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Appendix
A INFERENCE EFFICIENCY ANALYSIS

Inference Efficiency Analysis of 3DIS. The 3DIS framework generates high-resolution images
in three sequential stages: 1) The Layout-to-Depth Model, which creates a coarse-grained scene
depth map; 2) The Segmentation Model, which extracts the precise shape of each instance from the
scene depth map; 3) The Detail Renderer, which uses various foundational models (SD2, SDXL,
etc.) to produce the final high-resolution image. We evaluated the inference efficiency of these
stages using an NVIDIA A100 GPU. Our test involved a layout with 10 instances, and we assessed
the inference time for each stage over 50 runs to calculate an average time:

• Layout-to-Depth Model: Given that the global scene depth map does not require high
granularity, the UniPCMultistepScheduler (Zhao et al., 2023) is employed for only 30 steps.
The average time to generate a depth map is 5.66 seconds.

• Segmentation Model: We utilize the SAM model to segment the generated scene depth
maps and get refined layouts. The refinement process by SAM takes 0.14 seconds.

• Detail Renderer: We use the EulerDiscreteScheduler (Karras et al., 2022) for 50 steps.
The time for the SD1.5 model to render a 512 × 512 image is 5.27 seconds, the time for
the SD2 model to render a 768 × 768 image is 11.28 seconds, and the time for the SDXL
model to render a 1024× 1024 image is 22.75 seconds.

Table A: Average inference time of different layout-to-Image model.
GLIGEN InstanceDiff MIGC 3DIS (SD1.5) 3DIS (SD2) 3DIS (SDXL)

Inference Time (s) 12.75 42.48 6.81 11.07 17.08 28.55
Resolution 512 512 512 512 768 1024

Inference Efficiency Comparison. We conducted comparative experiments to evaluate the perfor-
mance of various state-of-the-art (SOTA) methods, including GLIGEN (Li et al., 2023b), Instance
Diffusion (Wang et al., 2024), and MIGC (Zhou et al., 2024), using NVIDIA A100 GPU. All models
were tested using the default configurations in their GitHub repositories. We evaluated the inference
efficiency of these stages using an NVIDIA A100 GPU. Our test involved a layout with 10 instances,
and we assessed the inference time for each stage over 50 runs to calculate an average time. The
experimental results are shown in Tab. A. The conclusions are as follows:

• 3DIS demonstrates faster inference speeds with SD1.5. Since the scene depth map gen-
erated by 3DIS does not require too high granularity, the speed of generating the scene
depth map is very fast. The average inference time of 3DIS + SD1.5 is 11.07s, even faster
than GLIGEN and Instance Diffusion, which are based on the same SD1.5 base model.

• 3DIS demonstrates acceptable inference speeds with SD2 and SDXL. As we increase
model capacity and image resolution, the inference time for 3DIS also rises. Rendering
times are 17.08 seconds for SD2 and 28.55 seconds for SDXL, which we consider to be
acceptable. Additionally, our experiments show that using 3DIS with SDXL even achieves
faster processing speeds than InstanceDiffusion. As discussed in Section 4.3, the per-
formance of 3DIS + SDXL on COCO-MIG slightly surpasses that of InstanceDiffusion,
demonstrating the practicality and efficiency of our 3DIS framework comprehensively.

B RESULTS OF OVERLAPPING LAYOUTS WITH DEPTH AMBIGUITY

3DIS allows for direct adjustment of the instance font-back according to user specifications
(see Fig. A). Although our layout-to-depth model does not explicitly incorporate instance front-
back ordering during the training process or network design, we found that certain training-free
methods can still achieve control over instance front-back ordering. Specifically, our layout-to-depth
model integrates layout information via a layout adapter (i.e., MIGC). For N instances, this adapter
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depth order: left man = right man > bench depth order: left man > bench > right man

depth order: right man > bench > left man depth order: left man > bench > right man

rendering w/ SDXLgenerated scene depth generated scene depth rendering w/ SDXL

rendering w/ SDXLgenerated scene depth generated scene depth rendering w/ SDXL

man man

bench

layout

Figure A: User-specified Front-Back Instance Ordering in Scene Depth Map Generation (§B).
For layouts with depth ambiguity, 3DIS allows for direct adjustment of the instance ordering accord-
ing to user specifications, generating distinct scene depth maps and rendering them accordingly.

Result1 Result2

Result4Result3

rendering w/ SDXLgenerated scene depth generated scene depth rendering w/ SDXL

rendering w/ SDXLgenerated scene depthgenerated scene depth rendering w/ SDXL

book

book

ball

layout

Figure B: Automatic Front-Back Instance Ordering in Scene Depth Map Generation. (§B). For
the same overlapping layout with depth ambiguity, 3DIS can generate different scene depth maps
with varying seeds, ensuring that the generated scenes adhere to the specified layout. Instances
overlapping in the layout may display varying front-back order across different generated outcomes.

encodes them into N tokens, which are then injected into image features through a newly trainable
Cross-Attention layer. For each specific pixel in the image features, the Cross-Attention layer uses a
softmax function to determine the scale score of each instance token. Notably, we discovered that by
adjusting the scale score (before the softmax function) of a token, we can control the relative depth
ordering of instances (e.g., larger scale scores bring instances to the foreground, while smaller scale
scores push them to the background). By adjusting the scale scores for each instance, we can thus
control the front-back ordering within overlapping regions of the scene.

3DIS is capable of automatically adjusting the depth order of instances without explicit speci-
fications (see Fig. B). As illustrated in Fig. B, the overlap of instances can be categorized into two
types: 1) Complete overlap, as seen in the relationship between the ball and the books. As the ball’s
bounding box is fully enclosed within the books’ bounding boxes, 3DIS typically generates it in the
foreground to prevent it from disappearing. 2) Partial overlap, as in the case of the two books. In
this scenario, depending on the seed, the front-back ordering of the books may vary, resulting in
different depth placements across the generated scenes.

C COMPARISON OF LDM3D AND RICHDREAMER

Upon investigation, we identified RichDreamer (Qiu et al., 2024) and LDM3D (Stan et al., 2023)
as the primary models employed for text-to-depth generation. To compare their performance, we
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ControlNet on SD1.4

Rich Dreamer LDM3D

ControlNet on SD1.4
Figure C: Comparison of LDM3D and RichDreamer.

utilized prompts from the COCO2014 dataset as input for both models, with the corresponding
results illustrated in Fig. C. Our analysis indicates that LDM3D demonstrates a superior ability
to preserve the original SD1.4 priors, resulting in enhanced text comprehension and more precise
control over scene generation. In contrast, RichDreamer exhibits certain shortcomings: (i) it often
misses semantic details or omits entire objects in the depth maps, as seen in cases where essential
elements like the cot and man are entirely absent; (ii) the depth maps produced by RichDreamer
frequently suffer from artifacts such as blotches or thread-like distortions, particularly when used in
conjunction with ControlNet. Therefore, after a thorough comparison, we selected LDM3D as the
base model for text-to-depth generation in our 3DIS system.

D VISUALIZATION ON THE IMPACT OF THE LDM3D FINE-TUNING

Although LDM3D is capable of generating relatively good depth maps, several issues remain: (i)
Since LDM3D was trained using depth maps extracted from the DPT-Large Model (Ranftl et al.,
2021) , the resulting image quality is relatively poor. (ii) As a diffusion model trained by Gaussian
noise, LDM3D exhibits limited ability to recover low-frequency content (Guttenberg, 2023). This is
clearly illustrated in Fig. D, where the generated depth maps struggle to produce large uniform color
blocks. Moreover, the average color value of the depth maps tends to converge towards the initial
noise, whose mean value is close to 0. This constraint places a harmful limitation on text-to-depth
generation.

To address (i), we fine-tuned the model using depth maps extracted from the latest Depth-Anything
V2 model. For (ii), we adopted pyramid noise instead of Gaussian noise, which helps mitigate
the constraints on text-to-depth generation. As shown in Fig. D, the fine-tuned LDM3D model is
capable of generating depth maps with higher contrast and improved overall quality.

E EXAMPLES OF GENERATED ANNOTATION

Text-depth pair in LAION-art (see Fig. E). The text-to-depth pair is essential for training our
text-to-depth model. To obtain high-quality RGB images, we selected images from LAION-art with
an aesthetic score greater than 8.0 and a resolution exceeding 512. Given that the text descrip-
tions in LAION-art are often noisy, we chose to use the BLIP2 (Li et al., 2023a) model to generate
more accurate captions. As shown in Fig. E, BLIP-generated captions can precisely capture the key
information of the image. While the model still has limitations in describing certain fine-grained
attributes—such as the color in the first example of the second row, where the description is inaccu-
rate—this is not crucial for depth map generation, where fine-grained details are less significant. We
use the Depth Anything V2 model to obtain high-quality depth maps corresponding to each image,
which, together with the generated captions, form the text-depth pairs for training.

Layouts in COCO dataset (see Fig. F). The COCO (Lin et al., 2015) dataset contains images along
with corresponding human-annotated natural language descriptions. For example, in the first image
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of the first row of Fig. F, the annotated description is: “A white vase filled with a mix of white
and pink flowers on a porch railing.” To further extract descriptions for each instance, we use the
Stanza (Qi et al., 2020) parser to analyze the noun phrases in the sentence, such as “A white vase,”
“A mix of white and pink flowers,” and “porch railing.” Based on these instance descriptions, we
employ Grounding-DINO (Liu et al., 2023) to detect the bounding boxes of each instance, thereby
obtaining the layout of the entire image and detailed descriptions of the instances.

F USER STUDY

We conducted a user study to evaluate user preferences, selecting three methods for comparison:
3DIS, MIGC (Zhou et al., 2024), and InstanceDiffusion (Wang et al., 2024). For each participant in
the user study, we randomly selected 30 images from the COCO-MIG benchmark and asked them to
rank the images based on their preference. A total of 30 participants were invited, and the aggregated
results are presented in Fig. G. The results indicate that, compared to MIGC and InstanceDiffusion,
3DIS was generally preferred by users. This preference is attributed partly to 3DIS’s superior control
over spatial positioning and also to its ability to leverage stronger foundational models for rendering
in a training-free manner, resulting in higher-quality images.

G ADDITIONAL EXAMPLES OF 3DIS

Additional examples of controlling shape and pose (see Fig. H). Under the same layout, 3DIS
can generate different scene depth maps and control coarse-grained attributes of different instances,
such as shape and pose. As shown in Fig. H(a), we can freely change the shape of the cake and table
within the same layout. Similarly, in Fig. H(b), we can adjust each person’s pose.

Additional examples of complicated layouts (see Fig. I). For highly complex layouts, 3DIS re-
liably ensures accurate generation results. In Fig. I(a), 3DIS successfully creates a counterfac-
tual scene where an ice mountain, volcano, mallard, swallow, and cherry coexist harmoniously. In
Fig. I(b), 3DIS precisely renders each part of an eagle according to the specified input.

Additional examples of COCO-position benchmark. Fig. J presents additional results of scene
depth map generation using our 3DIS system. The results demonstrate that, even with complex
layouts, 3DIS effectively understands and generates cohesive scenes, harmoniously placing all ob-
jects within them. Furthermore, even in cases of significant overlap, such as the five suitcases in
the fifth row, 3DIS handles the arrangement with precision, maintaining clear object separation and
preventing blending.

Additional examples of COCO-MIG benchmark. Fig. L presents additional results of 3DIS on
the COCO-MIG dataset, revealing several key advantages over the previous state-of-the-art model,
MIGC. 1) 3DIS demonstrates superior scene construction capabilities, as seen in the first and second
rows, where it constructs more coherent scenes that appropriately place all specified instances—such

Original                              Finetuned Original                              Finetuned

ControlNet on SD1.4 ControlNet on SD1.4
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Figure D: Comparison of original LDM3D and finetuned LDM3D.
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a small wooden 
building.

a watercolor 
painting of a 

woman holding a 
ball.

LAION image extracted depth generated caption LAION image extracted depth generated caption

a doll dressed in a 
traditional 

costume with a 
red hat and black 

dress.

a painting of a 
girl sitting in a 
window with a 

bird.

two women 
wearing colorful 

costumes 
standing next to a 

wooden box.

a cake with white 
frosting and 

raspberries on top.

Figure E: Examples of the generated annotation in the LAION-art dataset. By utilizing the
Depth Anything V2 model to extract depth maps and employing the BLIP2 model to generate cap-
tions corresponding to images, we can obtain high-quality text-depth pairs. These pairs will be used
to train our text-to-depth model.

Figure F: Examples of the generated layouts in the COCO dataset. We have omitted the adjec-
tives from each instance to better highlight the generated layout.

as rendering an indoor environment when prompted with “refrigerator.” 2) 3DIS exhibits enhanced
detail rendering, as shown in the fourth to sixth rows. By leveraging the more advanced SDXL
model in a training-free manner, 3DIS outperforms MIGC, which primarily relies on SD1.5, pro-
ducing more visually appealing and structurally refined results. 3) 3DIS handles smaller instances
better, as demonstrated in the third row with the “red bird” and “yellow dog.” Its ability to render
at higher resolutions using SDXL leads to clearer and more accurate depictions of these smaller
objects. Finally, 3DIS excels in managing overlapping objects, as illustrated in the seventh row,
where it avoids object merging while generating the scene’s depth map.
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Figure G: User Study. Compared with the previous state-of-the-art methods, 3DIS is more popular.

cake1: circle cake2: rectangle table: circle cake1: rectangle cake2: circle table: rectangle

man: play guitar woman: danceman: dance woman: play guitar

rendering w/ SDXLgenerated scene depth generated scene depth rendering w/ SDXL

rendering w/ SDXLgenerated scene depthgenerated scene depth rendering w/ SDXL

layout

cake1

table

cake2

(a) shape control
layout

man

stage

woman

(b) pose control
Figure H: Additional Generated Examples. With the same layout, 3DIS can modify the shape and
pose of each instance automatically.

H MORE DETAILS OF THE INFERENCE PIPELINE

Scene Depth Maps Generation. Given that the scene depth map primarily focuses on coarse-
grained attributes for scene construction and instance placement, it is unnecessary to generate ex-
tensive detail at this stage. Therefore, unlike previous methods (Zhou et al., 2024; Li et al., 2023b),
which typically employ 50 steps for scene generation, we use only 30 steps, utilizing the UniPCMul-
tistepScheduler (Zhao et al., 2023). Additionally, the Classifier-Free Guidance (Ho, 2022) (CFG)
scale is set to 7.5.

Detail Rendering. In this phase, we utilize the EulerDiscreteScheduler (Karras et al., 2022) for 50
steps to render details meticulously. To reduce high-frequency noise in the generated depth map
and to emphasize low-frequency scene information, we apply an FFT filter to the ControlNet sig-
nals. This filtering is specifically targeted at the mid and lower resolution upper layers. Initially,
we perform a Fast Fourier Transform (FFT) to centralize the zero-frequency component within the
spectrum. Subsequently, we design and implement a frequency mask that attenuates high frequen-
cies beyond the central region extending to H/4 and W/4 from the center, setting a scale of 0.5 to
predominantly preserve the central region, where H and W represent the height and width of the
residual features injected from the ControlNet. An inverse FFT is then conducted to transform the
data back to the spatial domain. The outcome is a refined version of the ControlNet feature, enriched
with primarily low-frequency scene information.
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Layout (a)            Scene Depth Map                 SDXL Layout (b)             Scene Depth Map                 SDXL

Layout (c)            Scene Depth Map                 SDXL Layout (d)             Scene Depth Map                 SDXL

Figure I: Additional Generated Examples. 3DIS also demonstrates robust generation capabilities
for complex layouts.

Layout generated scene scene + anno Layout generated scene scene + anno

Figure J: More results of the generated scene depth map.

I LIMITATION

Although 3DIS leverages various foundation models for rendering fine instance details, its scene
construction continues to rely on the less advanced SD1.5 model. This dependency limits 3DIS’s
capacity to accurately generate complex structures, particularly in tasks that SD1.5 struggles with,
such as text rendering, intricate shapes, or highly detailed spatial configurations. For example,
if we aim to generate a high-quality strawberry cake with the text “ICLR” written on it, 3DIS is
unlikely to generate scene depth maps correctly (e.g., the wrong “L” letter in Fig. K). Addressing this
limitation in future work could involve the development of specialized datasets aimed at enhancing
the model’s proficiency in handling complex structures, such as MARIO-10M (Chen et al., 2023),
thereby improving the overall robustness and versatility of 3DIS in a broader range of applications.

1 2 3 4

5

6

1) Letter "I”. 2) Letter "C”. 3) Letter "L”. 4) Letter "R”. 5) A huge delicious cake. 6) 
Many red strawberries.

Layout Scene Depth Map SDXL

Figure K: Failure case of the 3DIS.
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J EMPHASIZING THE CONTRIBUTION OF 3DIS

Motivation: Previous layout-adapter methods have only released weights for SD1.5, necessitat-
ing retraining for deployment on more powerful models like SD2 and SDXL, which is both time-
consuming and burdensome. Our 3DIS method divides MIG into two parts: scene depth construc-
tion and detail rendering. For scene depth construction, we only train the layout adapter once for
scene depth map generation, focusing primarily on coarse-grained semantics, which is adequately
handled by the SD1.5 model. For detail rendering, 3DIS employs various stronger models and their
widely pre-trained ControlNet in a training-free manner, allowing users to benefit from the enhanced
performance of increasingly powerful models.

Technology: Our 3DIS method restructures Multi-Instance Generation into two phases: construct-
ing a scene depth map and training-free detail rendering. This process differs significantly from
previous approaches and has two notable features: 1) Generating a scene depth map rather than
an RGB image in the first stage allows the layout adapter to focus on coarse-grained attributes, ef-
fectively improving its spatial control capabilities and handling overlapping scenarios with added
depth knowledge. 2) The training-free detail rendering method enables users to utilize various foun-
dational models and their widely available pre-trained ControlNet for rendering details directly.

Experiment Results: Our experiments show that our method surpasses previous approaches in
location control and allows the use of various foundation models for rendering without additional
training costs, resulting in markedly superior outcomes in detail rendering.
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Figure L: More qualitative results on the COCO-MIG.
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