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Abstract

Embodied Artificial Intelligence is an emerging field that focuses on creating
intelligent agents that can perceive, navigate, and manipulate objects in their
environment. While current smart assistants are limited to speech and text-based
interactions, developing embodied agents that can engage in natural dialogue
and complete physical tasks presents a significant challenge—but one necessary
to the advancement of AI. We tackle this challenge within the Amazon Arena
Environment: building an agent that grounds dialogue context to both images and
actions. ScottyBot is capable of holding conversations to complete missions and
deliver on users’ requests. Our modular, full-stack approach requires the integration
of state-of-the-art natural language and computer vision models to track/execute
interactions and to maintain natural conversations.

1 Introduction

Building the next generation of smart robotic assistants that seamlessly co-exist and operate in human
spaces requires those agents to have situational awareness of their complex multimodal environments
[Francis et al.l |2022]. As part of the Alexa Prize Simbot Challenge, our team seeks to pragmatically
model the dialogue conversation between a human (commander) and the agent (follower), into a
sequence of granular instructions that can be executed reliably in the virtual environment.

Prior work on datasets, including ALFRED [Shridhar et al., 2020], TEACh [Padmakumar et al., 2021],
and CVDN [Thomason et al., | 2019]], assume a turn-based dialogue paradigm, where the utterances
are well-formed and grammatically-correct natural language instructions that only reference available
objects and admissible actions in the environment. This closed-world assumption is also evident in
the availability of only static environment maps, which only allow minimal (if any) movement of
objects. The utilization of static maps dramatically simplifies the language understanding task, as
language does not need to map to state (dialogue or procedural) but only to a location or object.

In contrast, the Alexa Prize Simbot Challenge takes several important steps towards realism. First
is the reliance on Automatic Speech Recognition (ASR) to provide instructions in real-time: these
real utterances are ambiguous—often incorrect, incomplete, or hazardous/out-of-domain. Further,
the dynamic environment yields episodic changes in the locations and variations of receptacles and
small objects. This necessitates generalization capabilities as well as a pragmatic understanding of
the commander’s instructions, grounded in visual cues.

In this report, we present a modular approach to the Alexa Prize Simbot Challenge, tackling language
and visual navigation as co-dependent modules. The Language Modeling and Parsing module
involves collecting data from the aforementioned simulation environment, to: construct an initial
knowledge base of objects and their affordances, build pragmatic models to generate granular
instructions given the free-form dialogue, map instructions to low-level action sequences that can be
executed on the simulator, track the belief state of the agent, and engage with the human through
dialogue for clarification in periods of task uncertainty. The Vision and Navigation module focuses



primarily on scene understanding and action-planning, in order to: perform actions that satisfy a
user’s instruction, leverage image segmentation to identify objects of interest, and to generate a
state representation for action-planning. Furthermore, the Vision and Navigation module generates
a logical sequence of actions to execute in the Amazon Arena Simulation Engine and, additionally,
handles environment mapping, game session handling, and dialogue-prompt generation to alert the
user about bot failures and to help them understand how to interact with objects where it is not
immediately apparent.

2 Related Work

Vision and Language-based navigation and task-completion involve an agent performing a set of
tasks based on language input with visual observations grounded in natural language. Earliest
iterations of the capabilities of such autonomous agents were detailed in Turnell et al.| [2001]. Recent
work in this space is based on datasets that do not involve human-like conversation, rather a set of
instructions based on which the agent must complete a task [[Shridhar et al.|[2020]]. The TEACh dataset
[Padmakumar et al., [2021]] includes conversations between two agents in a simulated environment.

Historically, navigation and task completion problems have been solved using Heuristic Action
Selection, or more recently through Reinforcement Learning (RL) solutions. While end-to-end Deep
RL solutions have performed well on navigation tasks [Mirowski et al., 2018]], they are heavily reliant
on structured state representation; introducing dialogue, instead, yields a variable state space.

Recent research in the domain [Min et al.| 2021]] inspires a modular approach to this problem,
with proven improvements over other end-to-end solutions [Pashevich et al.}[2021]]. This approach
consists of several modular components: (1) Language Processing (LP), (2) Semantic Mapping, (3)
Semantic Search Policy, and (4) a purely-deterministic navigation/interaction policy module. The
LP component transforms high-level instructions into a structured sequence of sub-tasks with the
help of BERT [Devlin et al.,[2018]. This trainable language model adds to the framework’s language
understanding. The framework was able to achieve SOTA performance on the ALFRED benchmark.
Due to the lack of human-like conversation in the dataset, querying, responding, and clarifying
through dialogue generation is not necessary.

Another work, LEBP [Liu et al., 2022]], has a sequence-generation module similar to ours. The
authors employ BART [Yuan et al.| 2021]] to generate sub-tasks from user instructions and let users
confirm the sub-tasks before execution in the environment. However, our system leverages additional
fine-tuned language understanding modules, e.g., Name Entity Resolution, to understand specific
action, objects, and their attributes in user instruction. Also, instead of letting users confirm the
sub-tasks, our agent will ask fluent clarification questions and understand users’ responses when
necessary.

3 System Design

In this section, we discuss the design of the integrated system that seamlessly switches between the
two separate modules (inspired by FILM [Min et al., |2021]]), one language-focused and the other
vision-focused, to handle all user inputs and actions. The system design includes exposed APIs and
function-calls that enable smooth communication between the two modules and, by extension, ensure
that the output is consistent and accurate.

3.1 Language Modeling and Parsing Module

A key function of our system is in modeling the interactions between two intelligent agents, the
commander and the follower, who are to collaborate to perform tasks in simulated environments.
While this function is not directly applicable to the user, the development of this function is crucial
to the user-follower scenario. The follower agent will also be able to identify and deny adversarial
commands which conflict with its well-being and with its ability to perform further work with proper
justifications. In our user-follower case, the role of the commander is performed by a human, and
our agent would be able to carry out instructions given by the human and communicate with them in
real-time. The language module ensures this high-level flow:



1. Use Natural Language Understanding and Dialogue Management components to understand
a user’s high-level, free-form language and track the state of various objects and unfulfilled
past instructions.

2. Pass down low-level instructions to the Navigation and Vision Module [3.2]responsible for
executing path-planning and execution of actions within an environment.

3. Receive success or error codes from the Navigation and Vision Module and appropriately
use the Language Generation components to either clarify user instructions or inform the
user of inability to perform actions.
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Figure 1: An overview of the state tracking and dialogue management system

3.1.1 Toxicity Check

As soon as an utterance is obtained from the Alexa Runtime Service, we evaluate it for profanity and
toxicity. If the toxicity content is high, we immediately discard the utterance, and respond to the
user in a failure mode, using a variation of "Sorry, but I cannot help you with that". Whereas we
first tested the off-the-shelf toxicity detection models on our in-domain utterances, we found that
they could not be directly applied to our task: the occurrence of objects such as knife will trigger
the models and lead to false-positive predictions, even though the utterance itself may not be toxic
contextually (e.g., Pick up the knife.) Therefore, we instead fine-tune the toxicity detection
model, with a combination of out-of-domain toxicity detection data and a subset of the in-domain
utterances, which are labeled as negative. The off the shelf E] toxicity detection model is trained on
the 2nd Jigsaw challenge data and uses ALBERT [Lan et al.,[2019]] as model backbone. We set the
trigger threshold as 0.2, which we empirically find to be able to effectively distinguish positive from
negative cases.

"https://github.com/unitaryai/detoxify
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3.1.2 Co-reference Resolution

If an utterance passes the toxicity check, we consult DynamoDB to fetch past dialogue utterances
from the current user to get the dialogue context. We use a SpanBERT [Joshi et al., |2020] model to
replace occurrences of object references like ’it’, “there’, ’that’ and so on with a corresponding object
from previous utterances.
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Figure 2: An architectural illustration of the Language Modeling and Parsing module.

3.1.3 Semantic Role Labeling with Synthetic Template Match

Semantic Role Labeling [Marquez et al., 2008] is the task of determining the latent predicate argument
structure of a sentence. For the first version of the NLU model, we utilized a pre-trained deep semantic
role labeling (SRL) model proposed by |Shi and Lin| [2019]] (checkpoint was provided by AllenNLP).
Given an utterance, the SRL model predicts the verb (action) along with the context, which is used to
obtain attributes and objects. For example, the sentence "Plug the control panel onto the
laser cannon" would be parsed as "[Action: Plug] ARGI:[the control panel] ARG2:[onto the
laser cannon]" by the SRL model. Further, a shallow template-matching strategy was used to map
an action with a fixed number of arguments to a sequence of low level actions. For instance, "Plug"
with 2 arguments would be mapped to the action sequence "goto X, pickup X, goto Y, place Y",
where "X" and "Y" are placeholders that would be replaced by control panel and laser cannon in this
example, respectively. This strategy allowed us to build a good baseline model, as we found that
the deep SRL model fails to correctly identify actions and context in all scenarios. For instance, for
the instruction "Press the red button" the deep SRL model was not able to identify "Press" as
the action. Secondly, utilizing a shallow template-match meant that we had to hardcode templates
for each possible configuration of the verb argument pair which is tedious and non-generalizable.
Informed by these limitations, we chose to discard the SRL and template-match approach, in favor of
a more generalized Generative Action Sequence and Named Entity Recognition approach.

3.1.4 Generative Model

We formulate the task of sub-goal prediction as a Sequence-to-Sequence (seq2seq) task: from one ut-
terance of the user, we rewrite the natural language utterance into an ordered list of short commands of
canonical form. Each generated command is composed of a predicate, an object, and optionally a list
of attributes of the object. For example, "Please grab the red apple from the fridge."
will be mapped to "Go to fridge. Open fridge. Pick up red apple". The responsibili-
ties of this component are two-fold: 1. It learns to understand and flatten compositional predicates
and structures to a sequence of simple actions; this mapping is engineered to be deterministic. 2. It
potentially learns the semantics of the task environment of interest.

To this end, we leverage a BART model [Lewis et al., |2019] checkpoint that is pre-trained on the
CNN-DailyMail summarization dataset [Hermann et al.,|2015]] and fine-tune it with synthetic data



that is generated from pre-defined templates. In some sense, the purpose of this component is to also
summarize and re-structure the utterance.

It is noteworthy that, apart from the general instruction-rewriting, we also endow the model with the
ability to detect utterances that are greetings, the utterances that are meta-commands, and utterances
that are out-of-domain. For the third case, we add utterances from other task-oriented dialogue
datasets into training data, and, for the meta-commands, we include utterances such as "Forget
about it." and "Don’t do that." labeled as the meta-command category "cancel". We also
include utterances such as "Hi there." as greetings.

3.1.5 Named Entity Recognition Model

The Generative model outputs a sequence of low-level actions. These actions comprise of a set of
tokens which need to be classified into their corresponding type such as "action", "object", "attribute",
etc.; Named Entity Recognition (NER) [Sundheim| [1995]] is a task of tagging entities with their
corresponding type. In order to perform NER, we first generate synthetic data annotated with 11
different entities such as action, object, attribute, location, magnitude, direction, etc. in the CONLL
format [Sang and De Meulder, 2003]]. We then fine-tune a pre-trained DistilBERT-uncased model
[Sanh et al., |2019]] on token classification task on the synthetic dataset. After brief training, the model
learns to classify tokens into their corresponding categories. We tested the model on several out-of-
domain examples, including synonyms of objects and objects with different colors; we observed the
model to be robust to these instances of data domain distribution shift. This indicated that the model
has developed a semantic understanding of tokens rather than merely overfitting to the synthetic data.

3.1.6 Extractive Question Answering

Extractive Question Answering (EQA) is the task of answering a question based on a given context.
We use a pre-trained BERT-based EQA model [Liu et al.| 2019] from HuggingFace, trained on
SQuAD 2.0 [Rajpurkar et al.,|2018]|, roberta-base-squad2. This model is used for two purposes.
First, to extract the object attributes for a given object; the model takes, as input, the utterance and an
object, then outputs the attributes corresponding to the object from the utterance. To further improve
the model performance, the extracted attributes are post-processed where we remove the articles,
punctuation, and apply part-of-speech tagging to reject the irrelevant attributes (e.g., nouns, verbs,
etc.) The other purpose of the model is to extract the answer to the clarification questions from the
user’s utterance (i.e., the clarification utterance).

3.1.7 Multi-Genre Natural Language Inference

The actions and objects tagged by the NER model may not always be the same as that which is
stored in our static knowledge base. In order to map the actions/objects, we find the semantically
most similar object and actions from the knowledge base: given an utterance with actions and
objects tagged, we generate sentences by sequentially replacing actions and objects with ones in the
knowledge base and we find the ones that have highest match scores. We use a synonym library
for each object instance, and potential attributes associated with it. We use high precision matching
using regular expressions, using full word/phonetic match, leveraging edit/Levenshtein distance as
the metric. We update the word based on tuned threshold values.

We observe that this task closely resembles Natural Language Inference (NLI) tasks in NLP. NLI
is the task of deciding, given two text fragments, whether the meaning of one text is entailed (can
be inferred) from the other. For this, we use BERT-based model DeBERTa [He et al.,[2020]], from
HuggingFace, trained on Multi-Genre Natural Language Inference (MNLI) [Williams et al.,[2017]] for
the task of textual entailment. The MNLI corpus is a crowd-sourced collection of 433k sentence pairs
annotated with textual entailment information; we further fine-tune this model with synthetically
generated data from the knowledge base.

3.1.8 Verification Module

The verification module accounts for two things: affordances and hallucinations from the generative
model. Object affordances signify what actions are executable on a particular object, e.g., a heavy laser
machine cannot be picked up. We can therefore discard actions such as "pick up the laser machine",
based on our prior knowledge of object affordances. Generative models can often hallucinate.



For example, "Pick it up and place it on the table" may be converted into "Pick up the
banana. Place on the table. Done.” While our in-domain training on synthetic data minimizes
hallucinations, we anyway verify whether the object identified occurred in the dialogue history for
the current session, for the tail-end of cases where our model might hallucinate.

3.1.9 Context Tracking and Dialogue Management

State and context tracking is an important component of a dialogue management system. The
dialogue management system is responsible for maintaining context over multiple user utterances, to
understand the user intent fully before performing a task without any ambiguity. Figure [I|shows an
overview of our system. The numbers next to the arrows in the figure represent the order of execution.

As soon as a user utterance comes in, we process it using the models as mentioned below to obtain
canonical actions and associated objects (if any). We enqueue these in a queue that we maintain for
every game session and then send them to the Vision and Navigation module. This module performs
the actions which can be unambiguously carried out in the simulator and, based on the simulator
response and its own vision information, informs us of the actions completed successfully. We
dequeue these actions from the session queue first and then generate a clarification question for the
user (if needed), based on the data we receive from the Vision and Navigation module.

The generated clarification question is asked to the user. Using the extractive question answering
(EQA) model discussed in Section[3.1.6] the user response is processed to extract the exact answer
from the utterance. We then peek at our session queue to get the last unexecuted action, enrich it with
the extracted clarification response we got from the user, then finally send this enriched canonical
action to the Vision and Navigation module. This module performs the action in Amazon Arena,
dequeues the completed actions from the session queue, and generates more clarification questions
for the user to answer (if needed). If the queue becomes empty, it means that we have processed the
instructions provided by the user till now; we then await further instructions to complete the task.

3.2 Vision and Navigation Module

This section outlines the system design and the architecture of individual components that make up
the Vision and Navigation pipeline of ScottyBot, as illustrated in Figure 3]

3.2.1 Action Processor

Raw action tuples obtained from the dialogue module serve as input to the Vision and Navigation
module’s action processor. The Action Processor is the brain of the Vision and Navigation module: it
coordinates with the rest of the modules to decide the next sequence of actions that the bot should
perform, in response to user utterances.

* Action Queue. The Action Queue module manages the sequence of primitive actions that the
bot needs to perform in order to complete a task. The module implements a standard queue,
with some exceptions that are described later in this section. The module has two main
functions: enqueue and pop. The enqueue function first translates an action into a format
that the navigation and interaction modules are designed to expect. These translated actions
are then pushed into the queue, which is internally stored as a list of dictionaries representing
each action. The pop function involves additional logic over a simple queue. Actions can
either be executed individually or as a batch of instructions, depending on whether they
require intermediate responses from the simulator. Actions that require simulator inputs
must be executed individually, while those that do not can be grouped into a batch. The pop
function yields this batch of actions.

 Path-planning. The Path-planning module is a critical component of the navigation module,
responsible for generating a sequence of actions necessary to explore a room and locate
an object. It operates differently for receptacle and non-receptacle objects. For receptacle
objects, the room to be searched is obtained from the environment mapping (see Section
@D, as their location is static across missions. For smaller objects, the bot$ current room is
searched. The module populates a path planning queue with a series of actions that navigate
the bot to each of the 8 viewpoints in the room. Additionally, an action is added at each
viewpoint for the bot to look around, providing a complete 360° view of the current location.
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Figure 3: An architectural illustration of the Vision and Navigation module.

3.2.2 Scene Understanding

A crucial step in executing instructions is to localize objects in the scene and disambiguate them
based on attributes. The dialogue module processes the object in consideration, and also provides
attributes associated to the object, that are relevant to the task, for example, "Go to the Gravity
Flipper computer" would translate to {"action": {"GoTo", "Computer"}, "attributes":
["green"]}. The scene understanding module is broken down into the following sub-modules:

* Image Segmentation. The Image Segmentation module is responsible for processing sets
of color images with attributes and classes, resulting in a collection of masks for identified
instances. This is achieved through the use of the MaskRCNN-based instance segmentation
model, provided by Amazon to Alexa Prize Simbot Challenge participants, which employs
a configurable probability threshold parameter to determine the selection or rejection of
masks. The module outputs scores, labels, and predicted masks for each selected instance.
The primary color information is processed using the Object Attribute Identifier module, as
explained below. If further disambiguation is required for task completion, the Clarification
Generator module (Section [3.2.4) is triggered.

* Object Attribute Identifier. We observed that most missions just require disambiguation
using color. Wall Shelf (Red, Blue), buttons (Red, Green, Blue), computers (Red, Green,
Blue, White, Black, Pink) are some examples of objects distinguished through color. We
superimpose the binary mask obtained from MaskRCNN over the original image, to obtain
only the selected portion of the image. These pixels are passed through a K-Means clustering
algorithm to obtain the dominant color as the cluster center. A similarity metric was used
to obtain the closest color based on a set of fixed RGB values. This method outperformed
other naive attempts, including using statistical methods like mean and median over pixel
values, with a near 100% accuracy in color prediction.



(a) Example image obtained from (b) The mask generated for a Blue
Arena Simulator Shelf

Figure 4: Image segmentation: input (left) and output (right).
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3.2.3 Environment Mapper

The Amazon Arena environment’s configuration varies between missions, and the locations of objects
within the environment are not constant. The Navigation and Interaction pipeline includes a mapping
module that tracks the locations of encountered objects as the bot moves through the environment. To
solve this, we include two separate mappings:

Static Mapping Static maps construct mappings between large receptacle objects whose locations
are fixed across missions and layout configurations. We parsed all the game description files to obtain
the location mappings of receptacle objects.

Dynamic Mapping As Arena missions ensure different locations for smaller objects, we create a
dynamic mapping at the start of each game on the fly as the bot navigates through rooms. We use the
dynamic mapping module to add, update and retrieve object instances from the session-specific map.

The Dynamic Map is a dictionary that stores the mapping of rooms, object classes, attributes, positions,
rotations, depths, and hashes of object instances. We build the module to provide the following
functionalities:



The dynamic map is stored in the following format.

dynamic_map = {
"current_room": {
"object_class": {
"attribute_1": {

"hash": [hash_value_1, hash_value_2, hash_value_3],
"position": [ {}, {}, {} 1],

"rotation": [ {}, {}, {} 1,

"depth": [ di, d2, 43 ]

* addToDynamicMap adds an object instance to the dynamic map. It checks if the current
room, object class, and attribute exist in the map, and if not, creates the necessary entries.

* removeFromDynamicMap removes an object instance when it is picked up by the bot.

* We calculate the best object position based on either the depths or Euclidean distances
between positions and the current bot position.

* While looking for an object in the current room, we first perform a lookup in the dynamic
map for the object along with the correct attributes. We navigate the robot to the position
and rotation stored in the map if found, before performing the actual action requested.

* We experimented using the instance segmentation and depth maps to get the accurate position
of an object instance. We convert the position and rotation of the bot, position and depth
on an image of the object in a virtual camera space into a 3D point in world coordinates.
However, we were not able to accurately obtain the focus of the camera used on the bot, and
thus disregarded this method.

3.2.4 Response Generator

A crucial aspect of the navigation pipeline is the interaction with the simulator, and more importantly,
the user. The components of the response generator are responsible for constructing structured
dialog/action sequences as per requirement. We consciously generate responses through the vision
and navigation module, instead of the language model, to leverage visual context and action sequence
history, to provide meaningful replies and clarification requests.

* Request Generator. The dialogue module elaborated in converts natural language
utterances from the user into a set of executable action pairs. These actions are converted
into the JSON format specified by the Arena Simulator, along with relevant information from
the Scene Understanding module [3.2.2] Each instruction is classified into Goto, Interaction
and Navigation actions, and corresponding templates are used.

* Error Handler. The Error Handler processes status codes from the Arena Simulation
Environment for each bot action and generates dialog responses to inform the user of
errors and provide instructions to resolve them. Errors from Arena are handled through
a careful examination of all errors obtained from the simulator. Errors obtained from the
path-planning module [3.2.T] are addressed through messages like "Sorry, I could not finish
executing my tasks, can you give me a simpler task?" or "I could not locate the object, are
you sure it§ in the current room?". The user is then prompted to identify the problem and
issue a simpler instruction.

* Prompt Generator. The Amazon Arena Environment contains non-real-world objects,
such as freeze rays, time machines, and color-changer machines, which may be unfamiliar
to users and difficult to operate. The Prompt Generator module addresses this issue by
generating prompts for interacting with nearby objects when it is not straightforward to
do so. For example, when the bot is near the Laser Machine, the module prompts users to
navigate to the red monitor and turn it on to fire the laser.



* Clarification Generator. An important aspect of the Alexa Prize Simbot Challenge is dialog
interaction and communication. The primary use-case of the Clarification Generator module
is to disambiguate between multiple instances of an object, based on the different attributes
associated. For example, in the situation where the bot faces two computers in the Robotics
Lab, and is asked to go to one, the clarification module is triggered, and the user is asked if
they meant the blue or red computer.

Figure 6: Scenario for Clarification

3.2.5 Maintaining Object History

The HistoryHelper class assists in placing objects back in their designated locations. It tracks the
history of interactions and finds the closest receptacle for a given object.

1. Finding the Closest Receptacle

* Identifies the closest receptacle for a given object.

* Calculates the distance between the object and potential receptacles based on position
and depth.

* Selects the receptacle with the shortest distance metric.
» Updates the latest interaction with the identified receptacle’s class and mask.

2. Placing Objects on the Closest Receptacle

* Determines the actions needed to place an object on the closest receptacle.
* Checks if the latest interaction matches the provided object and room.

* Generates a sequence of actions to reach the closest receptacle based on the stored
interaction information.

» Returns the generated actions, receptacle class, and associated attributes.

3.2.6 Session Handler

Alexa Prize Simbot Challenge missions allow for multiple users to participate simultaneously, necessi-
tating the implementation of session handling. The system uses DynamoDB to store and retrieve state
information associated with independent sessions. Each session is identified by a session identifier,
which serves as the key for the corresponding state information in DynamoDB. At the beginning
of each turn, the system queries DynamoDB for the state information related to the current session
identifier. If the key exists, the state information is initialized for the turn; otherwise, a new empty
session state is created. The turn comprises 10 calls to a function that generates actions for the
simulator. Upon completion of the turn, the state information is written back to DynamoDB, avoiding
the need for repeated read and write operations during the turn.
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4 Data and Experiments

4.1 Dataset Description

We leverage the Amazon Arena platform and dataset provided by Amazon Alexa [Gao et al., 2023].
The challenge comprises of several missions that need to be performed in the simulated environment.
The Arena simulator contains multi-room layouts and over 200+ interactable objects. The users are
also shown a mini map of the floor plan of a specific layout on the top right corner of the screen. The
allowable actions in Arena can be broadly classified into 2 categories namely Navigation (e.g., go
to the room) and Manipulation (e.g. toggle the light switch). Each mission in Arena comprises of
a series of tasks. These tasks must be first decomposed into a series of sub-tasks and further each
sub-task must be mapped to a series of primitive actions that are compatible with the simulator.

The dataset comprises of three main components:

1. Vision data—contains RGB images, ground truth segmentation masks, and metadata about
object annotations and commands executed prior to capture. It includes about 450k annotated
segmentation images and a total of 86 object classes, and is used for training instance
segmentation models like MaskRCNN and MaskFormer.

2. Trajectory data—contains ground-truth action trajectories for completing 3.5k+ game
missions, paired with robot-view images, and annotated with human language instructions
and synthetic language instructions.

3. Challenge Definition Format (CDF) data—stores game mission information including initial
and goal states, game-related text data, and is used to obtain information about the possible
locations of receptacles across missions.

4.2 Dataset Challenges

There are nearly 10k game sessions of human-annotated instructions, 55k human-annotated question-
answer pairs within 20k game sessions with QAs. Each game mission is associated with template-
based synthetic language instructions. A key issue with the action trajectory data that Amazon
provided is that it is real data in a particular room environment or layout. However, certain action
sequences can change significantly based on the room configuration, and visual grounding of the
robot. To help reiterate this issue, here is a test scenario designed by the team: "ScottyBot
Team: Pick up the apple". This instruction is mapped to "Go to the table. Pick up
the apple." in an environment where the apple was present on a table within the field of view of
the robot, whereas, it is mapped to "Go to the fridge. Open the fridge. Pick up the
apple. Close the fridge." in another room layout where the apple was present inside the
fridge. While specifically these breakdowns are correct, they would not hold in any other situation.

To ensure decoupled instructions, we synthetically generate data for training our canonical action
sequence generative model and NER model. Our synthetic dataset contains 116 templates for in-
domain instructions. These templates contain placeholders like <action>, <object:affordance>,
<color>, <shape> etc. that were used to create 57,460 high-level utterances and their corresponding
low-level instructions by randomly replacing objects, actions, and attributes like color or shape with
relevant entities from our static knowledge base of all possible objects and admissible actions in the
Arena environment.

Some examples of such a template is presented in Table [l As presented in the first template,
<object:1:BREAKABLE> is replaced by an object that can be broken in the simulation environment,
and <action:1:> is replaced by an action that is synonymous to breaking (based on action 1 being
mapped to object 1 and object 1 affordance being BREAKABLE).

We also use this synthetic data generation scheme for training the NER model to identify objects,
actions, locations, magnitudes, and directions.
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\ Input Template | Output Template | Input Sentence | Output Sentence \

<action:1> the <ob- | <action:1> the <ob- | shatter the papercup instruction: break the paper-

ject: :-BREAKABLE> ject:1:BREAKABLE>. cup. done.

<action:2:place> <ob- | Pick up <ob- | drop screw driver in com- | instruction: pick up screw

ject:1:PICKUPABLE> in | ject:1:PICKUPABLE>. puter driver. place on the computer.

<object:2:RECEPTACLE> | <action:2:place> on the done.
<object:2:RECEPTACLE>.

Go to the <location:1>. Go | find bread in warehouse

to <object:1>.

Find <object:1> in <loca-
tion:1>

instruction: go to the ware-
house. go to bread. done.

Go to <location: 1> and <ac- | Go to the <location:1>. <ac- | go to mainoffice and move | instruction: go to the main-
tion:2:go to> <object:2> tion:2:go to> the <object:2>. | closer to coffee unmaker office. go to the coffee un-
maker. done.

Table 1: Examples of synthetically generated data. Please note that all example input sentences in this table
were created by the ScottyBot team

4.3 Evolution of Action Sequence Generation Models
4.3.1 Iteration 1: Grammar-based model

The first iteration of the action sequence generation model was heuristic rule-based, grammar model.
This model was used during the initial skill and model development phase. This model made use
of simple POS-tagging of a user utterance, with word-matching of verbs to actions, and objects to
nouns. While this served as a good baseline for further development, it fails on multiple scenarios.

Utterance Predicted Action Sequence | Expected Action Sequence | Comments

Go to the laser <Go, laser> <Go, laser> Works well on granu-
lar instructions

Put the control panel | <place, control panel> <pickup, Control Panel>, | Fails on incomplete

into the laser <place, Laser> instructions

Fire the laser using | <Empty> <toggle, laser monitor> Sometimes inaccu-

the laser monitor rate in identifying
action

Table 2: Examples of synthetically generated data. Please note that all example utterances in this table were
created by the ScottyBot team

4.3.2 Iteration 2: Semantic Role Labelling

Utterance [ plug the control panel onto the laser canon }

i

Pretrained AllenNLP Deep

semantic Role Labeling Model [ VERB: plug ARG1: the control panel ARG2: onto the laser canon }
A
[ match <plug, placeholder1, placeholder2 > ]
Template Resolver
[ resolve <pickup, placeholder1> < place, placeholder2 > ]
A
< Action, Object > Sequence [ resolve <pickup, control panel> < place, laser > J

Figure 7: Iteration 2: Deep Semantic Role Labeling pipeline for action sequence generation. Utter-
ances were created by the ScottyBot Team

The next iteration of the action generation module accounted for shortcomings of the grammar based
model. Here the utterance is passed through to a pre-trained AllenNLP DeepSRL model [3.1.3] The
output is passed through to the template resolver module, which outputs action-object sequences|[7]
The SRL model however, fails to understand nuances that are implicit to the environment. It is also
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not able to account for templates that are unseen. Table [3 highlights some examples delineating why
we moved away from this model.

Utterance Predicted Action Se- | Expected Action Se- | Comments
quence quence
Turn on the freeze ray | <toggle, freezer>, | <toggle, freezer>, | Templates get misused. Has
using the monitor <pickup, monitor>, | <toggle, computer> no implicit understanding,
<toggle, computer> hence cannot add informa-
tion.
Take the soda can to | <pickup, soda can>, | <pickup, soda can>, | Does not know how to han-
the shelf <pickup, soda can>, | <goto, shelf> dle unseen templates.
<goto, shelf>
Press on the red but- | <Empty> <toggle, button> Sometimes inaccurate in
ton identifying actions.

Table 3: Examples of failures of the AllenNLP DeepSRL model. Please note that all example utterances in this
table were created by the ScottyBot team

4.3.3 Iteration 3: Generative Model

As elaborated in Section [3.1.4] the generative model is trained to output low-level, granular simple
instructions, which can be converted into action-sequences in the required format. Generative Model
v1l.x was trained over the instruction utterances provided in the Arena dataset. Section [4.2] dives
deeper into the challenges of the dataset. Due to these challenges, we curated a synthetic dataset, to
train Generative Model v2.x. Table[d]gives an overview of the failures and the rectifications due to
synthesizing new examples.

Utterance Prediction from Pre- | Prediction from | Comments
vious Model Current Model
Place the red apple on | Place on the desk. Pickup red apple. | Missing information: apple. Two
the desk. Place desk. objects, one action, second action
needs to be inferred.
Find the blue bowl. Go to desk. Go to | Go to blue bowl. Spurious correlation between loca-
bowl. tion and objects causes hallucination
of desk.
Turn right and press | Toggle button. Turn right. Toggle | The previous model was unable to
the red button. red button. cope with navigation instructions.

Table 4: Comparison of predictions between the previous and current language models. Please note that all
example input sentences in this table were created by the ScottyBot team

5 Evaluation and Results

We evaluate the effectiveness of our system through modular testing and metrics applied on the
language and navigation modules separately.

5.1 Dialogue Modules

We use several different metrics in order to benchmark the individual components of the Dialogue
system. To benchmark the generative model we use Word Error Rate and the Exact Match criteria.
We specifically rely on these metrics as our generative model performs constrained generation and is
restricted to outputting a low level sub goal sequence that can be directly run on the simulator. Thus it
is important for the generative model to obey word order and accurately generate the expected output
that is predefined for the template.

In order to evaluate the NER model we use precision, recall, F1 score and accuracy metrics in a one
vs rest classification approach. To evaluate the EQA model we use F1 score and Exact Match metrics
while we use Levenshtein distance and accuracy to evaluate phonetic and synonym matching.
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5.1.1 Results

Co-reference Resolution. Since we used a pre-trained co-reference resolution model without fine-
tuning, we performed a qualitative analysis of its performance with in-domain examples. A few
scenarios and corresponding examples tested are listed in Table[5]

Phenomenon Tested |

Original Utterance

\ Coref Resolved Utterance

Single noun phrase before
the pronoun

Go to the red computer and
turn it on.

Go to the red computer and
turn the red computer on.

Multiple noun phrases before
the pronoun

Pick up the bowl. Open the
microwave and place it in-
side. Close it.

Pick up the bowl. Open
the microwave and place the
bowl inside. Close the mi-
crowave.

Pronouns other than the most
common ’it’

Find the soda can in the
break room and grab that.

Find the soda can in the
break room and grab the
soda can.

Cataphora (use of an expres-
sion co-refers with a later,
more specific, expression)

Can you pick it up, the cake
over there?

Can you pick the cake up,
the cake over there?

‘When resolution is not possi-
ble

Go to the quantum lab and
please get that from there?

Go to the quantum lab and
please get that from the

quantum lab?

Table 5: Qualitative Evaluation of Co-reference Resolution. Please note that all example utterances in this table
were created by the ScottyBot team

Semantic Role Labeling with Template Match We utilized a pre-trained model for semantic role
labeling (SRL) without performing any specific fine-tuning on our data due to the difficulty in
obtaining annotations for the data in the format required for SRL. Hence we present a qualitative
analysis of the SRL model in the Table [6]

As can be observed the SRL approach is sub-optimal as it tends to provide us only with high-level
sub-goals which must be further processed in order to obtain action-object sequences that can be
executed on the simulator. Furthermore, the SRL approach is also inaccurate in certain cases as can
be seen from the fourth example in Table [6] Hence we chose to discontinue this approach.

Utterance Text

Go to the control panel

Place the control panel on the laser
Fire the laser using the laser monitor
Press on the red button

Predicted Action - Object pairs
<go to,[control panel]>
<place,[control panel, laser]>
<fire, [laser, laser monitor]>

null

Template Matched

<goto, control panel>

<pickup, control panel> ,<place, laser>
<toggle, laser monitor>

null

Table 6: Qualitative Evaluation of the SRL model. Please note that all example utterances in this table were
created by the ScottyBot team

Generative Action-sequence Prediction. As our data is generated using templates, we partition the
templates to investigate how the model would perform on templates in the training data and templates
absent from the training data. We train a model using templates from version 1 and version 2 (denote
it as model A), and another one using all the templates from version 1 to version 4 (denote it as model
B).

Table 7: Evaluation results of general commands. We use two metrics for evaluation: EM (exact
match) and WER (word error rate). We evaluate two model variants trained on different training sets,
where the second training set is a super-set of the previous one.

Model TestSplit EM WER
A A 969 0.6
A B 819 7.1
B B 964 09
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Results on General Commands. We first test the models on general commands, which involves
requiring the robot to perform some set of operations upon certain objects (or itself) in the environment.
For this experiment, we denote the test data with the templates of version 1 and 2 as test split A, and
the test data with the templates of version 1 through 4 as test split B, in accordance with the naming
of model variants. As shown in Table[7} from the performance of model A evaluating on test split
A and model B evaluating on test split B, we can conclude that model capacity is not a bottleneck,
as the model maintain good performance on in-domain test data with the addition of new templates.
Also, model A performs worse on test split B than model B. This is also expected, since test split B
contains unseen templates for model A.

Table 8: Evaluation results of model B on some of the typical templates. We use two metrics for
evaluation: EM (exact match) and WER (word error rate).

\ Template Input \ Template Output | EM | WER |

Pick up <objectl>. Go to the
<object2>. Place on the <ob- | 99.4 0.2
ject2

Put the <object1> in the <ob-
ject2

<Pickup> <color> <ob- | Go to the <object2>. Open
jectl> out of the <ob- | <object2>. Pick up <color> | 100.0 | 0.0
ject2:Openable> <object1>

<Pickup> <color> <ob- | Go to the <object2>. Open
jectl> out of the <ob- | <object:2>. Pick up <color> | 100.0 | 0.0
ject2:Openable> <object1>.

As shown in Table 8} we list some of the templates that we use for generating the data as well as the
templated output and the model’s performance on the data constructed from these templates. Our
template covers not only varieties of predicates and objects, but also attributes. We also examine the
error cases and find that some of them are caused by the inconsistent use of articles in the training
data. For example, instead of generating go fo the counter, the model generates go to counter. But
these would not affect model’s downstream behaviors, as we have the NER model in place to extract
the information we need for command execution.

Table 9: Evaluation results of special commands. We use two metrics for evaluation: EM (exact
match) and WER (word error rate). We evaluate model B on different special commands.

Command Type @ EM  WER
Greetings 100.0 0.0

Cancel 100.0 0.0
Out-of-domain  100.0 0.0

Results on special commands Apart from the general commands, we also designate several special
classes for multiple purposes. These include: (1) greetings (e.g., "Hello!" and "Hi there.") (2)
the meta-command "cancel", which is used in the clarification phase, in the case where the user
do not wish to continue with the current command. The "cancel" command clears the clarification
queues and state-tracking buffers. (3) out-of-domain utterances, i.e. utterances that are not general
commands and also do not fall within the previous cases, they are essentially utterances that are
irrelevant to task performing. As shown in Table [9} our model is able to achieve perfect performance
upon these commands.

Few-shot example phrases for each of the above 3 special commands were generated using Chat-GPT
with the following prompts:
1. Greetings: Write 50 different greeting phrases a user might say to a generic chatbot

2. Cancel: Write 20 different phrases to ask a bot to stop doing something, like "forget it", or
"wait, no not that"

3. Out-of-domain: Write 100 phrases of normal statements people make in daily conversation,
don’t put any questions
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We train a simple DistilBERT model with a classification head to perform four-way classification
between the three special commands and the general instruction commands. In case of the three
special intents, we respond from a repository of default dialog responses. The generative model
inference code for action subsequence planning is only called in case of instructional language
(general command templates).

Named Entity Recognition We performed a quantitative as well as a qualitative evaluation of the
NER model. In the synthetic data that was generated from templates there were about 70K annotated
examples after deduplication. However, the number of examples per template were not uniform. For
instance, the template "<action:1:!place> the <color> <object:1>" had the maximum number of
examples (3800) associated with it owing to the high number of combinations possible with the given
placeholders. However, a static template such as "Look up" only had 1 example associated with it.

To mitigate this uneven data distribution we up-sampled all the minority templates to have a minimum
of 1000 examples. In order to do so with a probability p we concatenated an example from the
minority template with another example from a different template randomly chosen from amongst
the set of available templates using the ‘AND’ token and with probability 1 — p we retained the same
example.

After up-sampling, we obtained about 140K examples. With a 90:10 train-test split we utilized around
126K examples for training and around 14k examples were held out for validation. The NER model
classifies every token into one of 11 possible classes. Please note that the annotations follow the
B-I-O standard for labeling. The results of quantitative evaluation of the NER model are depicted in
Table|10]and the results of qualitative evaluation are depicted in Table

We find that the NER model is mostly accurate on all the classes. However there are instances in
which the NER model incorrectly classifies a token such as in the case of the fourth example in Table
[TT} However these minor errors can be easily handled through the verification logic.

Table 10: Quantitative Evaluation of NER model on held out test set

Label Precision Recall F1 Acc
B-ACT 1.0 1.0 1.0 1.0
I-ACT 0.9885 0.9926 0.9905 0.9926
B-OBJ 1.0 0.9998 0.9999 0.9998
1I-OBJ 1.0 1.0 1.0 1.0
B-ATTR 1.0 1.0 1.0 1.0
B-DIR 1.0 1.0 1.0 1.0
B-LOC 0.9893 1.0 0.9946 1.0
I-LOC 1.0 1.0 1.0 1.0
B-MAG 1.0 1.0 1.0 1.0
I-MAG 1.0 1.0 1.0 1.0
(@) 0.9979 0.9967 0.9973 0.9967

Table 11: Qualitative Evaluation of the NER model
Utterance Text Predicted NER TAGS
go to the laser monitor | B-ACT I-ACT O B-OBJ I-OBJ
rotate left by 60 degrees | B-ACT B-DIR O B-MAG I-MAG
pick up the red box B-ACT I-ACT B-ATTR B-OBJ
go to the office B-ACT O O B-LOC

Clarification Question Answering Our agent will ask clarification questions if it needs more
information to continue the task. For example, when user says "go to the computer”, and there are
two computers in the agent’s sight, the agent will ask "what is the color of the computer?" The
next response of the user is supposed to be the answer to this question. Here we use a EQA model
(introduced in Section to understand and extract the answer from the user’s response. In the
previous example, the input to EQA would be {"context": "It is blue." "question": "What is the color
of the computer?" }, and the model should output "blue".
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We use templates to generate over 6800 QA pairs on the objects and properties in the game setting to
evaluate the pre-trained EQA model. It has on average, an F/ score of 0.72 and Exact Match Rate of
0.62.

Phonetic and Synonym Matching For the actions and objects in the user utterance tagged by the
NER model, we find the matching actions and object in the knowledge base. To resolve the phonetic
error with the ASR, we find the action/object that has most similar double-metaphone representation
in the knowledge base. To calculate the similarity, we use the Levenshtein distance. We generate
synthetic data of utterances with objects and actions replaced with phonetically similar words. With a
threshold of 55 on the Levenshtein distance, we get an accuracy of 97 % and with a threshold of 70,
we get an accuracy of 87%.

To test the synonym matching using the MNLI model, we generated synthetic data of
the form "Action Objectl. [SEP] Action Object2" and "Actionl Object. [SEP]

Action2 Object" with labels O, 1, 2 corresponding to contradiction, neutral and entailment, re-
spectively. With the model fine-tuned on this data, we got an accuracy of 98% on the test dataset,
consisting of 150 data-points. Table [12|shows qualitative results of phonetic and synonym matching.
The highlighted words in the left column are the actions/objects that are matched with highlighted
actions/objects from the knowledge base.

Table 12: Qualitative Evaluation of Phonetic and Synonym Mapping

Utterance Text Corrected Text

pore coffee in the mug | pour coffee in the mug
put it in the ball put it in the bowl

go to the seat go to the chair

brake the closet break the wardrobe

5.2 Navigation Modules

The MaskRCNN model was evaluated on a test dataset of 60,000 images obtained from the latest build
of the Arena simulator. The model was evaluated using two different metrics, uberMAP and cocoMAP,
on all classes, as well as individual subsets of small, medium, and large classes. Classification of
small, medium, and large is done as follows:

* small: 0 < area < 1296 pixel squares
* medium: 1296 < area < 9216 pixel squares
* large: 9216 < area < 90000 pixel squares

Table 13: Evaluation Results
MaskRCNN Model Evaluation Results

Number of uberMAP cocoMAP

Classes Small | Medium | Large | Small | Medium | Large
86 0914 | 0921 0.849 | 0.545 | 0.672 | 0.690

6 Conclusion and Future Work

Our team’s primary contribution to the Alexa Prize Simbot Challenge has been in the area of vision-
language navigation. Specifically, we focused on modularizing this process and introducing a novel
approach to natural language understanding. Our approach involves using generative modeling to
break down complex natural language utterances into simple actionable statements, which we ground
in visual cues from state-of-the-art object detection and instance segmentation models. We ensure
that the system maintains historical information without relying on large language models, which we
believe makes it more robust in situations where these models may not be accurate or have access to
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all relevant information. We have tested our approach thoroughly in simulated environments, and
we believe that our work represents a fresh approach over existing approaches to vision-language
navigation

With respect to future work, we would like to focus our efforts towards improving our bot’s perfor-
mance through multiple enhancements. We would like to train our own vision model that is able to
identify occluded object instances better. We would also like to improve our clarification module,
through the integration of the "highlight" functionality. This would additional options to choose
multiple highlighted options on the screen, or cycling through multiple options one-by-one.
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