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APPENDIX
A ADDITIONAL EXPERIMENTS AND RESULTS

Figure 5: Visualization of dynamically chosen negative and positive pairs for each class through
Knowledge Exposure (KE) from randomly selected classes in CIFAR-100.
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The effectiveness of Knowledge Exposure (KE) in dynamically selecting appropriate negative and
positive pairs is evident. For instance, the identification of color jitter as a negative pair for fruits, sky
scenes, or other color-dependent concepts is logical, as these transformations significantly disrupt the
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color integrity crucial for anomaly detection. Similarly, for objects such as cars, buses, and bicycles,
a 90-degree rotation is correctly identified as a negative pair since such rotations would render these
objects anomalous in real-world scenarios. Conversely, for objects like apples or oranges, a 90-degree
rotation is sensibly selected as a positive pair, as this transformation does not alter their conceptual
integrity. Figure 5 clearly illustrates that KE performs effectively across various cases, reinforcing the
results presented in the paper and highlighting the robustness and accuracy of our anomaly detection
framework.

Table 5: AUROC (%) of various novelty detection methods trained on one-class setting of CIFAR-100
dataset.

Classes CSI MSAD PANDA DN2 Ours
SD SPD | SD SPD | SD SPD | SD SPD | SD SPD
Class 0 87.15 74.57 | 92.15 96.09 | 76.40 66.78 | 81.71 73.17 | 88.27 88.28
Class 1 8492 7253 | 87.41 8449 | 80.48 72.18 | 81.99 7555 | 88.49 89.12
Class 2 88.95 8271 | 9586 82.05 | 89.44 77.09 | 92.91 8291 | 85.88 91.84
Class 3 84.61 7477 | 91.04 82.65 | 68.98 5896 | 82.82 64.73 | 88.93 85.18
Class 4 93.01 77.35| 9549 85.36 | 85.80 69.70 | 91.64 70.10 | 90.14 90.00
Class 5 82.57 71.66 | 9250 9292 | 77.61 6399 | 89.92 68.52 | 90.49 90.26
Class 6 92.63 78.94 | 92.63 82.55 | 78.08 70.27 | 88.78 73.12 | 88.54 89.63
Class 7 83.90 7348 | 88.78 83.14 | 77.16 61.74 | 82.84 67.21 | 87.18 89.81
Class 8 93.37 70.57 | 95.26  90.46 | 81.24 66.98 | 89.21 70.26 | 92.69 82.27
Class 9 95.54 87.26 | 91.33 88.26 | 80.69 84.73 | 87.39 87.69 | 78.37 92.19
Class 10 93.59 84.12 | 94.32 7497 | 89.01 7325 | 93.86 78.74 | 89.11 67.50
Class 11 90.03 83.94 | 89.91 82.03 | 69.88 66.38 | 78.19 77.95 | 89.17 94.19
Class 12 91.27 7848 | 90.67 79.54 | 78.44 6825 | 80.74 81.86 | 83.15 84.86
Class 13 8232 72.88 | 84.26 8430 | 7548 59.15 | 77.00 67.94 | 88.84 89.12
Class 14 9490 81.28 | 94.22 81.34 | 84.47 71.84 | 88.88 74.91 | 90.82 90.97
Class 15 85.76  69.03 | 86.77 83.34 | 69.46 61.03 | 80.88 77.87 | 89.74 92.64
Class 16 84.13 77.12 | 8528 8445 | 7400 70.75 | 76.39 74.30 | 90.89 86.19
Class 17 97.26 73.55 | 97.00 80.84 | 9426 63.16 | 96.05 70.62 | 86.65 86.37
Class 18 96.82  77.19 | 97.02 84.83 | 84.52 71.83 | 88.77 79.25 | 95.77 97.61
Class 19 95.99 82.80 | 94.79 83.08 | 79.22 7295 | 88.72 79.91 | 84.04 86.18
Mean 89.93 7721 | 91.83 8433 | 79.73 6855 | 8593 74.83 8835 8821

B RELATED WORKS

One of the most widely used techniques in anomaly detection involves employing self-supervised
methods, which generate pseudo-labels from the data itself. Contrastive learning Falcon & Cho
(2020), a self-supervised technique, has shown remarkable success in visual representation learning
He et al. (2020); Chen et al. (2020). This method focuses on learning representations by contrasting
positive and negative samples, ensuring that representations of similar (positive) instances are closer
together, while representations of dissimilar (negative) instances are further apart. Common loss
functions used include triplet loss, NT-Xent loss, and InfoNCE Schroff et al. (2015); Chen et al.
(2020). Recent research has indicated that transformations once thought to be harmful in traditional
contrastive learning can be beneficial in out-of-distribution (OOD) detection. In the Contrasting
Shifted Instances (CSI) method Tack et al. (2020a), in addition to contrasting a given sample
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Figure 6: This figure illustrates the distribution of distances under different transformations: the blue
distribution represents the original (normal) images, the green distribution represents flipped images,
and the red distribution represents 90-degree rotated images of all instances from the "car" class in
the CIFAR-10 dataset. The significant overlap between the rotated and normal data indicates that the
model has a strong relation to rotation.

with other instances, the training scheme also contrasts the sample against distributionally shifted
augmentations of itself, which enhances OOD detection Tack et al. (2020b).Transformations can
result in either semantics-preserving or semantics-shifting images, depending on the class, which
should be considered when selecting positive and negative pairs. Wang et al. (2023) addressed this
issue in rotation transformation, but this principle can also apply to several geometric and shifting
transformations.

Additionally, several methods use knowledge from pre-trained models to identify normal data patterns.
These methods, including DN2Bergman et al. (2020), PANDAREeiss et al. (2021), and MSADReiss
& Hoshen (2023), first employ the pre-trained models to extract features that represent typical data
points. Then, they utilize techniques like k-nearest neighbors (KNN) and Gaussian mixture models
(GMM) to assess the distance of new data points from the established set of normal features. This
distance is used to calculate an anomaly score.

Furthermore, outlier exposure (OE) is a new technique proposed for anomaly detection tasks, which
uses an auxiliary dataset of outliers Hendrycks et al. (2018). The main problem with OE is its reliance
on a large and diverse outlier dataset during training, which may not be readily available in many
practical scenarios. Additionally, the learned representations may not generalize well to unseen
outlier distributions, and in the case of irrelevant outliers, performance decreases.

Recently, large pre-trained vision-language models, trained using millions of image-text pairs Radford
et al. (2021), have demonstrated strong zero-shot recognition ability in various vision tasks, including
anomaly detection. These models rely on the ability to transfer knowledge from auxiliary data
to identify unseen anomalies. Early approaches, such as CLIP-AD Liznerski et al. (2022), ZOC
Esmaeilpour et al. (2022), and ACR Li et al. (2024), which require tuning on auxiliary data for each
target dataset, have been proposed for anomaly classification. Recent approaches focus on both
anomaly segmentation and classification. For effective anomaly segmentation, WinCLIP Jeong et al.
(2023) employs a wide range of hand-designed text prompts and multiple forward passes of image
patches. To improve the modeling of local visual semantics, VAND Chen et al. (2023) introduces
learnable linear projection techniques. However, these methods encounter issues because text prompt
embeddings lack sufficient generalization, leading to reduced accuracy in identifying anomalies
associated with diverse, unseen object semantics. AnomalyCLIP Zhou et al. (2023) tackles these
challenges by adapting to diverse datasets after being trained on a general dataset. It uses only two
trainable, object-independent text prompts for identifying anomalies and segments images with a
single forward pass.

However, these methods rely on learning text prompts to capture anomalies, which may not generalize
as well as directly learning from image data. Additionally, they use a combination of global and local
loss functions, which could be less efficient compared to our adaptive contrastive learning on image
features.
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C REPRODUCIBILITY AND IMPLEMENTATION DETAILS

C.1 DATASET DETAILS

We conducted experiments using the CIFAR-10, CIFAR-100, and SVHN data sets for anomaly
detection. The CIFAR-10 dataset comprises 60,000 color images of 32x32 size, evenly distributed
across 10 classes, with each class containing 6,000 images. The CIFAR-100 dataset extends to 100
classes, each with 600 images. Both CIFAR datasets are split into training sets of 50,000 images and
testing sets of 10,000 images. The SVHN dataset, derived from Google Street View, consists of more
than 600,000 32x32 color images of house numbers, used for digit recognition and classification.

C.2 PREPROCESSING PROCEDURE

To create the real-world dataset, we used Knowledge Exposure (KE) to generate a list of distances
for each original class from various augmentations. These distances were sorted to identify negative
augmentations as anomalies. Additionally, in SSA, alongside KE, we employed human supervision
to refine the dataset and applied other augmentations and transformations not considered negative in
the training process. For example, using KE, Gaussian noise and glass blur were identified as the
most negative augmentations for cars. However, in the real world, rotation is considered an anomaly
for cars. Therefore, in creating the real-world dataset, we used human supervision to label rotated
cars as anomalies.

To create a comprehensive list of anomalies for each class in each dataset, we initially implemented
the aforementioned protocols using KE, supplemented by human supervision for accurate and real-
world scenario selection. We then loaded the original dataset and iterated through it, applying
a randomly selected transformation from our predefined list to each data point. We evaluated
whether this transformation was classified as an anomaly based on the previously assembled anomaly
transformation list.

For preprocessing, the start with augmenting, the original dataset using and then feed them into the
CLIP image encoder to produce the representations. Then use extracted representations in Wasserstein
algorithm for scoring each augmentaion.

C.3 TRAINING PROCEDURE

For training, we utilized ResNet-18 without a classification head as the architecture for our neural
network. We trained our model for 50 epochs using the SGD optimizer with a learning rate of
0.01, momentum of 0.9, and a weight decay of Se-4 for each experiment. We used AUROC as
the anomaly detection metric, where the AUROC value ranges from O to 1, with values closer to 1
indicating better classifier performance. For loss function we utilize the InfoNCE loss Chen et al.
(2020) with 0.2 temperature value for better convergence rate. Our findings indicate that using 2 for K
hyperprameter enhances the generalization which can be interpreted as model being exposed to two
distinct augmentations or transformations as positive and negative data which results in constriction
of model into more significant features, thereby reducing the likelihood of overfitting to irrelevant
features which available in Table 4. Experiments were conducted on NVIDIA RTX 3090 GPUs, and
runtimes are approximately 12 hours for training on CIFAR-10.

C.4 EVALUATION PROCEDURE

In each method discussed previously, we employed standard data and specific configurations unique
to each method during their respective training phases. For instance, in the case of CSI, we preserved
its fundamental augmentation. We implemented two protocols for every dataset: the standard (SD)
and the generalization test (SPD). During the training phase, all models requiring training data were
provided with a chosen dataset, undergoing its standard pre-processing without modifications or
augmentations to the training procedure. In the testing phase, apart from augmenting the test set,
no modifications were made to the test configurations of the methods. For generating augmented
datasets we used the Khazaie et al. (2023) framework to be as generalized as possible in training
datasets we use hyper-parameter severity equal to 1 but in the proposed dataset we use 5 for severity
to become a near real world worst case scenario. For evaluation, we utilized our trained model to
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extract features from training data for training a one-class SVM with sigmoid kernel. Then for any
input data, we use the same model to extract the features and then predict the label, whether input is
normal or anomalous.

C.5 CODE AVAILABILITY

The code for the implementation of the model and the reproduction of the results of our experiments
can be found at https://anonymous.4open.science/r/AKKKS-FBB4/.
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