
Supplementary material

Shivani Bathla
Department of Electrical Engineering
Indian Institute of Technology Madras

India, 600036
ee13s064@ee.iitm.ac.in

Vinita Vasudevan
Department of Electrical Engineering
Indian Institute of Technology Madras

India, 600036
vinita@ee.iitm.ac.in

A Results

A.1 Evaluation setup

For loopy belief propagation (LBP) [Murphy et al., 1999], we use the implementation provided
in LibDAI [Mooij, 2010, 2012]. We set the tolerance limit to 10−3 when time limit is 2 min and
10−9 for 20 min. For iterative join graph propagation (IJGP) [Mateescu et al., 2010], we used the
implementation available on the author’s webpage [Gogate, 2010]. The maximum cluster size in
IJGP is set using the parameter ibound. This solver starts with the minimal value of ibound and
increases it until the runtime and memory constraints are satisfied. A solution is obtained for each
ibound. The results reported are those obtained for the largest ibound possible for the given time
and memory constraints. For WMB, we used the implementation made available by the authors in
the Merlin tool [Marinescu, 2016]. Since this implementation uses a fixed ibound value, we wrote a
script to run it in anytime fashion similar to IJGP. We report results obtained with the largest value of
ibound possible. For sample search with IJGP-based proposal and cutset sampling (ISSwc) [Gogate
and Dechter, 2011], we used the implementation provided by the authors on Github [Gogate, 2020].
For ISSwc, appropriate values of ibound and w-cutset bound are set by the tool based on the given
runtime limit.

A.2 Additional results

For a fair comparison with IBIA using mcsp of 20 (referred to as ‘IBIA20’), we also obtained the
results for ISSwc after fixing both ibound and w-cutset bound to 20 (referred to as ‘ISSwc20’).
Table 1 compares the results obtained using IBIA20, ISSwc20 and ISSwc (in which the optimal
ibound is determined by the solver). The runtime limit was set to 2 min and 20 min, and the memory
limit was set to 8 GB. The error obtained using IBIA20 is either smaller than or comparable to
ISSwc20 and ISSwc for both time limits in all testcases except DBN. For DBN, in 2 min, the average
HDmax obtained with IBIA20 is significantly smaller than both variants of sample search, and the
average HDavg obtained with IBIA20 is comparable. However, in 20 min, both variants reduce to
exact inference in many DBN instances and the average error obtained is close to zero.

Table 2 compares the maximum Hellinger distance obtained using IBIA (mcsp=15,20) with published
results for adaptive Rao Blackwellisation (ARB) and iterative join graph propagation in Kelly et al.
[2019]. The minimum error obtained is shown in bold. IBIA with mcsp = 20 gives the least error in
all cases. The error obtained with mcsp = 15 is smaller than ARB and IJGP in all testcases except
Grids_11, Grids_13 and Promedas_12.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Comparison of average HDavg and average HDmax (shown in gray background) ob-
tained using IBIA with mcsp = 20 (IBIA20), ISSwc with clique size bounds determined by the
solver [Gogate, 2020] (ISSwc) and ISSwc with ibound and w-cutset bound fixed to 20 (ISSwc20).
Results are shown for two runtime limits, 2 min and 20 min. Entries are marked with ‘-’ if the solution
for all testcases could not be obtained within the given time and memory limits. The minimum error
obtained for a benchmark is highlighted in bold. The number of instances solved by each solver is
shown in the last row. eva: average number of evidence variables, va: average number of variables,
fa: average number of factors, wa: average induced width and dma: average of the maximum
variable domain size.

Total
(eva, va, fa, wa, dma)

2 min 20 min
#Inst ISSwc ISSwc20 IBIA20 ISSwc ISSwc20 IBIA20

BN 97 (76,637,637,28,10) - 0.037 0 - 0.033 0
- 0.145 0 - 0.085 0

GridBN 29 (0,595,595,37,2) 0.003 0.005 0 0.001 0.005 0
0.051 0.065 0 0.015 0.046 0

Bnlearn 26 (0,256,256,7,16) 0.012 0.036 0 0.006 0.036 0
0.064 0.094 0.002 0.028 0.093 0.002

Pedigree 24 (154,853,853,24,5) 0.033 0.028 0.009 0.021 0.021 0.009
0.292 0.245 0.204 0.234 0.195 0.204

Promedas 64 (7,618,618,21,2) 0.030 0.042 0.013 0.021 0.033 0.013
0.139 0.207 0.086 0.096 0.153 0.086

DBN 36 (653,719,14205,29,2) 0.016 0.011 0.020 0 0 0.020
0.766 0.833 0.261 0 0 0.261

ObjDetect 79 (0,60,210,6,16) 0.018 0.039 0.002 0.009 0.004 0.002
0.189 0.233 0.020 0.061 0.021 0.020

Grids 8 (0,250,728,22,2) - - 0.088 0.056 - 0.088
- - 0.300 0.209 - 0.300

CSP 12 (0,73,369,12,4) - - 0.002 0.054 0.069 0.002
- - 0.011 0.093 0.081 0.011

Segment 50 (0,229,851,17,2) 0 0.002 0 0 0 0
0 0.036 0.001 0 0 0.001

Protein 68 (0,59,176,6,77) 0.003 0.003 0 0.001 0.001 0
0.049 0.030 0.039 0.015 0.011 0.039

#Inst 493 485 488 493 487 489 493

Table 2: Comparison of maximum Hellinger distance (HDmax) obtained using IBIA with published
results for Gibbs sampling with adaptive Rao Blackwellisation (ARB) and iterative join graph
propagation in Kelly et al. [2019]. Results obtained with mcsp = 15 and mcsp = 20 are shown
in columns marked as IBIA15 and IBIA20 respectively. Runtimes (in seconds) for IBIA15 and
IBIA20 are also shown. Estimates for ARB were obtained within 600 seconds+ [Kelly et al., 2019]
and runtime for IJGP is not reported in Kelly et al. [2019]. The minimum error obtained for each
benchmark is marked in bold. w: induced width, dm: maximum domain size

HDmax Runtime (s)
w dm Merlin (IJGP)∗ ARB∗ IBIA15 IBIA20 IBIA15 IBIA20

Alchemy_11 19 2 0.777 0.062 0.004 1E-7 3.3 2.9
CSP_11 16 4 0.513 0.274 0.100 0.034 0.5 3.4
CSP_12 11 4 0.515 0.275 0.028 6E-7 0.1 0.1
CSP_13 19 4 0.503 0.290 0.085 0.051 0.9 2.9
Grids_11 21 2 0.543 0.420 0.590 0.166 1.1 3.5
Grids_12 12 2 0.645 0.432 3E-7 3E-7 0.0 0.0
Grids_13 21 2 0.500 0.544 0.962 0.246 1.1 3.6
Pedigree_11 19 3 0.532 0.576 0.016 5E-7 0.5 0.1
Pedigree_12 19 3 0.562 0.506 0.023 4E-7 0.3 0.1
Pedigree_13 19 3 0.577 0.611 5E-7 5E-7 0.1 0.1
Promedus_11 18 2 1.000 0.373 0.049 5E-7 1.4 0.5
Promedus_12 20 2 1.000 0.358 0.657 0.242 2.8 4.1
Promedus_13 10 2 1.000 0.432 5E-7 5E-7 0.4 0.4
∗ The results tabulated in Kelly et al. [2019] report -log2 HDmax. The table above has the corresponding values of HDmax.

+ System used: Ubuntu 18.04, with 16GB of RAM, 6 CPUs and 2 hardware threads per CPU [Kelly et al., 2019].

2

B Pseudo-code

Algorithm 1 shows the steps in the proposed algorithm for the inference of marginals. We first convert
the PGM into a sequence of linked CTFs (SLCTF) that contains a sequence of calibrated CTFs
(SCTF = {CTFk}) and a list of links between adjacent CTFs (SL = {Lk}). Functions BuildCTF
and ApproximateCTF are used for incremental construction of CTFs and approximation of CTFs
respectively. The steps in these functions are explained in detail in Algorithms 1 and 2 in Bathla and
Vasudevan [2023]. Links between adjacent CTFs are found using the function FindLinks and belief
update in the SLCTF is performed using the function BeliefUpdate. Following this, the marginal
of a variable v is inferred from clique beliefs in the last CTF that contains v (line 23).

C Proofs

Notations

Φk Set of factors added to construct CTFk

Xk Set of all non-evidence variables in CTFk

Xk,a Set of all non-evidence variables in CTFk,a

Yk Set of variables in CTFk but not in CTF1, . . . , CTFk−1

PaYk
Parents of variables in Yk in the BN

Ek Set of evidence variables in Yk

ek Evidence state corresponding to variables in Ek

C A clique in CTFk

C ′ A clique in CTFk,a

SP Sepset associated with an edge in CTFk

SP ′ Sepset associated with an edge in CTFk,a

β(C) Unnormalized clique belief of clique C

βN (C) Normalized clique belief of clique C, βN (C) = β(C)∑
v∈C

β(C)

Zk Normalization constant of the distribution encoded by calibrated beliefs in CTFk

Qk(Xk) Probability distribution corresponding to CTFk

Qk,a(Xk,a) Probability distribution corresponding to CTFk,a

Propositions related to inference of marginals: Let CTFk be a CTF in the SCTF generated by the
IBIA framework and CTFk,a be the corresponding approximate CTF.
Proposition 1. The joint belief of variables contained within any clique in the approximate CTF
CTFk,a is the same as that in CTFk.

Proof. The approximation algorithm has two steps, exact marginalization and local marginalization.
Exact marginalization involves finding the joint belief by collapsing all cliques containing a variable
and then marginalizing the belief by summing over the states of the variable. This does not change
the belief of the remaining variables. Local marginalization involves marginalizing a variable from
individual cliques and sepsets by summing over its states. Let C ′ denote the clique obtained after
local marginalization of variable v from clique C. The updated clique belief (β(C ′)) is computed as
shown below.

β(C ′) =
∑
v

β(C)

Once again, summing over the states of a variable does not alter the joint belief of the remaining
variables in the clique.

3

Algorithm 1 InferMarginals (Φ,mcsp,mcsim)

Input: Φ: Set of factors in the PGM
mcsp: Maximum clique size bound for each CTF in the sequence
mcsim: Maximum clique size bound for the approximate CTF

Output: MAR: Map containing marginals < variable : margProb >
1: Initialize: MAR =<> ▷ Map < variable : margProb >

Sv = ∪ϕ∈ΦScope(ϕ) ▷ Set of all variables in the PGM
SCTF = [] ▷ Sequence of calibrated CTFs
SL = [] ▷ List of list of links between all adjacent CTFs
k = 1 ▷ Index of CTF in SCTF

2: while Φ.isNotEmpty() do ▷ Convert PGM Φ to SLCTF = {SCTF, SL}
3: if k == 1 then
4: CTF0 ← Disjoint cliques corresponding to factors in Φ with disjoint scopes
5: ▷ Add factors to CTF0 using BuildCTF (Algorithm 1 in Bathla and Vasudevan [2023])
6: CTF1,Φ1 ← BuildCTF (CTF0,Φ,mcsp) ▷ Φ1: Subset of factors in Φ added to CTF1

7: Φ← Φ \ Φ1 ▷ Remove factors added to CTF1 from Φ
8: else
9: ▷ Add factors to CTFk−1,a using BuildCTF (Algorithm 1 in Bathla and Vasudevan [2023])

10: CTFk,Φk ← BuildCTF (CTFk−1,a,Φ,mcsp) ▷ Φk: Subset of factors in Φ added to CTFk

11: Φ← Φ \ Φk ▷ Remove factors added to CTFk from Φ
12: Lk−1 ← FindLinks(CTFk−1, CTFk−1,a, CTFk) ▷ Lk−1: List of links between CTFk−1,CTFk

13: SL.append(Lk−1) ▷ Add Lk−1 to the sequence of links SL
14: end if
15: Calibrate CTFk using belief propagation
16: SCTF.append(CTFk) ▷ Add CTFk to the sequence SCTF
17: ▷ Reduce clique sizes to mcsim using ApproximateCTF (Algorithm 2 in Bathla and Vasudevan [2023])
18: CTFk,a ← ApproximateCTF (CTFk,Φ,mcsim)
19: k ← k + 1
20: end while
21: SLCTF = {SCTF, SL} ▷ Sequence of linked CTFs
22: BeliefUpdate(SLCTF) ▷ Re-calibrate CTFs so that beliefs in all CTFs account for all factors
23: MAR[v]← Find marginal of v from CTFj s.t. v ∈ CTFk, v ̸∈ CTFk+1 ∀v ∈ Sv ▷ Infer marginals
24:
25: procedure FINDLINKS(CTFk−1, CTFk−1,a, CTFk)
26: ▷ Each link is a triplet consisting of C ∈ CTFk−1, C′ ∈ CTFk−1,a and C̃ ∈ CTFk

27: for C′ ∈ CTFk−1,a do ▷ Find links corresponding to each clique C′ in CTFk−1,a

28: ▷ Find list of corresponding cliques in CTFk−1, Lc

29: if C′.isCollapsedClique then ▷ C′ is obtained after exact marginalization
30: Lc ← List of cliques in CTFk−1 that were collapsed to form C′

31: else ▷ C′ is either obtained after local marginalization or it is present as is in CTFk

32: C ← Clique in CTFk−1 s.t. C′ ⊆ C; Lc = [C]
33: end if
34: Find clique C̃ in CTFk s.t. C′ ⊆ C̃
35: ▷ Add all links corresponding to C′

36: for C ∈ Lc do Lk−1.append((C,C
′, C̃)) end for

37: end for
38: return Lk−1

39: end procedure
40:
41: procedure BELIEFUPDATE(SLCTF)
42: SCTF, SL = SLCTF
43: for k ∈ len(SCTF) down to 2 do ▷ Update beliefs in {CTFk, k < len(SCTF)}
44: CTFk−1 ← SCTF [k − 1]; CTFk = SCTF [k]; Lk−1 = SL[k − 1]
45: Ls ←Priority queue with subset of links in Lk−1 chosen using heuristics described in Section 3.2
46: for (C,C′, C̃) ∈ Ls do ▷ Back-propagate beliefs from CTFk to CTFk−1 via all selected links
47: β(C) = β(C)∑

C\{C∩C′}
β(C)

∑
C̃\{C∩C′}

β(C̃) ▷ Update β(C) ∈ CTFk−1 based on β(C̃) ∈ CTFk

48: Update belief of all other cliques in CTFk−1 using single pass message passing with C as root
49: end for
50: end for
51: end procedure

4

Proposition 2. The clique beliefs in CTFk account for all factors added to {CTF1, . . . , CTFk}.

Proof. CTF1 is constructed by adding factors to an initial CTF that contains a set of disjoint cliques
corresponding to a subset of factors with disjoint scopes. Let Φ1 be the set of all factors present in
CTF1 and Z1 be the corresponding normalization constant. After calibration, the normalized clique
belief (βN (C)) of any clique C in CTF1 can be computed as follows.

βN (C) =
1

Z1

∑
X1\C

∏
Ci∈CTF1

β(Ci)∏
SP∈CTF1

µ(SP)
=

1

Z1

∑
X1\C

∏
ϕ∈Φ1

ϕ

Therefore, clique beliefs in CTF1 account for all factors in Φ1.

CTF1,a is a calibrated CTF (refer Proposition 6, Bathla and Vasudevan [2023]) that is obtained
after approximate marginalization of the variables in X1 \X1,a. Therefore, the joint distribution of
variables in CTF1,a also accounts for all factors in Φ1. CTF2 is constructed by adding factors in
Φ2 to CTF1,a. Therefore, after calibration, the normalized clique belief (βN (C)) of any clique C in
CTF2 can be computed as follows.

βN (C) =
1

Z2

∑
X2\C

∏
C′∈CTF1,a

β(C ′)∏
SP ′∈CTF1,a

µ(SP ′)

∏
ϕ∈Φ2

ϕ (1)

where, Z2 is the normalization constant of the distribution in CTF2. Using equation 1, the clique
beliefs in CTF2 accounts for all factors in Φ1 and Φ2.

A similar procedure can be repeated for subsequent CTFs to show that the proposition holds true for
all CTFs in the sequence.

Propositions related inference in BNs:

The following propositions hold true for Bayesian networks when each CTF in the SCTF is
constructed by adding factors or conditional probability distributions (CPD) of variables in
the topological order. Yk denotes the set of variables whose CPDs are added during construction of
CTFk and ek denotes the evidence states of all evidence variables in Yk.

Proposition 3. The product of factors added in CTFs, {CTF1, . . . , CTFk} is a valid joint probability
distribution whose normalization constant is the probability of evidence states e1, . . . , ek.

Proof. Let Yk = {Y1, . . . , Yk} and εk = {e1, . . . , ek}. Since CTFs are constructed by adding CPDs
of variables in the topological order, the CPDs of parents PaYk

are present in {CTF1, . . . , CTFk}.
Therefore, the product of the CPDs is the unnormalized joint probability distribution P (Yk, εk).
Since the CPDs of all non-evidence variables are normalized to one, the normalization constant is
P (εk).

Proposition 4. The normalization constant of the distribution encoded by the calibrated beliefs in
CTFk is the estimate of probability of evidence states e1, . . . , ek.

Proof. The initial factors assigned to CTF1 are CPDs of variables in Y1. Therefore, using Proposi-
tion 3, the NC obtained after calibration is Z1 = P (e1).

CTF1,a is obtained after approximation of CTF1. All CTs in CTF1,a are calibrated CTs and the
normalization constant of the distribution in CTF1,a is same as that of CTF1 (refer Propositions 6
and 9 in Bathla and Vasudevan [2023]. However, due to local marginalization, the overall distribution
represented by CTF1,a is approximate. The probability distribution corresponding to CTF1,a can
be written as follows.

Q1,a(X1,a|e1) =
1

Z1

∏
C′∈CTF1,a

β(C ′)∏
SP ′∈CTFk,a

µ(SP ′)

=⇒ Z1Q1,a(X1,a|e1) = Q1,a(X1,a, e1) (2)

where X1,a is the set of variables in CTF1,a.

5

CTF2 is obtained after adding a new set of CPDs of variables in Y2 to CTF1,a. Let X2 = X1,a ∪
{Y2 \E2} denote the set of non-evidence variables in CTF2 and PaY2 denote the parents of variables
in Y2. The NC of the distribution encoded by CTF2 (Z2) can be computed as follows.

Z2 =
∑
X2

∏
C′∈CTF1,a

β(C ′)∏
SP ′∈CTF1,a

µ(SP ′)

∏
y∈Y2

P (y|Pay)

=
∑
X2

Q1,a(X1,a, e1)P (Y2, e2 | PaY2
) (using Equation 2) (3)

where e2 are evidence states in Y2. Since X2 = X1,a ∪ {Y2 \ E2} and parent variables in PaY2
are

present either in X1,a or Y2, the above equation can be re-written as follows.

Z2 =
∑
X2

Q2(X2, e1, e2) = Q(e1, e2)

Therefore, the NC of CTF2 is an estimate of probability of evidence states e1 and e2.

A similar procedure can be repeated for subsequent CTFs to show that the property holds true for all
CTFs in the sequence.

Theorem 1. Let IE denote the index of the last CTF in the sequence where the factor corresponding
to an evidence variable is added. The posterior marginals of variables present in CTFs {CTFk, k ≥
IE} are preserved and can be computed from any of these CTFs.

Proof. Let εIE = {e1, . . . , eIE} be the set of all evidence states. Let v be a variable present in
cliques Cv ∈ CTFIE , C ′

v ∈ CTFIE ,a and C̃v ∈ CTFIE+1 and let βN (Cv), βN (C ′
v) and βN (C̃v)

be the corresponding normalized clique beliefs. From Proposition 1, the unnormalized belief of
variable v in Cv is same as that in C ′

v. Therefore, the normalized posterior marginal of v obtained
from Cv (denoted as QIE (v|εIE))) is the same as that obtained from C ′

v , as given below.

QIE (v|εIE) =
∑
Cv\v

βN (Cv) =
∑
C′

v\v

βN (C ′
v) (4)

Since CTFIE ,a is calibrated (Proposition 6 in Bathla and Vasudevan [2023]) and CTFIE+1 is
obtained by adding CPDs of variables in YIE+1 to CTFIE ,a, the NC of CTFIE+1 can be computed
by summing over all non-evidence variables as follows.

ZIE+1 =
∑

XIE,a

∏
C′∈CTFIE,a

β(C ′)∏
SP ′∈CTFIE,a

µ(SP ′)

∑
YIE+1\EIE+1

P (YIE+1, eIE+1|PaYIE+1
)

=
∑

XIE,a

∏
C′∈CTFIE,a

β(C ′)∏
SP ′∈CTFIE,a

µ(SP ′)
(∵ EIE+1 = ∅,

∑
YIE+1

P (YIE+1 | PaYIE+1
) = 1)

= ZIE (using Proposition 9 in Bathla and Vasudevan [2023])

Therefore, the posterior marginal of v in CTFIE+1 (denoted as QIE+1(v|εIE)) can be computed
from the clique belief of C̃v as follows.

QIE+1(v|εIE) =
∑
C̃v\v

βN (C̃v)

=
∑

XIE,a\v

1

ZIE

∏
C′∈CTFIE,a

β(C ′)∏
SP ′∈CTFIE,a

µ(SP ′)

∑
YIE+1\EIE+1

P (YIE+1, eIE+1 | PaYIE+1
)

=
∑
C′

v\v

βN (C ′
v) (∵ C ′

v ∈ CTFIE ,a and EIE+1 = ∅)

= QIE (v|εIE) (using Equation 4)

The above procedure can be repeated to show that the posterior marginal of v is also consistent in all
subsequent CTFs that contain v.

6

References

Shivani Bathla and Vinita Vasudevan. IBIA: An incremental build-infer-approximate framework for
approximate inference of partition function. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856.

Vibhav Gogate. Iterative join graph propagation. https://personal.utdallas.edu/~vibhav.
gogate/ijgp.html, 2010. Accessed: 2023-04-15.

Vibhav Gogate. IJGP-sampling and samplesearch (PR and MAR tasks). https://github.com/
dechterlab/ijgp-samplesearch, 2020. Accessed: 2023-01-15.

Vibhav Gogate and Rina Dechter. Samplesearch: Importance sampling in presence of determinism.
Artificial Intelligence, 175(2):694–729, 2011.

Craig Kelly, Somdeb Sarkhel, and Deepak Venugopal. Adaptive Rao-Blackwellisation in Gibbs
sampling for probabilistic graphical models. In Artificial Intelligence and Statistics, pages 2907–
2915. PMLR, 2019.

Radu Marinescu. Merlin. https://github.com/radum2275/merlin/, 2016. Accessed: 2021-
10-15.

Robert Mateescu, Kalev Kask, Vibhav Gogate, and Rina Dechter. Join-graph propagation algorithms.
Journal of Artificial Intelligence Research, 37:279–328, 2010.

Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

Joris M. Mooij. libDAI - A free/open source C++ library for discrete approximate inference.
https://github.com/dbtsai/libDAI/, 2012. Accessed: 2021-10-15.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. In Uncertainty in Artificial Intelligence, pages 467–475, 1999.

7

https://personal.utdallas.edu/~vibhav.gogate/ijgp.html
https://personal.utdallas.edu/~vibhav.gogate/ijgp.html
https://github.com/dechterlab/ijgp-samplesearch
https://github.com/dechterlab/ijgp-samplesearch
https://github.com/radum2275/merlin/
https://github.com/dbtsai/libDAI/

	Results
	Evaluation setup
	Additional results

	Pseudo-code
	Proofs

