Supplementary material

Shivani Bathla Department of Electrical Engineering Indian Institute of Technology Madras India, 600036 ee13s064@ee.iitm.ac.in Vinita Vasudevan Department of Electrical Engineering Indian Institute of Technology Madras India, 600036 vinita@ee.iitm.ac.in

A Results

A.1 Evaluation setup

For loopy belief propagation (LBP) [Murphy et al., 1999], we use the implementation provided in LibDAI [Mooij, 2010, 2012]. We set the tolerance limit to 10^{-3} when time limit is 2 min and 10^{-9} for 20 min. For iterative join graph propagation (IJGP) [Mateescu et al., 2010], we used the implementation available on the author's webpage [Gogate, 2010]. The maximum cluster size in IJGP is set using the parameter *ibound*. This solver starts with the minimal value of *ibound* and increases it until the runtime and memory constraints are satisfied. A solution is obtained for each *ibound*. The results reported are those obtained for the largest *ibound* possible for the given time and memory constraints. For WMB, we used the implementation made available by the authors in the Merlin tool [Marinescu, 2016]. Since this implementation uses a fixed *ibound* value, we wrote a script to run it in anytime fashion similar to IJGP. We report results obtained with the largest value of *ibound* possible. For sample search with IJGP-based proposal and cutset sampling (ISSwc) [Gogate and Dechter, 2011], we used the implementation provided by the authors on Github [Gogate, 2020]. For ISSwc, appropriate values of *ibound* and *w*-cutset bound are set by the tool based on the given runtime limit.

A.2 Additional results

For a fair comparison with IBIA using mcs_p of 20 (referred to as 'IBIA20'), we also obtained the results for ISSwc after fixing both *ibound* and *w-cutset* bound to 20 (referred to as 'ISSwc20'). Table 1 compares the results obtained using IBIA20, ISSwc20 and ISSwc (in which the optimal *ibound* is determined by the solver). The runtime limit was set to 2 min and 20 min, and the memory limit was set to 8 GB. The error obtained using IBIA20 is either smaller than or comparable to ISSwc20 and ISSwc for both time limits in all testcases except DBN. For DBN, in 2 min, the average HD_{max} obtained with IBIA20 is significantly smaller than both variants of sample search, and the average HD_{avg} obtained with IBIA20 is comparable. However, in 20 min, both variants reduce to exact inference in many DBN instances and the average error obtained is close to zero.

Table 2 compares the maximum Hellinger distance obtained using IBIA ($mcs_p=15,20$) with published results for adaptive Rao Blackwellisation (ARB) and iterative join graph propagation in Kelly et al. [2019]. The minimum error obtained is shown in bold. IBIA with $mcs_p = 20$ gives the least error in all cases. The error obtained with $mcs_p = 15$ is smaller than ARB and IJGP in all testcases except Grids_11, Grids_13 and Promedas_12.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Comparison of average HD_{avg} and average HD_{max} (shown in gray background) obtained using IBIA with $mcs_p = 20$ (IBIA20), ISSwc with clique size bounds determined by the solver [Gogate, 2020] (ISSwc) and ISSwc with *ibound* and *w*-*cutset* bound fixed to 20 (ISSwc20). Results are shown for two runtime limits, 2 min and 20 min. Entries are marked with '-' if the solution for all testcases could not be obtained within the given time and memory limits. The minimum error obtained for a benchmark is highlighted in bold. The number of instances solved by each solver is shown in the last row. ev_a : average number of evidence variables, v_a : average number of variables, f_a : average number of factors, w_a : average induced width and dm_a : average of the maximum variable domain size.

	Total	(au, u, f, u, dm)	2 min			20 min		
	#Inst	$(ev_a, v_a, f_a, w_a, dm_a)$	ISSwc	ISSwc20	IBIA20	ISSwc	ISSwc20	IBIA20
BN	97	(76,637,637,28,10)	-	0.037	0	-	0.033	0
			-	0.145	0	-	0.085	0
GridBN	29	(0,595,595,37,2)	0.003	0.005	0	0.001	0.005	0
			0.051	0.065	0	0.015	0.046	0
Bnlearn	26	(0,256,256,7,16)	0.012	0.036	0	0.006	0.036	0
			0.064	0.094	0.002	0.028	0.093	0.002
Pedigree	24	(154,853,853,24,5)	0.033	0.028	0.009	0.021	0.021	0.009
			0.292	0.245	0.204	0.234	0.195	0.204
Promedas	64	(7,618,618,21,2)	0.030	0.042	0.013	0.021	0.033	0.013
			0.139	0.207	0.086	0.096	0.153	0.086
DBN	36	(653,719,14205,29,2)	0.016	0.011	0.020	0	0	0.020
			0.766	0.833	0.261	0	0	0.261
ObjDetect	79	(0,60,210,6,16)	0.018	0.039	0.002	0.009	0.004	0.002
			0.189	0.233	0.020	0.061	0.021	0.020
Grids	8	(0,250,728,22,2)	-	-	0.088	0.056	-	0.088
			-	-	0.300	0.209	-	0.300
CSP	12	(0,73,369,12,4)	-	-	0.002	0.054	0.069	0.002
			-	-	0.011	0.093	0.081	0.011
Segment	50	(0,229,851,17,2)	0	0.002	0	0	0	0
			0	0.036	0.001	0	0	0.001
Protein	68	(0,59,176,6,77)	0.003	0.003	0	0.001	0.001	0
			0.049	0.030	0.039	0.015	0.011	0.039
#Inst	493		485	488	493	487	489	493

Table 2: Comparison of maximum Hellinger distance (HD_{max}) obtained using IBIA with published results for Gibbs sampling with adaptive Rao Blackwellisation (ARB) and iterative join graph propagation in Kelly et al. [2019]. Results obtained with $mcs_p = 15$ and $mcs_p = 20$ are shown in columns marked as IBIA15 and IBIA20 respectively. Runtimes (in seconds) for IBIA15 and IBIA20 are also shown. Estimates for ARB were obtained within 600 seconds⁺ [Kelly et al., 2019] and runtime for IJGP is not reported in Kelly et al. [2019]. The minimum error obtained for each benchmark is marked in bold. w: induced width, dm: maximum domain size

			HD_{max}				Runtime (s)	
	w	dm	Merlin (IJGP)*	ARB*	IBIA15	IBIA20	IBIA15	IBIA20
Alchemy_11	19	2	0.777	0.062	0.004	1E-7	3.3	2.9
CSP_11	16	4	0.513	0.274	0.100	0.034	0.5	3.4
CSP_12	11	4	0.515	0.275	0.028	6E-7	0.1	0.1
CSP_13	19	4	0.503	0.290	0.085	0.051	0.9	2.9
Grids_11	21	2	0.543	0.420	0.590	0.166	1.1	3.5
Grids_12	12	2	0.645	0.432	3E-7	3E-7	0.0	0.0
Grids_13	21	2	0.500	0.544	0.962	0.246	1.1	3.6
Pedigree_11	19	3	0.532	0.576	0.016	5E-7	0.5	0.1
Pedigree_12	19	3	0.562	0.506	0.023	4E-7	0.3	0.1
Pedigree_13	19	3	0.577	0.611	5E-7	5E-7	0.1	0.1
Promedus_11	18	2	1.000	0.373	0.049	5E-7	1.4	0.5
Promedus_12	20	2	1.000	0.358	0.657	0.242	2.8	4.1
Promedus_13	10	2	1.000	0.432	5E-7	5E-7	0.4	0.4

* The results tabulated in Kelly et al. [2019] report $-\log_2 HD_{max}$. The table above has the corresponding values of HD_{max} . + System used: Ubuntu 18.04, with 16GB of RAM, 6 CPUs and 2 hardware threads per CPU [Kelly et al., 2019].

B Pseudo-code

Algorithm 1 shows the steps in the proposed algorithm for the inference of marginals. We first convert the PGM into a sequence of linked CTFs (SLCTF) that contains a sequence of calibrated CTFs ($SCTF = \{CTF_k\}$) and a list of links between adjacent CTFs ($SL = \{L_k\}$). Functions BuildCTFand ApproximateCTF are used for incremental construction of CTFs and approximation of CTFs respectively. The steps in these functions are explained in detail in Algorithms 1 and 2 in Bathla and Vasudevan [2023]. Links between adjacent CTFs are found using the function FindLinks and belief update in the SLCTF is performed using the function BeliefUpdate. Following this, the marginal of a variable v is inferred from clique beliefs in the last CTF that contains v (line 23).

C Proofs

Notations

Φ_k	Set of factors added to construct CTF_k
X_k	Set of all non-evidence variables in CTF_k
$X_{k,a}$	Set of all non-evidence variables in $CTF_{k,a}$
Y_k	Set of variables in CTF_k but not in CTF_1, \ldots, CTF_{k-1}
Pa_{Y_k}	Parents of variables in Y_k in the BN
E_k	Set of evidence variables in Y_k
e_k	Evidence state corresponding to variables in E_k
C	A clique in CTF_k
C'	A clique in $CTF_{k,a}$
SP	Sepset associated with an edge in CTF_k
SP'	Sepset associated with an edge in $CTF_{k,a}$
$\beta(C)$	Unnormalized clique belief of clique C
$\beta_N(C)$	Normalized clique belief of clique $C,$ $\beta_N(C) = \frac{\beta(C)}{\sum\limits_{v \in C} \beta(C)}$

 Z_k Normalization constant of the distribution encoded by calibrated beliefs in CTF_k

 $Q_k(X_k)$ Probability distribution corresponding to CTF_k

 $Q_{k,a}(X_{k,a})$ Probability distribution corresponding to $CTF_{k,a}$

Propositions related to inference of marginals: Let CTF_k be a CTF in the SCTF generated by the IBIA framework and $CTF_{k,a}$ be the corresponding approximate CTF.

Proposition 1. *The joint belief of variables contained within any clique in the approximate CTF* $CTF_{k,a}$ *is the same as that in* CTF_k .

Proof. The approximation algorithm has two steps, exact marginalization and local marginalization. Exact marginalization involves finding the joint belief by collapsing all cliques containing a variable and then marginalizing the belief by summing over the states of the variable. This does not change the belief of the remaining variables. Local marginalization involves marginalizing a variable from individual cliques and sepsets by summing over its states. Let C' denote the clique obtained after local marginalization of variable v from clique C. The updated clique belief ($\beta(C')$) is computed as shown below.

$$\beta(C') = \sum_{v} \beta(C)$$

Once again, summing over the states of a variable does not alter the joint belief of the remaining variables in the clique.

Algorithm 1 InferMarginals (Φ, mcs_p, mcs_{im})

Input: Φ : Set of factors in the PGM mcs_p : Maximum clique size bound for each CTF in the sequence mcs_{im} : Maximum clique size bound for the approximate CTF **Output:** MAR: Map containing marginals < variable : margProb >1: Initialize: MAR = <> \triangleright Map < variable : margProb > $S_v = \cup_{\phi \in \Phi} Scope(\phi)$ ▷ Set of all variables in the PGM SCTF = []▷ Sequence of calibrated CTFs SL = []▷ List of list of links between all adjacent CTFs k = 1 \triangleright Index of CTF in *SCTF* 2: while Φ .isNotEmpty() do \triangleright Convert PGM Φ to $SLCTF = \{SCTF, SL\}$ 3: if k == 1 then 4: $CTF_0 \leftarrow$ Disjoint cliques corresponding to factors in Φ with disjoint scopes 5: \triangleright Add factors to CTF_0 using BuildCTF (Algorithm 1 in Bathla and Vasudevan [2023]) 6: $CTF_1, \Phi_1 \leftarrow \text{BuildCTF}(CTF_0, \Phi, mcs_p)$ $\triangleright \Phi_1$: Subset of factors in Φ added to CTF_1 7: $\Phi \leftarrow \Phi \setminus \Phi_1$ \triangleright Remove factors added to CTF_1 from Φ 8: else 9: \triangleright Add factors to $CTF_{k-1,a}$ using BuildCTF (Algorithm 1 in Bathla and Vasudevan [2023]) $CTF_k, \Phi_k \leftarrow \text{BuildCTF}(CTF_{k-1,a}, \Phi, mcs_p)$ $\triangleright \Phi_k$: Subset of factors in Φ added to CTF_k 10: 11: $\Phi \leftarrow \Phi \setminus \Phi_k$ \triangleright Remove factors added to CTF_k from Φ $L_{k-1} \leftarrow \text{FindLinks}(CTF_{k-1}, CTF_{k-1,a}, CTF_k) \triangleright L_{k-1}$: List of links between CTF_{k-1}, CTF_k 12: \triangleright Add L_{k-1} to the sequence of links SL13: $SL.append(L_{k-1})$ 14: end if Calibrate CTF_k using belief propagation 15: 16: $SCTF.append(CTF_k)$ \triangleright Add CTF_k to the sequence SCTF▶ Reduce clique sizes to mcs_{im} using ApproximateCTF (Algorithm 2 in Bathla and Vasudevan [2023]) 17: 18: $CTF_{k,a} \leftarrow \text{ApproximateCTF}(CTF_k, \Phi, mcs_{im})$ 19: $k \leftarrow k+1$ 20: end while 21: $SLCTF = \{SCTF, SL\}$ ▷ Sequence of linked CTFs 22: BeliefUpdate(*SLCTF*) ▷ Re-calibrate CTFs so that beliefs in all CTFs account for all factors 23: $MAR[v] \leftarrow$ Find marginal of v from CTF_j s.t. $v \in CTF_k, v \notin CTF_{k+1} \quad \forall v \in S_v \triangleright$ Infer marginals 24: 25: procedure FINDLINKS($CTF_{k-1}, CTF_{k-1,a}, CTF_k$) ▷ Each link is a triplet consisting of $C \in CTF_{k-1}, C' \in CTF_{k-1,a}$ and $\tilde{C} \in CTF_k$ 26: \triangleright Find links corresponding to each clique C' in $CTF_{k-1,a}$ 27: for $C' \in CTF_{k-1,a}$ do 28: \triangleright Find list of corresponding cliques in CTF_{k-1} , L_c 29: if C'.isCollapsedClique then $\triangleright C'$ is obtained after exact marginalization 30: $L_c \leftarrow$ List of cliques in CTF_{k-1} that were collapsed to form C' $\triangleright C'$ is either obtained after local marginalization or it is present as is in CTF_k 31: else $C \leftarrow \text{Clique in } CTF_{k-1} \text{ s.t. } C' \subseteq C; L_c = [C]$ 32: 33: end if Find clique \tilde{C} in CTF_k s.t. $C' \subseteq \tilde{C}$ 34: 35: \triangleright Add all links corresponding to C for $C \in L_c$ do L_{k-1} .append $((C, C', \tilde{C}))$ end for 36: 37: end for return L_{k-1} 38: 39: end procedure 40: 41: procedure BELIEFUPDATE(SLCTF)42: SCTF, SL = SLCTF43: for $k \in len(SCTF)$ down to 2 do \triangleright Update beliefs in { $CTF_k, k < len(SCTF)$ } $CTF_{k-1} \leftarrow SCTF[k-1]; CTF_k = SCTF[k]; L_{k-1} = SL[k-1]$ 44: 45: $L_s \leftarrow$ Priority queue with subset of links in L_{k-1} chosen using heuristics described in Section 3.2 46: for $(C, C', \tilde{C}) \in L_s$ do \triangleright Back-propagate beliefs from CTF_k to CTF_{k-1} via all selected links $\beta(C) = \frac{\beta(C)}{\sum_{C \setminus \{C \cap C'\}} \beta(C)} \sum_{\tilde{C} \setminus \{C \cap C'\}} \beta(\tilde{C}) \triangleright \text{Update } \beta(C) \in CTF_{k-1} \text{ based on } \beta(\tilde{C}) \in CTF_k$ 47: 48: Update belief of all other cliques in CTF_{k-1} using single pass message passing with C as root 49: end for 50: end for 51: end procedure

Proposition 2. The clique beliefs in CTF_k account for all factors added to $\{CTF_1, \ldots, CTF_k\}$.

Proof. CTF_1 is constructed by adding factors to an initial CTF that contains a set of disjoint cliques corresponding to a subset of factors with disjoint scopes. Let Φ_1 be the set of all factors present in CTF_1 and Z_1 be the corresponding normalization constant. After calibration, the normalized clique belief $(\beta_N(C))$ of any clique C in CTF_1 can be computed as follows.

$$\beta_N(C) = \frac{1}{Z_1} \sum_{X_1 \setminus C} \frac{\prod_{C_i \in CTF_1} \beta(C_i)}{\prod_{SP \in CTF_1} \mu(SP)} = \frac{1}{Z_1} \sum_{X_1 \setminus C} \prod_{\phi \in \Phi_1} \phi$$

Therefore, clique beliefs in CTF_1 account for all factors in Φ_1 .

 $CTF_{1,a}$ is a calibrated CTF (refer Proposition 6, Bathla and Vasudevan [2023]) that is obtained after approximate marginalization of the variables in $X_1 \setminus X_{1,a}$. Therefore, the joint distribution of variables in $CTF_{1,a}$ also accounts for all factors in Φ_1 . CTF_2 is constructed by adding factors in Φ_2 to $CTF_{1,a}$. Therefore, after calibration, the normalized clique belief ($\beta_N(C)$) of any clique C in CTF_2 can be computed as follows.

$$\beta_N(C) = \frac{1}{Z_2} \sum_{X_2 \setminus C} \frac{\prod_{C' \in CTF_{1,a}} \beta(C')}{\prod_{SP' \in CTF_{1,a}} \mu(SP')} \prod_{\phi \in \Phi_2} \phi \tag{1}$$

where, Z_2 is the normalization constant of the distribution in CTF_2 . Using equation 1, the clique beliefs in CTF_2 accounts for all factors in Φ_1 and Φ_2 .

A similar procedure can be repeated for subsequent CTFs to show that the proposition holds true for all CTFs in the sequence. $\hfill \Box$

Propositions related inference in BNs:

The following propositions hold true for Bayesian networks when each CTF in the SCTF is constructed by adding factors or conditional probability distributions (CPD) of variables in the topological order. Y_k denotes the set of variables whose CPDs are added during construction of CTF_k and e_k denotes the evidence states of all evidence variables in Y_k .

Proposition 3. The product of factors added in CTFs, $\{CTF_1, \ldots, CTF_k\}$ is a valid joint probability distribution whose normalization constant is the probability of evidence states e_1, \ldots, e_k .

Proof. Let $\mathcal{Y}_k = \{Y_1, \ldots, Y_k\}$ and $\varepsilon_k = \{e_1, \ldots, e_k\}$. Since CTFs are constructed by adding CPDs of variables in the topological order, the CPDs of parents Pa_{Y_k} are present in $\{CTF_1, \ldots, CTF_k\}$. Therefore, the product of the CPDs is the unnormalized joint probability distribution $P(\mathcal{Y}_k, \varepsilon_k)$. Since the CPDs of all non-evidence variables are normalized to one, the normalization constant is $P(\varepsilon_k)$.

Proposition 4. The normalization constant of the distribution encoded by the calibrated beliefs in CTF_k is the estimate of probability of evidence states e_1, \ldots, e_k .

Proof. The initial factors assigned to CTF_1 are CPDs of variables in Y_1 . Therefore, using Proposition 3, the NC obtained after calibration is $Z_1 = P(e_1)$.

 $CTF_{1,a}$ is obtained after approximation of CTF_1 . All CTs in $CTF_{1,a}$ are calibrated CTs and the normalization constant of the distribution in $CTF_{1,a}$ is same as that of CTF_1 (refer Propositions 6 and 9 in Bathla and Vasudevan [2023]. However, due to local marginalization, the overall distribution represented by $CTF_{1,a}$ is approximate. The probability distribution corresponding to $CTF_{1,a}$ can be written as follows.

$$Q_{1,a}(X_{1,a}|e_1) = \frac{1}{Z_1} \frac{\prod_{C' \in CTF_{1,a}} \beta(C')}{\prod_{SP' \in CTF_{k,a}} \mu(SP')}$$

$$\implies Z_1 Q_{1,a}(X_{1,a}|e_1) = Q_{1,a}(X_{1,a},e_1)$$
(2)

where $X_{1,a}$ is the set of variables in $CTF_{1,a}$.

 CTF_2 is obtained after adding a new set of CPDs of variables in Y_2 to $CTF_{1,a}$. Let $X_2 = X_{1,a} \cup \{Y_2 \setminus E_2\}$ denote the set of non-evidence variables in CTF_2 and Pa_{Y_2} denote the parents of variables in Y_2 . The NC of the distribution encoded by $CTF_2(Z_2)$ can be computed as follows.

$$Z_{2} = \sum_{X_{2}} \frac{\prod_{C' \in CTF_{1,a}} \beta(C')}{\prod_{SP' \in CTF_{1,a}} \mu(SP')} \prod_{y \in Y_{2}} P(y|Pa_{y})$$

= $\sum_{X_{2}} Q_{1,a}(X_{1,a}, e_{1}) P(Y_{2}, e_{2} | Pa_{Y_{2}})$ (using Equation 2) (3)

where e_2 are evidence states in Y_2 . Since $X_2 = X_{1,a} \cup \{Y_2 \setminus E_2\}$ and parent variables in Pa_{Y_2} are present either in $X_{1,a}$ or Y_2 , the above equation can be re-written as follows.

$$Z_2 = \sum_{X_2} Q_2(X_2, e_1, e_2) = Q(e_1, e_2)$$

Therefore, the NC of CTF_2 is an estimate of probability of evidence states e_1 and e_2 .

A similar procedure can be repeated for subsequent CTFs to show that the property holds true for all CTFs in the sequence. \Box

Theorem 1. Let I_E denote the index of the last CTF in the sequence where the factor corresponding to an evidence variable is added. The posterior marginals of variables present in CTFs $\{CTF_k, k \ge I_E\}$ are preserved and can be computed from any of these CTFs.

Proof. Let $\varepsilon_{I_E} = \{e_1, \ldots, e_{I_E}\}$ be the set of all evidence states. Let v be a variable present in cliques $C_v \in CTF_{I_E}, C'_v \in CTF_{I_E,a}$ and $\tilde{C}_v \in CTF_{I_E+1}$ and let $\beta_N(C_v), \beta_N(C'_v)$ and $\beta_N(\tilde{C}_v)$ be the corresponding normalized clique beliefs. From Proposition 1, the unnormalized belief of variable v in C_v is same as that in C'_v . Therefore, the normalized posterior marginal of v obtained from C_v (denoted as $Q_{I_E}(v|\varepsilon_{I_E})$)) is the same as that obtained from C'_v , as given below.

$$Q_{I_E}(v|\varepsilon_{I_E}) = \sum_{C_v \setminus v} \beta_N(C_v) = \sum_{C'_v \setminus v} \beta_N(C'_v)$$
(4)

Since $CTF_{I_E,a}$ is calibrated (Proposition 6 in Bathla and Vasudevan [2023]) and CTF_{I_E+1} is obtained by adding CPDs of variables in Y_{I_E+1} to $CTF_{I_E,a}$, the NC of CTF_{I_E+1} can be computed by summing over all non-evidence variables as follows.

-

$$\begin{split} Z_{I_{E}+1} &= \sum_{X_{I_{E},a}} \frac{\prod_{C' \in CTF_{I_{E},a}} \beta(C')}{\prod_{SP' \in CTF_{I_{E},a}} \mu(SP')} \sum_{Y_{I_{E}+1} \setminus E_{I_{E}+1}} P(Y_{I_{E}+1}, e_{I_{E}+1} | Pa_{Y_{I_{E}+1}}) \\ &= \sum_{X_{I_{E},a}} \frac{\prod_{C' \in CTF_{I_{E},a}} \beta(C')}{\prod_{SP' \in CTF_{I_{E},a}} \mu(SP')} \quad (\because E_{I_{E}+1} = \emptyset, \sum_{Y_{I_{E}+1}} P(Y_{I_{E}+1} | Pa_{Y_{I_{E}+1}}) = 1) \\ &= Z_{I_{E}} \quad (\text{using Proposition 9 in Bathla and Vasudevan [2023])} \end{split}$$

Therefore, the posterior marginal of v in CTF_{I_E+1} (denoted as $Q_{I_E+1}(v|\varepsilon_{I_E})$) can be computed from the clique belief of \tilde{C}_v as follows.

$$\begin{split} Q_{I_E+1}(v|\varepsilon_{I_E}) &= \sum_{\tilde{C}_v \setminus v} \beta_N(\tilde{C}_v) \\ &= \sum_{X_{I_E,a} \setminus v} \frac{1}{Z_{I_E}} \frac{\prod_{C' \in CTF_{I_E,a}} \beta(C')}{\prod_{SP' \in CTF_{I_E,a}} \mu(SP')} \sum_{Y_{I_E+1} \setminus E_{I_E+1}} P(Y_{I_E+1}, e_{I_E+1} \mid Pa_{Y_{I_E+1}}) \\ &= \sum_{C'_v \setminus v} \beta_N(C'_v) \quad (\because C'_v \in CTF_{I_E,a} \text{ and } E_{I_E+1} = \varnothing) \\ &= Q_{I_E}(v|\varepsilon_{I_E}) \qquad \text{(using Equation 4)} \end{split}$$

The above procedure can be repeated to show that the posterior marginal of v is also consistent in all subsequent CTFs that contain v.

References

- Shivani Bathla and Vinita Vasudevan. IBIA: An incremental build-infer-approximate framework for approximate inference of partition function. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.
- Vibhav Gogate. Iterative join graph propagation. https://personal.utdallas.edu/~vibhav. gogate/ijgp.html, 2010. Accessed: 2023-04-15.
- Vibhav Gogate. IJGP-sampling and samplesearch (PR and MAR tasks). https://github.com/ dechterlab/ijgp-samplesearch, 2020. Accessed: 2023-01-15.
- Vibhav Gogate and Rina Dechter. Samplesearch: Importance sampling in presence of determinism. *Artificial Intelligence*, 175(2):694–729, 2011.
- Craig Kelly, Somdeb Sarkhel, and Deepak Venugopal. Adaptive Rao-Blackwellisation in Gibbs sampling for probabilistic graphical models. In *Artificial Intelligence and Statistics*, pages 2907–2915. PMLR, 2019.
- Radu Marinescu. Merlin. https://github.com/radum2275/merlin/, 2016. Accessed: 2021-10-15.
- Robert Mateescu, Kalev Kask, Vibhav Gogate, and Rina Dechter. Join-graph propagation algorithms. Journal of Artificial Intelligence Research, 37:279–328, 2010.
- Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in graphical models. *Journal of Machine Learning Research*, 11:2169–2173, August 2010.
- Joris M. Mooij. libDAI A free/open source C++ library for discrete approximate inference. https://github.com/dbtsai/libDAI/, 2012. Accessed: 2021-10-15.
- Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In *Uncertainty in Artificial Intelligence*, pages 467–475, 1999.