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1 DIFFERENTIATION OF COUPLED GRU

∂E
∂ht

is known, we call dx derivatives of the form ∂E
∂x with the pair of inputs concatenated (named

hereafter left and right inputs). It is sometimes necessary to use separately the left and right sides of
the derivative, in which case respectively indicated by← and→ over the indices. Finally, [x, y, ...]
designates a concatenation along the suitable axe. Post-synaptic potentials (before activation function)
are represented by the letter a with indices i for input and h for hidden and the associated gate letter.
We seek to compute :

• dxt

• dht−1

• dWi where Wi = [Wiz,Wir,Win]

• dWh where Wh = [Whz,Whr,Whn,Whc],

• dbi where bi = [biz, bir, bin]

• dbh where bh = [bhz, bhr, bhn, bhc]
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dht−1,o = dht ◦ zt (1)

dzt = dht ◦ (ht−1 − h̄t) (2)
dh̄t = dht ◦ (1− zt) (3)

dct = dh̄←−
t
◦ (h̃−→

t
− h̃←−

t
) + dh̄−→

t
◦ (h̃←−

t
− h̃−→

t
) (4)

dh̃t = dh̄t + [ct, ct] ◦ ([dh̄−→
t
, dh̄←−

t
]− dh̄t) (5)

daz = dzt ◦ ((1− σ(az)) ◦ σ(az)) (6)

dan = dh̃t ◦ (1− tanh(an,i + rt ◦ an,h)2) (7)
dan,h = dan ◦ rt (8)
drt = dan ◦ an,h (9)
dar = drt ◦ ((1− σ(ar)) ◦ σ(ar)) (10)
dac = dct ◦ ((1− σ(a←−c + a−→c )) ◦ σ(a←−c + a−→c )) (11)
da←−

i
= [da←−z , da←−r , da←−n ] (12)

da−→
i

= [da−→z , da−→r , da−→n ] (13)

da←−
h

= [da←−z , da←−r , da←−n,h, dac] (14)

da−→
h

= [da−→z , da−→r , da−→n,h, dac] (15)

dWiz = da←−z x←−t + da−→z x−→t (16)
dWir = da←−r x←−t + da−→r x−→t (17)
dWin = da←−n x←−t + da−→n x−→t (18)
dWi = [dWiz, dWir, dWin] � (19)
dWhz = da←−z h←−t + da−→z h−→t (20)
dWhr = da←−r h←−t + da−→r h−→t (21)
dWhn = da←−

n,h
h←−

t
+ da−→

n,h
h−→

t
(22)

dWhc = dac(h←−t + h−→
t

) (23)
dWh = [dWhz, dWhr, dWhn, dWhc] � (24)

dbi = da←−
i


1
1
...
1

+ da−→
i


1
1
...
1

 � (25)

dbh = da←−
h


1
1
...
1

+ da−→
h


1
1
...
1

 � (26)

dxt = [da←−
i
Wi, da−→i Wi] � (27)

dht−1 = dht−1,o + [da←−
h
Wh, da−→hWh] � (28)

2 STRUCTURAL LOSS

This paper makes use of the loss proposed by Yang et al. Yang et al. (2018) called a structural loss. It
is a hardness-aware structural loss, composed of two terms a local one and a global one. The local
one integrates a system of pair weighting to emphasize the learning on hard-positive samples (see
Eq. 31 and 32): all positive distances above a certain class threshold τc will contribute more to the
learning than the others. The second term is a global loss term used to prevent the similar samples to
be disseminated in different places of the feature space and ultimately improve regularization and
generalization. To do so, this term acts on the second order statistics of the distances to diminish
the variance. The following notations are used: B, the batch containing the outputs y of the neural
network, P and N respectively the positive and negative samples of the batch, Pc the samples of
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the class c. The values µt
P and µt

N are the average distances between respectively the positive and
negative samples, γ controls the smoothness of the evolution of theses values between the previous
batch Bt−1 and the present one Bt. Finally, m, m+ and m− are margin parameters, η is a scaling
parameters and λ controls the magnitude of the global loss term in order to avoid it outweighing the
local one.

Lstructural(f(B)) =
1

B

∑
(i,j)∈P

βij log

(
1 +

|N |∑
n=1

exp(d(yi, yj)− d(yi, yn) +m)/η

)

+
λ

2
([σ2

p −m+]+ + [σ2
n −m−]+) (29)

B =
∑

(i,j)∈P

βij (30)

βij = exp(d(yi, yj))− τc (31)

τc =
2

|Pc|
∑

(i,j)∈Pc

d(yi, yj)− min
(i,j)∈Pc

(d(yi, yj)) (32)

σ2
p =

1

|P|
∑

(i,j)∈P

(d(yi, yj)− µBt

P )2 (33)

σ2
n =

1

|N |
∑

(i,n)∈N

(d(yi, yn)− µBt

N )2 (34)

µBt

P = γµ
Bt−1

P + (1− γ)µBt

P (35)

µBt

N = γµ
Bt−1

N + (1− γ)µBt

N . (36)

3 AVERAGE NORMALIZED DISTANCE TO NEAREST NEIGHBORS

We present in Figure 1 the evolution of the average distance to the nearest neighbors depending
on the number of nearest neighbors. Each distance has been scaled between 0 and 1 prior to the
average. For SGRU, we observe that the average distance grows slowly at first until some point
between 150 and 200 (around the average number of samples per class in this validation set, which
is about 165) and from there starts to grow faster. This seems to indicate that the training of SGRU
has allowed the model to create an important margin between similar and dissimilar samples. The
curve for CGRU is very different with a very smooth progression and no apparent margin. This can
be explained by the coupling which always combines the New States in some extend even if the input
are dissimilar and therefore produces closer outputs. Despite the absence of margin, CGRU gives
comparable results as SGRU on UCI HAR dataset which indicates that nevertheless, similar samples
are closer than dissimilar samples even if the coupling produces overall lower distances. We attribute
this compensation to better performances of CGRU on hard samples.
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Figure 1: Average normalized distance to nearest neighbors for SGRU and CGRU computed on the
validation set (users 1, 3 and 5)
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