduce the computational cost, for all the experiments in this section, we only take one I-FGSM
step for updating the raw latent sampling during training.

J.1.1 Details for CIFAR-10 and STL-10 datasets in Table 4

Recall that ϵ is the radius of the closed ball to ℓ∞ constraint perturbation. For different compared
baselines (backbones), training’s ϵ settings are shown in Table 15. The training hyper-parameter
configuration: the batch size is 128; the D-learning rate and G-learning rate are 0.0002; the latent
dimension is 100; and the total training step is 100,000. In CIFAR-10 experiment, the basic DCGAN
architectures for G and D are presented in Table 17 and Table 18. While in STL-10 experiment, the
architectures are presented in Table 19 and Table 20. Evaluation metrics are calculated over 50000
images. The iteration step size ϵ of AdvLatGAN-z is set to 0.05 and we conduct 20 steps each time.

23

Table 16: ϵ in AdvLatGAN-qua for larger scale datasets

ϵ LSUN-64 LSUN-128 CelebA-64 CelebA-128 ImageNet

SNGAN 0.05 0.05 0.05 0.006 0.05

WGAN-GP 0.015 0.015 0.02 0.015 0.03

Table 17: Architecture of generator G in CI-
FAR10 experiment.

Layer Output size

ConvTranspose2d 2× 2× 1024
BatchNorm2d 2× 2× 1024

Relu 2× 2× 1024

ConvTranspose2d 4× 4× 512
BatchNorm2d 4× 4× 512

Relu 4× 4× 512

ConvTranspose2d 8× 8× 256
BatchNorm2d 8× 8× 256

Relu 8× 8× 256

ConvTranspose2d 16× 16× 128
BatchNorm2d 16× 16× 128

Relu 16× 16× 128

ConvTranspose2d 32× 32× 3
Tanh 32× 32× 3

Table 18: Architecture of discriminator D in
CIFAR10 experiment.

Layer Output size

Conv2d 16× 16× 64
LeakyRelu 16× 16× 64

Conv2d 8× 8× 128
LeakyRelu 8× 8× 128

BatchNorm2d 8× 8× 128

Conv2d 4× 4× 256
LeakyRelu 4× 4× 256

BatchNorm2d 4× 4× 256

Conv2d 2× 2× 512
LeakyRelu 2× 2× 512

BatchNorm2d 2× 2× 512

faltten 2048
linear 1

J.1.2 Details for larger scale datasets in Table 5

We evaluate AdvLatGAN-qua and AdvLatGAN-qua+ on larger scale data including LSUN Church,
CelebA and ImageNet datasets with image resolution up to 64 × 64 and 128 × 128. We adopt
WGANGP and SNGAN as the baselines (backbones) with basically the same training hyper-parameter
configuration to Appendix J.1.1 except for the number of trained iterations. We train LSUN-64 for
100,000 iterations, LSUN-128 for 150,000 iterations, CelebA-64 for 100,000 iterations, CelebA-128
for 300,000 iterations and ImageNet-128 for 500,000 iterations. For image resolution of 64 × 64,
SNGAN’s architectures for G and D are presented in Table. 21 and Table.23. While for 128× 128,
the architectures follow Table. 22 and Table.24. Training’s ϵ settings are shown in Table 16. FID is
calculated over 50000 images while density and coverage are calculated over 10000 images. The
iteration step size ϵ of AdvLatGAN-z is set as 0.01 for SNGAN and 0.002 for WGANGP and we
conduct 100 steps each time. The visualization results are presented in Fig. 17, Fig. 18, Fig. 19,
Fig. 20 and Fig. 21.

24

(a) Original (b) AdvLatGAN-qua+
Figure 17: Generative results on LSUN-64.

(a) Original (b) AdvLatGAN-qua+
Figure 18: Generative results on LSUN-128.

Table 19: Architecture of generator G in STL-
10 experiment.

Layer Output size

ConvTranspose2d 3× 3× 1024
BatchNorm2d 3× 3× 1024

Relu 3× 3× 1024

ConvTranspose2d 6× 6× 512
BatchNorm2d 6× 6× 512

Relu 6× 6× 512

ConvTranspose2d 12× 12× 256
BatchNorm2d 12× 12× 256

Relu 12× 12× 256

ConvTranspose2d 24× 24× 128
BatchNorm2d 24× 24× 128

Relu 24× 24× 128

ConvTranspose2d 48× 48× 3
Tanh 48× 48× 3

Table 20: Architecture of discriminator D in
STL-10 experiment.

Layer Output size

Conv2d 24× 24× 64
LeakyRelu 24× 24× 64

Conv2d 12× 12× 128
LeakyRelu 12× 12× 128

BatchNorm2d 12× 12× 128

Conv2d 6× 6× 256
LeakyRelu 6× 6× 256

BatchNorm2d 6× 6× 256

Conv2d 3× 3× 512
LeakyRelu 3× 3× 512

BatchNorm2d 3× 3× 512

faltten 4608
linear 1

25

(a) Original (b) AdvLatGAN-qua+
Figure 19: Generative results on CelebA-64.

(a) Original (b) AdvLatGAN-qua+
Figure 20: Generative results on CelebA-128.

Table 21: Architecture of generator G for
SNGAN-64

Layer Output size

Linear+Reshape 8×8×512

ConvTranspose2d 16× 16× 256
BatchNorm2d 16× 16× 256

Relu 16× 16× 256

ConvTranspose2d 32× 32× 128
BatchNorm2d 32× 32× 128

Relu 32× 32× 128

ConvTranspose2d 64× 64× 64
BatchNorm2d 64× 64× 64

Relu 64× 64× 64

Conv2d 64× 64× 3
Tanh 64× 64× 3

Table 22: Architecture of generator G for
SNGAN-128

Layer Output size

Linear+Reshape 16×16×512

ConvTranspose2d 32× 32× 256
BatchNorm2d 32× 32× 256

Relu 32× 32× 256

ConvTranspose2d 64× 64× 128
BatchNorm2d 64× 64× 128

Relu 64× 64× 128

ConvTranspose2d 128× 128× 64
BatchNorm2d 128× 128× 64

Relu 128× 128× 64

Conv2d 128× 128× 3
Tanh 128× 128× 3

26

(a) Original (b) AdvLatGAN-qua+
Figure 21: Generative results on ImageNet-128.

Table 23: Architecture of discriminator D for
SNGAN-64

Layer Output size

SN+Conv2d 64× 64× 64
LeakyReLU 64× 64× 64
SN+Conv2d 32× 32× 64
LeakyReLU 32× 32× 64

SN+Conv2d 32× 32× 128
LeakyReLU 32× 32× 128
SN+Conv2d 16× 16× 128
LeakyReLU 16× 16× 128

SN+Conv2d 16× 16× 256
LeakyReLU 16× 16× 256
SN+Conv2d 8× 8× 256
LeakyReLU 8× 8× 256

SN+Conv2d 8× 8× 512
LeakyReLU 8× 8× 512

Faltten+Linear 1

Table 24: Architecture of discriminator D for
SNGAN-128

Layer Output size

SN+Conv2d 128× 128× 64
LeakyReLU 128× 128× 64
SN+Conv2d 64× 64× 64
LeakyReLU 64× 64× 64

SN+Conv2d 64× 64× 128
LeakyReLU 64× 64× 128
SN+Conv2d 32× 32× 128
LeakyReLU 32× 32× 128

SN+Conv2d 32× 32× 256
LeakyReLU 32× 32× 256
SN+Conv2d 16× 16× 256
LeakyReLU 16× 16× 256

SN+Conv2d 16× 16× 512
LeakyReLU 16× 16× 512

Faltten+Linear 1

J.1.3 Additional Experiments on StyleGAN2-ada Backbone.

We evaluate AdvLatGAN-qua on StyleGAN2-ada [18] backbone on MetFaces [18] and AFHQ
Cat datasets. The implementation is based on the official PyTorch implementation of [18]. We
adopt FID and kernel inception distance (KID) [64] as evaluation metrics in line with [18]. All the
training settings are inline with the default setting of [18]’s official code. We report results of the best
generation (referring to KID). The quantitative results show the significant performance gain.

J.2 Experiment for AdvLatGAN-div

J.2.1 Details for CIFAR-10 Expriment

We adopt three latent vector updates per generator iteration and the step size is set as 0.01. Recall that
the transform for mining samples starts at the Gaussian neighborhood of the initial latent vector, here
the standard deviation of the Gaussian is set as 0.01. Other training parameters are referred to the
original MSGAN implementation. FID, density and coverage metrics for each class are calculated

27

Table 25: Evaluation of AdvLatGAN-qua on StyleGAN2-ada backbone.

Dataset StyleGAN2-ada AdvLatGAN-qua
FID(↓) KID×103(↓) FID(↓) KID×103(↓)

AFHQ Cat-128 4.516 0.906 3.742 0.771
AFHQ Cat-512 4.133 0.940 3.224 0.749
MetFaces-128 22.328 6.159 20.952 4.524

MetFaces-1024 19.420 3.132 18.698 2.697

based on 5000 images, and the overall evaluation is performed on the collection of generated images
of all classes (50000 in total). The iteration step size ϵ of AdvLatGAN-z is set to 0.01 and we conduct
100 steps each time.

J.2.2 Details for STL-10 Expriment

The basic experimental setup in STL-10 experiment follows Appendix J.2.1, whereas the difference
is that: for STL-10, we use the training part of the dataset as the real data for training, while for
evaluation, the metrics are calculated using the test part of the dataset.

28

	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Latent Adversarial Mining for Generation Quality
	AdvLatGAN-z: Latent Space Transform
	AdvLatGAN-qua: Quality Targeted Training Pipeline

	AdvLatGAN-div: Latent Adversarial Mining for Diversity

	Experiments
	Experimental Setup
	AdvLatGAN-z: Performance Boosting by Post-training Latent Sampling
	AdvLatGAN-qua/div: Improving Generation Map

	Conclusion and Broader Impact
	Detailed Algorithm for AdvLatGAN-qua and AdvLatGAN-div
	Proofs
	Overhead Discussion
	Relation to Adversarial Attacks/Defenses
	Description of Constraints for Iteration
	Universality of Fig. 3's phenomenon.
	Comparisons to Other Algorithms
	Latent Exploration
	GAN Model with Adversarial Training
	Experimental Comparison over Latent Exploration
	Experimental Comparison over GAN Model with Adversarial Training

	Experimental Details for Post-training Latent Sampling: AdvLatGAN-z
	Details for Synthetic Data Experiment
	Details for MNIST Experiment in Fig.5
	Details for STL-10 Experiment in Table 3
	Details for AFHQ and FFDQ Experiment in Fig. 10

	Experiment for Hard Sample Pair Mining for Diversity
	Details of Experiment for Generative Map Improvement: AdvLatGAN-qua/div
	Experiment for AdvLatGAN-qua
	Details for CIFAR-10 and STL-10 datasets in Table 4
	Details for larger scale datasets in Table 5
	Additional Experiments on StyleGAN2-ada Backbone.

	Experiment for AdvLatGAN-div
	Details for CIFAR-10 Expriment
	Details for STL-10 Expriment

