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Abstract

In this technical report, we present EMMA, a foundation model for embodied,
interactive, and multimodal task completion in 3D environments. Different to
previous Vision+Language (V+L) models, EMMA is an encoder-decoder archi-
tecture that encodes both images and videos (i.e., sequences of frames), and it is
able to generate natural language tokens conditioned on specific task prompts. By
treating every task as a natural language generation task, EMMA learns a language
of actions that can be used for different tasks in the pipeline of an embodied AI
system. We perform an extensive experimental evaluation to demonstrate the per-
formance of our foundation model. First, despite being substantially smaller than
other V+L models, EMMA is competitive (or superior) in terms of performance
on several V+L state-of-the-art benchmarks demonstrating the value of our model
design and multitask pretraining regime. Additionally, we showcase that a model
trained on Alexa Arena data can perform zero-shot cross-domain transfer when
asked to perform the same tasks in the real world. Moreover, EMMA shows strong
generalization performance in novel missions with real users, achieving an average
score of 4.06 (out of 5) over the generalization phase that lasted between the 16th

and 22nd of March 2023.

1 Introduction

Language is a fundamental aspect of human communication and a critical component of human-
robot collaboration. Humans use language to convey complex information and instructions or pose
informative questions and clarifications that minimize task failure. As robots become more advanced,
it is essential to develop effective ways for humans to interact and communicate with them. By
incorporating language capabilities into robots, they can become more useful and adaptable to
different contexts, making them valuable assets in various collaborative tasks. Any advances in
improving language understanding for robots have the potential to revolutionize the way we interact
with machines and can open up new possibilities for human-robot collaboration.
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However, language-driven behavior requires systematic generalization — the ability to combine
known representations to address novel scenes, user queries, or tasks [6, 28]. To address this challenge,
we propose EMMA, a foundation model for embodied, interactive, and multi-modal task completion
that encodes scenes using fine-grained object-centric representations [44]. These representations are
learned through a multi-phase pretraining scheme, enabling our agent to capture relevant entities in
the environment and learn to reason about them. The multi-phase pretraining aims at developing
language grounding capabilities in visual environments suitable for task execution and interaction.
Differently from previous V+L models, EMMA is an encoder-decoder architecture that encodes
both images and videos (i.e., sequences of frames), and it is able to generate natural language tokens
conditioned on specific task prompts.

In the context of the Alexa Prize SimBot Challenge, we have developed an embodied AI agent with
EMMA as the core building block. We have fine-tuned EMMA for downstream tasks within the
Alexa Arena [12], while also implementing supporting features that facilitate the user experience.
Our system interacts with users to solve missions in a scalable, robust, and engaging manner.

2 Related Work

Vision-and-Language Pretraining Representation learning with transformer-based models has
been increasingly successful in many V+L tasks. Following Bugliarello et al. [9], we can define
two types of multimodal architectures: single-stream and dual-stream transformers. Single-stream
transformers (e.g., [10, 42, 43]) assume that there is a single transformer stack receiving both visual
and textual inputs. Dual-stream transformers (e.g., [2, 21, 24]) instead assume that each modality is
encoded by a modality-specific encoder whose outputs are fused by dedicated cross-modal layers.
Bugliarello et al. [9] demonstrate that dual-stream attention functions act as restricted versions of
the attention function in any single-stream transformer architecture and under controlled pretrained
settings models of both architecture types perform comparably.

Recently, there has been increasing interest in models that cast multiple tasks in unified frameworks.
Unified V+L frameworks are motivated by advances in Natural Language Processing (NLP), which
have demonstrated the possibility of treating a wide range of text-processing problems as a text-to-
text problem [31]. Based on these works, unified V+L models typically focus on text generation
conditioned on multimodal representations obtained from the visual and textual inputs. To generate
outputs that can reference objects within the image, Cho et al. [10] augment the model vocabulary
with special visual sentinel tokens to refer to specific objects. Models that encode image patches [42,
43], however, include in the vocabulary quantized location tokens, which can be used to reference
bounding boxes in the image. In EMMA, we follow the former approach by equipping our model to
generate sentinel tokens which refer to objects in the scene. In this way, we can complete important
tasks such as object manipulation.

Embodied AI Approaches A variety of benchmarks have been proposed to tackle complex tasks
for embodied AI, including visual navigation [4], and language-guided task execution [36]. Previous
approaches tackling these benchmarks can be divided into end-to-end and modular architectures.

By end-to-end architectures, we refer to models trained on demonstrations to generate a sequence
of actions. For example, Anderson et al. [4] present an attention-based RNN to generate actions for
addressing vision-language navigation tasks. Similarly, Shridhar et al. [36] present a model trained
in a multitask fashion to predict both actions and the object masks used for object manipulation.
Recently, Episodic Transformer [30] proposes an autoregressive transformer model that conditions
its action generation on language instructions, past actions, and scene features that encode the
environment state. It is important to stress that these models are trained from scratch on a specific
environment and therefore struggle to generalize to novel environments and tasks. To mitigate this,
recent attempts have adapted pretrained V+L models to embodied AI tasks. Majumdar et al. [25]
fine-tune ViLBERT [24] to complete vision-language navigation tasks. Suglia et al. [38] advances
this idea by combining the pretrained V+L model OSCAR [22] with a Transformer-XL decoder [11].

Another approach to embodied AI is to compose systems from several standalone modules; a strategy
that has performed well on the popular ALFRED challenge [36]. For example, MOCA [37] combines
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Figure 1. Overview of the architecture for the EMMA Foundation Model.

a policy module trained to predict actions with a vision module trained to predict target objects.
Blukis et al. [7] further augment MOCA with a search policy module to help guide the model towards
relevant receptacles. The FILM model proposed by Min et al. [27] continues this line of work by
introducing a hand-crafted high-level planner to generate a sequence of sub-goals. These solutions
achieve high success rates as they rely on assumptions that are potentially only valid in certain
environments; for example, the MOCA instance association trick, or the object-slicing rule in FILM.

Compared to more hand-crafted approaches that are benchmark-specific, we consider EMMA as
a foundation model for embodied AI. EMMA has the ability to solve multiple tasks from natural
language prompts, allowing it to easily adapt to the types of tasks required within an embodied AI
solution. Additionally, as it has only 113M parameters, it is easy to run at scale and still provides
competitive performance with state-of-the-art models.

3 The EMMA Foundation Model

What are the benefits of a multitask over a conventional model for human-robot collaboration? By
incorporating multiple tasks into one architecture, the agent learns to match textual descriptions
of objects to visual cues, answer questions about the scene, and describe it using language. With
complementary tasks, this approach can improve overall performance and reduce the need for
specialized models for each task, resulting in a more effective system. Additionally, the agent can
learn to perform tasks in a more human-like way, leading to better user engagement and interaction.

What tasks can benefit an embodied agent? On top of performing both navigation and manipulation
actions, a competent embodied AI agent must also simultaneously complete additional tasks, such as
visual grounding (i.e., understanding the referent from a given referential expression), visual question
answering (i.e., answering questions about a scene), and image captioning.

For these reasons, we designed EMMA: a model that uses multimodal representations from visual data
in the form of images, videos, or action trajectories paired with textual data such as question-answer
pairs and captions. EMMA is a transformer encoder-decoder trained with natural language prompts
[10, 31] to cast every task objective as a form of text generation. We designed a pretraining phase to
expose the model to various useful concepts for completing tasks in an embodied environment, such
as visual grounding, object manipulation, and scene description. After pretraining, our model can be
fine-tuned on downstream tasks, including visual ambiguity detection and action prediction.

3.1 Model Architecture

We use a transformer-based encoder-decoder architecture following BART [20]. As shown in Figure 1,
both vision and language inputs are embedded through modality-specific layers, concatenated into a
sequence of embeddings, and fed into a single-stream encoder. In contrast to typical encoder-only
models that use task-specific classification heads [22, 24], EMMA uses a shared decoder across all
pretraining tasks by formulating all tasks as language generation and incorporating sentinel tokens in
the vocabulary to allow referencing specific image frames and regions.
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Table 1. Example input and output formats used for the pretrained tasks.

Task Example input Target output

MLM Denoise: Fridge <MASK> is open Fridge door is open
ITM Assess the statement: Fridge door is open True
Captioning Describe the image Food inside a refrigerator with its door open
Dense Captioning Describe object <visual_token_5> silver fridge
Visual Grounding Locate the milk carton <visual_token_3>
VQA What color are the cabinets? White
Relationship Detection Explain how <visual_token_3> relates to <visual_token_5> Milk inside of fridge

Text Embedding For the language input, we apply sub-word byte-pair encoding [34] with a
vocabulary of 10K tokens extracted from our pretraining data. Language tokens L = {w1, ..., wL}
are represented by the sum of their word and absolute positional embedding following the approach
used by Lewis et al. [20]. We use task prefixes to prompt the model for the various tasks. We
experimented with two types of prefixes: task-specific special tokens and natural language prompts.
Task-specific special tokens are single-word descriptors (originally proposed in Cho et al. [10]), while
natural language prompts are longer, varied descriptions similar to the approach proposed by Sanh
et al. [33]. For example, the image captioning task is denoted either by the single token [Cap] or by
prompts such as “Describe this” or “Caption the image”. From early experiments, we found that both
strategies performed comparably. However, we chose to use natural language prompts because they
allowed for a more flexible interface with the model.

Scene and Object Embeddings EMMA is capable of encoding sequences of images. For each
frame Iv of the visual input, V = {I1, ...IV }, we extract a maximum of n = 36 region features
Rv and bounding boxes Bv using an object detection model. Additionally, we extract global scene
features representing the entire frame. The image embedding layers project the visual features to the
encoder’s dimensionality and add spatiotemporal positional embeddings. In particular, the positional
embeddings encode the 2D spatial position of the region within the frame by its normalized bounding
box coordinates and the temporal position within the sequence using a frame sentinel token. Finally,
to reference each object in the image, the language vocabulary is extended with visual sentinel
tokens in the form of <visual_token_i >. For example, given an image and the prompt “Describe
<visual_token_5>”, we train the model to output a caption for that specific bounding box.

3.2 Pretraining Tasks

For multitask pretraining, we formulate seven V+L tasks in a unified text-to-text framework [31].
Table 1 shows example inputs and outputs for each task. Additional material regarding the statistics
of the pretraining dataset is shown in Appendix A. Below we give a brief description of each task:

• Masked Language Modeling (MLM): Given an image description with L words, we mask each
word wi with probability 0.3.4 The model must learn to reconstruct the original input in the output
by predicting the masked words.

• Image-Text Matching (ITM): Determine whether a pair of visual-text inputs correspond to each
other, predicting true/false after we randomly (with probability 0.5) combine the visual input with
either the correct caption or a randomly drawn caption.

• Captioning: Produce a textual description of the overall image.

• Dense Captioning: Generate a caption for a specified region, denoted using visual sentinel tokens.

• Visual Grounding: This can be considered as the dual task of Dense Captioning. Given a
description of an image region, the model must predict the visual token for the region that matches
this description.

4We do not mask words within the task prefix.
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• Visual Question Answering (VQA): Provide an answer to a query on the given image. Similar
to other encoder-decoder architectures, we directly generate candidate answers as opposed to a
classification setup.

• Relationship Prediction: Generate a sentence describing the relationship between two regions of
an image. The sentence is in the format: Subject Attributes, Subject, Relationship Predicate, Object
Attributes, Object. While subject and object attributes are optional, when available, we include up
to two attributes from each attribute category.

3.3 Model Pretraining Strategy

During training, we apply teacher forcing and compute the cross-entropy loss between the predicted
and target token. As the typical length of the target prediction varies significantly per task, we ensure
the losses across tasks are comparable in scale by averaging the loss by the target sequence length
first and then again by the number of samples in the batch.

The model is trained with “mixed batches” — where each batch contains examples sampled from
any task. Assuming that task i has ni examples, the probability of sampling an example from task
i from all j tasks is pi = ni/

∑
j nj . However, as shown in Table 11, the pretraining tasks have a

large variance in the number of available examples, which can lead to poor performance on low-
resource tasks. Therefore, similar to Raffel et al. [31], we re-adjust the probability pi by limiting the
maximum number of examples allowed per task. The limit is controlled by a ratio R, which defines
how many more samples are included in training task i versus the task with the smallest quantity
of examples nmin. Therefore, ∀j tasks, the final probability of sampling an example from task i
becomes p̄i = min(ni, R× nmin)/

∑
j min(nj , R× nmin). In our experiments we set R = 3.

The model has 6 encoder and 6 decoder Transformer layers, following the architecture of BART-base
[20]. As a pretrained object detection model, we selected VinVL [44]. The model was trained on 8
NVIDIA Tesla V100 GPUs for 100K steps, using a batch size of 2048 and the AdamW optimizer
with weight decay of 0.01. We apply a linear learning rate schedule with warm-up for 10K steps and
a maximum learning rate of 1e-4.

4 The EMMA Alexa Skill
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Figure 2. Overview of the EMMA Alexa Skill.

Figure 2 provides a high-level view of the architecture of our Alexa Skill for the Alexa Prize SimBot
Challenge. Upon invoking the game, the user is provided with a view of the robot’s perspective in the
Alexa Arena [12]. The user can interact with the robot by speaking to their Alexa Echo Show device.
The Automatic Speech Recognition (ASR) model from the Alexa Skills Kit (ASK) transcribes the
spoken utterance before being passed to our Alexa Skill through the Alexa Arena. Our Skill performs
the desired actions and generates responses using Speech Synthesis Markup Language. All responses
are conveyed to the user using the ASK’s Text-To-Speech.
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Table 2. Example dialogue — not from real users — where the mission goal is to defrost a cake
with the laser and deliver it to the green desk in the main office. VAD is an abbreviation of Visual
Ambiguity Detector. The color coding of triggered pipelines references the skill overview in Figure 2.

Utterance Triggered Pipeline

User: What is the game about?

EMMA: We need to complete the tasks on your screen.

Give me step-by-step instructions and I’ll do my best to follow them.

For more hints - try reading a sticky note! So what’s next?

IN-GAME QA

User: Grab.

EMMA: Sorry I wasn’t able to understand what you need me to pick up.

Can you please repeat that for me?

IN-GAME QA

User: Grab the cake from the table

EMMA: Done

VAD: ACT

ACTION EXECUTION

User: Place it on the red shelf.

EMMA: Let’s search the robotics lab!

EMMA: I see what we are trying to do here. Do you want me to defrost the cake?

VAD: SEARCH

SEARCH ACTION EXECUTION

ACTION ANTICIPATOR

User: Yes, defrost it.

EMMA: Activating the red computer!

EMMA: Done, what’s next?

CONFIRMATION

ACTION EXECUTION

User: Now pick up the cake.

EMMA: I remember seeing the cake somewhere here.

EMMA: What are we doing with the cake?

VAD: SEARCH

SEARCH+MEMORY

ACTION EXECUTION

User: Can you go outside?

EMMA: Sorry I can’t help with that.
OUT-OF-DOMAIN DETECTOR

User: Head to the main office.

EMMA: New room - new task. Now what?
ACTION EXECUTION

User: Place the cake on the desk.

EMMA: I can see several - which one are you referring to?
VAD: CLARIFY

User: The green one. ACTION EXECUTION

Since the user is unaware of what EMMA can do, false expectations may jeopardize the interaction
and negatively affect the user experience. Therefore, it is critical to filter out-of-domain or even
adversarial utterances (Section 4.1) at the start of processing a new request. After validating the
user input, we determine how the user would like EMMA to act (Section 4.3). Along with simply
performing actions in the Alexa Arena, the best course of action might also include asking the user to
disambiguate between objects or asking for confirmation prior to performing some action.

An example dialogue - from not a real user - is illustrated in Table 2, showcasing how the pipelines
depicted in Figure 2 are triggered during a mission. Given a user utterance, we may perform
multiple consecutive actions before interacting again with the user. During this time, we continually
communicate our progress to ensure a smooth interaction. Once we have performed all the actions
that we want to do, we hand control back to the user by prompting for another instruction.

4.1 Determining When to Act

From a task-oriented perspective, when the user provides an instruction, they would reasonably expect
EMMA to perform an action in the Alexa Arena. However, we observed that not all user queries are
directly associated with the game. Therefore, before predicting the action the user would like EMMA
to perform, we first validate any user input to determine if we have received an instruction that should
not be processed by our pipeline. Examples include adversarial, out-of-domain instructions that are
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Table 3. User intents which help guide users back to the mission and their responses.

Intent How we respond to the user

<ask about game> Briefly explain the UI and how to interact with the Alexa Skill.

<ask about agent> Prompt the user for instructions, and provide some samples for EMMA to perform.

<greeting>/<admiration> Greet/Thank the user and prompt them to provide us with an instruction to follow.

<incomplete utterance> Ask the user to repeat their instruction.

not relevant to the gameplay or users requesting in-game help explaining the purpose of the game or
the agent’s capabilities.

4.1.1 Abusive or Out-of-Domain User Input

Each utterance is first filtered through several validators to ensure it is free of any profanity, complete,
and in-domain. Since EMMA is a task-oriented skill that must only perform in-domain tasks, we
refrain from predicting any actions whenever any of our filters catch the user’s instruction.

Profanity Filtering During gameplay, we do not condone the use of profanity or hate speech.
Therefore, we use a strict filter to detect any form of profanity or hate speech directed at the Alexa
skill.5 If we detect anything, we return a simple response to the user saying, “I can’t help with that.”

Transcription Verification For each utterance, the ASR generates token-level confidence scores.
After removing any detected wake words, if the average confidence across all words is below 55%, we
inform the user that we did not fully understand their request and prompt them to repeat it. As ASR
errors are a significant source of user frustration, we do not want to risk the Conversation Experience
(CX) by hallucinating the user intent and acting in an undesirable way.6

Out-of-Domain Detection A crucial aspect of controlling the way EMMA interacts with the
environment is by verifying that user input is related to the task at hand. Since EMMA is a gen-
erative model, providing an out-of-domain instruction would most likely cause the agent to act in
unpredictable ways. Therefore, it is critical to catch out-of-context instructions beforehand.

Nevertheless, it is challenging to exhaustively annotate out-of-domain utterances. To address this,
we adapted REDE [16], a few-shot model that has demonstrated strong performance in filtering
out-of-domain utterances given a small training dataset. We used a small pool of manually annotated
in-domain and out-of-domain utterances. To maintain the high performance of our detector during
the interaction phase, we regularly updated the model to account for any failure cases. On our test set,
our model achieves an F1 score of 92.30 for out-of-domain detection.

4.1.2 Guiding users and managing expectations

During user testing, we observed that many users requested help during the interaction or were
unaware of the mission objectives and the capabilities of EMMA. To address these, we trained a
Rasa [8] classifier to detect if the user was asking for help regarding the game or regarding EMMA’s
capabilities. In these cases, we prompted the user with an introductory response that clearly stated
how to view the goal of the game or what type of actions are executable by our model. Examples of
these intents and descriptions of how we responded to users are outlined in Table 3. We also added
additional intents to identify greetings, admiration, or when a given user input was incomplete due to
hesitation or an error in the transcription.

Anticipating what users want to do next We frequently observed users consistently performing
the same successive actions in specific environment states. For example, after placing an object on the
laser shelf, it is highly likely that the user would like to activate the laser. Therefore, we implemented

5We modified the profanity filter from https://github.com/neorusa/profanity-filter.
6The threshold level was determined after repeated interactions with the Alexa skill.
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an Anticipator module to predict the likely immediate next steps given the current environment state.
The Anticipator has 18 routines allowing the user to easily operate specific machines within the
Alexa Arena. Each routine maps to a sequence of natural language instructions to be executed by the
pipeline, using the same action execution process as if the user provided the instruction themselves.
If the environment matches all conditions for a given routine, the agent asks the user to confirm the
goal. For example, placing any object, such as a mug, on the laser shelf triggers the laser routine and
the question “Do you want me to heat the mug?". If the user answers affirmatively, the agent begins
the executing one-by-one a set of instructions that correspond to the routine. Although building the
routines for the Anticipator requires domain knowledge about the Alexa Arena, we found that it had
a positive impact on the CX and contributed to an increase in the overall user ratings, as it allows
players to complete subgoals more quickly.

Detecting responses to confirmation questions Our overall design relies on using clarification
questions to verify actions inferred based on the user’s instruction. EMMA selectively uses confirma-
tion questions to ask the user to verify action sequences before performing them. Therefore, EMMA
must determine whether a response indicates approval or rejection. From observing interactions,
asking confirmation questions can help minimize frustration as EMMA is less likely to execute
incorrect actions. The confirmation questions are designed to prompt the user to either confirm or
deny, however, a user can also respond indirectly to a question or provide a new instruction.

For this component, we trained SetFit [40] for 3-way classification task — outputting one of: yes,
no, or other. SetFit uses language representation from a fine-tuned sentence transformer to train a
classification head. We used this model because it can be efficiently trained in a few-shot manner. We
trained the model end-to-end for 4 epochs on a manually-curated set of 900 utterances, using a batch
size of 4 with a learning rate of 10−5 on the entire model. The model achieves an F1-score of 98.4%
on a test set of 2.6K samples.

4.2 Extracting visual features

EMMA relies on object-centric representations derived from an object detector. For our experiments,
we chose VinVL [44] because it is trained with a large-scale image dataset that goes beyond the size
of COCO; therefore, transferring to other domains can be done in a more robust manner. The VinVL
object detector model is a ResNeXt-152 variant that has been pretrained for object and attributes and
attribute detection. For our pretraining, we used the publicly-available checkpoint exclusively for
object detection. When transferring to the Alexa Arena, we fine-tuned the model with the same data
as in Gao et al. [12]. Table 5 shows superior performance of our model compared to the baseline
MaskRCNN-ResNet50 model from Gao et al. [12]. Future work will explore additional optimization
techniques to further improve the latency of this solution.

4.3 Determining how to act

Once the user input is validated, we process the utterance to determine how the user would like the
agent to act. For example, does the user want EMMA to perform an action in the environment or
search the room for an object? Additionally, EMMA must determine which is the correct next action.
We have decoupled the problem of identifying the type of instruction and predicting an action by
using two separate models: Visual Ambiguity Detector, and Policy.

4.3.1 Visual Ambiguity Detection

Given a valid user instruction, the skill can trigger a new search routine, perform an action on the
environment, or ask the user a clarification question. The Visual Ambiguity Detection model uses a
fine-tuned variant of the EMMA foundation model (Section 3) to determine the best course of action
from both the user utterance and the current view of the agent.

The model returns a sequence of tokens that follows a hierarchical intent scheme with three levels.
At the bottom level, the Visual Ambiguity Detection model generates whether the user would like
the Alexa skill to perform an action or search for an object. Secondly, the model predicts if there is
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Figure 3. Example outputs of the Visual Ambiguity Detection model for the Alexa Arena.

one object present, no objects, or multiple matches of the target object mentioned in the instruction.
Finally, it generates the name of the target object.

An example of the output of the model is shown in Figure 3. Given the current observation and the
instruction “Find the red computer”, the model returns <search><one match> laser monitor.
However, with the same image, if the instruction is “Turn on the computer”, the model outputs
<act><too many matches> computer since there are multiple valid objects (computers) in the
scene. If the instruction targets an object that is not observable, e.g. “Turn on the time machine”, the
model outputs <act><no match> time machine. Finally, for instructions that do not reference
any objects, such as “Turn around”, the model by convention generates <act><one match> with
no target object as there is no visual ambiguity.

4.3.2 Policy

Figure 4. Action Execution: given a user instruction, the model has to predict a sequence of actions.
Model predictions are conditioned upon the context experienced thus far.

The Policy model is responsible for executing the instruction from the user. Policy is a multitask
model after fine-tuning EMMA on Alexa Arena data. An example output of the Policy model is
given in Figure 4. Based on the bottom-level intent of the ambiguity model, Policy performs either 1)
visual grounding — matching the textual description of an object to the environment, or 2) action
execution — predicting the sequence of actions for the given instruction. We decoupled ambiguity
detection and action execution to have more control over our solution. Future work will explore a
single massively multi-task model trained to perform visual ambiguity detection, visual grounding,
and action execution.
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During training, we expose the Policy component to examples from both tasks. Given a search user
instruction, the objective is to determine the correct object in the scene that matches the description.
Note that since the visual grounding objective is present in the pretraining, we can reuse the same
prompts for fine-tuning.

On the other hand, the action execution task is introduced for the Alexa Arena environment. Therefore,
we add new task-specific prefixes, for instance: “Act according to the instruction”. These prefixes are
concatenated with the user instruction to form the final prompt, e.g, “Act according to the instruction:
Get the apple from the fridge.”. We train the model using teacher forcing to predict the sequence of
actions for the instruction. Each instruction in the training data can require up to six actions each
associated with new observations - frames. In order to differentiate between frames, we use special
frame tokens that correspond to their position in the sequence. If a predicted action is an object
interaction, the model needs to predict both the correct frame and visual tokens to specify the target
object. We use a full stop (“.”) as a delimiter between consecutive actions.

Finally, at inference time, the model operates within a closed loop with the Alexa Arena server, where
each action yields an online new observation. We stop predicting new actions whenever the Policy
model predicts the <stop> token.

4.3.3 Search Pipeline

The search pipeline is triggered every time the Visual Ambiguity Detector predicts that the user
intent is to search for an object or to interact with an object that is not in the agent’s view. The agent
searches the current room by iterating through selected viewpoints. At each viewpoint, it rotates
left by 90 degrees three times. In contrast to the LookAround action, which provides the agent with
panoramic views without the user observing any change, this strategy allows the user to observe the
game environment and follow the decision-making process of the agent.

Since each room has a maximum of eight viewpoints, the search routine could amount to a large
number of repetitive steps. To mitigate this, the agent selects a subset of viewpoints. We assume that
the original agent location and each viewpoint can cover an area of radius. This way, we can create a
graph where each candidate position is a node and add edges between nodes whose areas overlap.
As a result, we turn the viewpoint selection into a Maximum Vertex Coverage problem and apply a
greedy algorithm to solve it. We empirically set the radius to four, which leads to selecting up to two
viewpoints depending on the room size. After preparing the search plan, the agent starts executing it
step-by-step. Each new frame is passed to the Policy model along with the visual grounding prompt
and the search instruction. If the object is found, the search terminates; otherwise, the agent continues
searching until the plan is exhausted.

We also found that users expect the agent to have some rudimentary form of visual memory in order
to directly navigate back to objects it has already interacted with. To this end, our system keeps track
of the objects encountered in each room, as well as the location from which they were observed. For
each step, we obtain the object labels from our vision model along with their 2D coordinates. If any
of these objects is not present in the memory, we create a new entry that stores the position of the
agent along with the bounding box area. If the object is present in memory, we compare the area
stored in the entry with the area of the object from the current view. If the current area exceeds the
area written in memory, we override the position and the object area in the memory entity. Since
we are not using depth estimation, we used the area of an object as an approximation of how close
the object is to the agent at any point. The memory is queried at the beginning of the search routine.
If the target object is in the memory for the current room, the agent will navigate to the retrieved
location before beginning the search. For a set of special objects that are always located in a known
room (for example, the fridge is expected to be in the Break Room), we keep an additional memory
of prior knowledge. If the target object is in the prior memory, the agent will start the search by
navigating to the known room.

4.4 Natural Language Generation

The last step in the agent’s decision-making process is the response generation by the Natural
Language Generation (NLG) component. We opted against using a generation model to guarantee
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that the response generation process is fully controllable and that the CX is not harmed by model
hallucinations. Instead, we developed a rule-based response generator with a large set of template
responses inspired by the dynamic dialogue system behind the video game Left 4 Dead 2 [32].

At the end of each agent turn, the session state is summarized in a dictionary format, and all rules are
applied in order to collect the subset of valid candidate response templates. To favor more contextual
and novel responses, candidate templates are ordered by the specificity of the corresponding rule and
filtered based on which rules have already been used within the session. During the challenge period,
we continuously refined the agent responses based on user feedback ending up with 331 templates.

5 Dataset

We train our object detector using the provided vision dataset [12]. For the fine-tuned variants of
EMMA, we used annotations from three sources: the trajectory data [12], synthetically generated
data from the Alexa Arena, and manually-annotated sessions from interactions with the Alexa Arena.
The final version of our dataset contains 540K training and 230K validation examples.

Trajectory data The trajectory data includes 2,661 task-expert demonstrations for training and
383 for validation, where each task has been annotated by 3 humans. Each task-level annotation
corresponds to a sequence of human instructions that describe a sequence of actions. Instructions are
additionally accompanied by clarification question-answer pairs. These pairs were used to determine
the target of the Visual Ambiguity Detector as described in Section 5.1. We additionally leveraged
question-answer pairs for training our Policy, enabling the model to disambiguate given the user input
before acting. In cases of ambiguity during inference, we also included the clarification question to
the user with their answer as textual input to the Policy model.

Synthetic instructions As the trajectory data did not contain examples for certain objects, the
performance of our Visual Ambiguity Detector and Policy models was hindered during the early
stages of the competition as users explored the environment and performed actions of which the
models were unaware. Therefore, we created synthetic instructions to help our Policy model learn the
visual grounding objective and expose both models to action-object pairs that are rarely observed or
not present in the trajectory data. We continued to refine the set of synthetic instructions throughout
the competition, introducing new actions and objects following user interactions.

To create the synthetic dataset, we combined the images with object-level annotations that were used
to train the object detector with the object manifest from the Alexa Arena [12] to determine valid
action-object pairs (e.g., a fridge can be opened, closed, and can act as a receptacle for other objects).
For an action-object pair to be a suitable sample: the area of the ground-truth bounding box must
exceed the minimum threshold (Section 5.1), the object state must support the action (e.g., a fridge
must be open for the close action to be valid), and the distance between the agent and the object must
be smaller than the maximum interaction distance (3m). We limited the maximum number of objects
per action to avoid over-saturating the dataset with popular action-object pairs.

Lastly, we created instructions for each synthetic example. We manually created templates for each
action type and visual grounding example. In cases of visual ambiguity (e.g., multiple fridges in
the scene), we used positional and attribute information from the object-level annotations to refer
to the target object. We also manually filtered user sessions to derive actual instructions for these
interactions. Next, we used a T5 model [31] to paraphrase each instruction and create multiple
instructions for the same action-object pair. With this process, we created a set of instructions that are
suitable for every action-object pair.

Annotating gameplay sessions During the live interaction phase, we observed that our model
may not perform the necessary actions given a user instruction. The primary reasons for the under-
performance were incorrect visual ambiguity or policy predictions, out-of-domain errors, or wrong
ASR transcriptions. In order to improve our system, we developed a custom app using Gradio [1] to
manually-annotate offline gameplay session where our system underperformed. We used our app to
review user sessions on a daily basis and debug our system end-to-end. Overall, we created 1300
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annotations spanning 164 gameplay sessions. To ensure that the action-object pairs are represented
adequately in train and validation sets, we employ a stratified split in terms of object labels. In
particular, 80% of the annotations are used for training and 20% for validation. With this setup, we
target the performance of the Visual Ambiguity and the Policy model. The remaining components
involving profanity, out-of-domain, and confirmation models were updated in fewer annotation cycles.

5.1 Data Preparation

Object Detector We preprocess images following Gao et al. [12], but with two key distinctions:

1. We categorize Alexa Arena object types into 133 classes (instead of 86). The choice of expanding
the class set came from reviewing user sessions during the live interaction phase. We noticed that
users were referring to special objects in a particular way that led to clashes with other objects
within the same class (e.g, the red/blue shelves and the bookshelves). Using more object classes
allowed for more fine-grained object detection that improved model prediction.

2. Consequently, we also updated the minimum area thresholds for each class such that object
instances that are visible to users are properly detected by the model. We observed cases where our
model was unable to detect objects in the scene even though they were visible to the user, leading
to an overall unsatisfying experience. We used the 20% of the smallest object instances per class
and then updated certain class thresholds based on manual data inspection. After preprocessing,
we obtained 847k images, with 11k images removed during the filtering process.

Visual Ambiguity Detection The trajectory data includes only <act> type of instructions, while
synthetically generated data includes both instruction types (<act> and <search>). To decide if
there are <too many matches> for the target object, we compare its name against the detected
object labels. We found it important to apply heuristic filtering to determine if the target object is
salient. In particular, an object is considered salient if it is centered or its area is larger than all
other instances from the same class. Finally, we need to determine if the instruction is sufficient to
disambiguate the target object. For human annotations, we consider an instruction ambiguous if the
accompanying clarifications include a “Which” question marked as required. Synthetic instructions
with multiple matches are ambiguous by default. We create additional unambiguous instructions
using known object properties such as color and material, or the relative location (left or right) of the
target object.

In our data, the target object of a given instruction is always in one of the input frames. Hence we
need to generate data for the <no match> intent. For human instructions, we keep only the first
frame as input and assign the intent <one match> if the target object is located in that frame or <no
match> otherwise. For synthetic instructions, we randomly convert <one match> data into <no
match> during training. This conversion is necessary because, during inference, we want to know
whether or not the agent should first search for an object or act immediately. With a 0.3 probability,
we randomly sample an image that does not include any instance of the target object and pass it to
the model along with the original instruction.

Policy Regarding trajectory data, we decomposed the human instructions so that each training
example for action execution corresponds to a single action prediction step. In particular, a training
example has 1) a human instruction, 2) a sequence of N previous actions, 3) a sequence of the N+1
observations up to that step, and 4) the follow-up action to be predicted. For the synthetic data,
we only applied the same technique as in the ambiguity detector to simulate negative examples for
the visual grounding objective. During training with a 0.5 probability, we replace the image of an
image-text sample with a randomly sampled image from the dataset, provided that the sampled image
does not contain the target object. With this procedure, we create negative examples for the visual
grounding objective where the requested object is absent from the image. Finally, we modified the
target output of the negative example to match the absence of the object, e.g., if the referenced object
is “apple” the target output is “no apple”. Details about the distribution of the data used by both the
Policy and Visual Ambiguity Detection components can be found in Figure 7.
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6 Implementation Details

Object Detector We fine-tune the VinVL pretrained checkpoint for 300K steps with a batch size of
4. We set the base learning rate to 10−4 and weight decay to 10−5 with an SGD optimizer, decaying the
learning rate by 0.1 after steps 55K and 75K steps. During training, we use the default preprocessing
and image transformations from [14]. The model is trained on 4 RTX 2080 Ti GPUs.

Fine-tuning EMMA For the Visual Ambiguity and Policy models, we fine-tune our pretrained
model for 20K and 15K steps, respectively, using cross-entropy loss and teacher-forcing. We use a
batch size of 512 and the AdamW optimizer with learning rate 10−4, weight decay 0.01, and a linear
learning rate schedule with 10% warmup steps.

Data imbalance between tasks is a common pitfall in multitask models, as performance on a high-
resource tasks may overtake other low-resource tasks [31]. For example, in the Visual Ambiguity
Detection, our dataset is highly-imbalanced towards the <act><one match> intent, whereas, for
Policy, the goto action overpopulates the other action types. To minimize this effect, we employed
temperature-scaled sampling.

7 Evaluation

In Section 7.1, we report the performance of the pretrained model on image-based downstream tasks
to verify the quality of the learned V+L representation. We then evaluate the main models that
have been fine-tuned for the Alexa Arena in Section 7.2. In Section 7.3, we report the end-to-end
performance of our system on the trajectory data. Finally, in Section 7.4, we show the trend of user
ratings during the Alexa Prize SimBot Challenge.

7.1 Pretraining Evaluation

Table 4. Performance of the pretrained model on downstream image-based tasks. We report the
number of pretraining samples as the number of image-text pairs. OFA uses additional vision-only

and language-only data. Flamingo uses a significantly larger model and dataset.

Model # Pretrain # Params COCO Captioning VQA-v2 Ref-COCO NLVR2

Samples BLEU-4 METEOR CIDEr SPICE Accuracy Accuracy@0.5 Accuracy

VL-T5 [10] 7.6M 172M 34.5 28.7 116.5 21.9 70.3 71.3 73.6
VL-BART [10] 7.6M 172M 25.1 28.7 116.6 21.5 71.3 22.4 70.3

UniTAB [43] 8.1M 211M 36.1 28.6 119.8 21.7 71.0 84.5 —

OFA-base [42] 21.3M 182M 41.0 30.9 138.2 24.2 78.1 82.3 —

Flamingo [2] > 50B 80B — — 138.1 — 82.1 — —

EMMA 10.2M 113M 36.5 29.7 122.3 22.5 73.2 80.3 70.3

We evaluate the pretrained model on four image-based downstream tasks, which include image
captioning, visual question answering, referring expression comprehension, and natural language
for visual reasoning. For all tasks, we fine-tune the pretrained model using LM loss for up to 20
epochs. We compare EMMA with strong V+L models with a similar architecture, i.e., single-stream
encoder-decoder models. Among models of comparable size, we include OFA-base, which achieves
state-of-the-art performance. However, note that OFA-base has 1.6 times the parameters of EMMA
and is trained with nearly double the amount of data. For reference, we also add Flamingo [2] — a
V+L model which uses more data and has many more parameters (80B) than EMMA (113M).

To evaluate the ability of our model to generate image captions, we use the MS-COCO dataset [23].
We report evaluation results on the Karpathy test split [17] for BLEU-4 [29], METEOR [19], CIDEr
[41] and SPICE [3]. For the task of visual question answering, we use the VQA-v2 dataset [13] and
report the VQA accuracy [5] on the test-std set. In both tasks, EMMA achieves strong performance
on all metrics and is outperformed only by OFA-base and Flamingo.
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Referring expression comprehension is a visual grounding task that requires selecting the region
described by a given phrase. We evaluate our model’s ability to localize the correct region on the
RefCOCOg dataset [26]. A predicted region is correct if the Intersection over Union (IoU) with the
ground truth region is larger than 0.5. Our model achieves competitive performance with UniTAB,
even though it is almost half the size. Cho et al. [10] hypothesize that the reason for the poor
performance of VL-BART is that the use of absolute positional embeddings leads to memorization.
However, EMMA also uses absolute positional embeddings and achieves competitive performance.

As a benchmark of our model’s ability to reason over visual inputs, we use the NLVR2 dataset [39].
The model is provided with a caption paired with two images and has to predict whether the caption
is true given the images. VL-T5 achieves the best performance; however, our model is on par with
VL-BART, indicating the effectiveness of pretraining with respect to multimodal reasoning.

7.2 Alexa Arena Fine-tuning Evaluation

7.2.1 Object Detection

Table 5. Object detection results for small, medium and large objects. The allowed area of an object
in each category is shown in parentheses.

COCO-mAP
All Small (0-1296) Medium (1296- 9216) Large (9216-90000)

Baseline [12] 46.03 37.63 60.41 64.72
Ours 56.70 51.90 89.60 91.90

As shown in Table 5, we evaluate our object detection model using the standard COCO evaluation
metric, the Mean Average Precision (mAP), calculated by averaging the precision at IoU thresh-
olds ranging from 0.5 to 0.95 in steps of 0.05. Similar to Gao et al. [12], we set the maximum
detection proposals to 100 for evaluation. Importantly, our model is not directly comparable to the
baseline model [12], which has a smaller number of target classes, and is trained to perform image
segmentation. Nevertheless, our model achieves strong performance with approximately 40% relative
improvement for all object sizes.

7.2.2 Visual Ambiguity Detection

Table 6. Performance for Visual Ambiguity Detection per instruction type. We report the F1 score
for intent prediction and the accuracy for the predicted object entity. In addition to performance on
our entire validation set, we report separately performance on human instructions denoted by (H).

Intent F1 Object Accuracy F1 (H) Object Accuracy (H)

No Match 0.98 0.98 0.79 0.97
One Match 0.99 0.99 0.98 0.94
Too Many Matches 0.90 0.95 0.73 0.85

All 0.96 0.97 0.83 0.92

Table 6 presents the validation performance of the Visual Ambiguity Detection model. The F1 score
evaluates the prediction of the intent, while the Object Accuracy metric evaluates the model’s ability
to predict the correct object entity. Overall, the model achieves strong performance on both intent
and object prediction. We separate the performance on the subset of human annotations from the
trajectory data, which are more varied and unstructured than synthetic instructions. The model retains
good performance on “one match”, but finds “no match” and “too many matches” more challenging.

14



Table 7. Results of Policy model for action execution and visual grounding. We report the Exact
Match Accuracy, which checks if both the predicted action type and object region are correct, as well

as the standalone Action Accuracy and Object Accuracy.

Action Execution Visual Grounding

Total Unambiguous Ambiguous

Exact Action Object Exact Action Object Exact Action Object Object

EMMAfrom scratch 10.56 99.85 9.85 10.54 99.90 9.86 9.14 99.73 9.33 56.42
EMMApretr - clarif 96.05 99.91 95.72 96.57 99.87 93.19 86.96 97.00 90.07 97.59
EMMApretr + clarif 96.46 99.96 96.13 96.57 99.97 93.19 92.21 99.86 93.91 97.59

Table 8. Object accuracy of the Policy model
for in-domain and out-of-domain objects.

Task In-domain Out Of Domain

Action Execution 97.36 83.60
Visual Grounding 77.08 60.94

Table 9. Accuracy of the Policy model on the test
set from GQA-Sim2Real.

Type All Objects Arena Objects

Unambiguous 67.21 68.23
Overall 62.17 62.76

7.2.3 Policy

Table 7 shows the results for action execution and visual grounding when comparing the EMMA
Policy model against a model trained from scratch and the pretrained model without clarifications.
For action execution, we evaluate the model’s ability to predict the correct next action given the
instruction and ground-truth action history. For ambiguous instructions, the dialog history includes
the instruction followed by a clarification question and answer.

Our results validate the benefits of our pretraining procedure, especially for predicting correct object
regions. Predicting the correct action seems relatively straightforward across both models. EMMA
trained from scratch has low performance for both EM and OA for all types of instructions, while the
pretrained model performs significantly better. With regard to ambiguous instructions, our pretrained
model benefits from clarifications. We observe a flat 5.25% performance increase when including the
clarification question and user response for predicting the correct action, and a 3.84% performance
boost when identifying the correct object.

Object Generalization Across Tasks One interesting property that we noticed during the interac-
tion phase was that in some cases, the Policy model could perform cross-task generalization. For
example, a model, which was trained to predict actions involving the fridge but had never observed
the fridge in visual grounding data, was able to correctly identify the fridge for the unseen task. We
suspect that this behavior occurs when an object appears frequently on a task (T1) and is completely
absent from the other task (T2), but the model is performing reasonably well on T1 and T2.

To quantify cross-task generalization, we split our synthetic data such that the action execution and
the visual grounding tasks do not have object classes in common. We ensured that each task has a
representative number of examples and each object class in each task is also appearing frequently.
First, we sorted all objects depending on their frequency. Then, we assigned the most frequent object
class to the action execution, then the second most frequent object class to the visual grounding, and
so on until we included all the object classes. To test the generalization capacity, we created two sets
from the validation split of the synthetic data: 1) the in-domain split is derived using the method
above; 2) the out-of-domain split is created by swapping the objects between tasks (e.g, if the fridge
was assigned to the action execution, we moved it to the visual grounding). Finally, we fine-tune
EMMA for both tasks by monitoring the performance on the in-domain set.

The generalization results are shown in Table 8. Overall, the model exhibits some level of cross-task
generalization. For action execution, we notice a performance drop of 14.43% when testing on
out-of-domain objects. The performance gap is wider concerning the visual grounding (22.07%),
however, the model scores relatively low on in-domain examples. One possible explanation would be
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the low number of examples during training as well as the fact that the visual grounding task might
require additional training examples to be mastered.

Follow the instruction: Grab the white mug from the shelf. 
Output: pickup mug <frame_token_1> <vis_token_5> <stop>.
Follow the instruction: Deactivate the computer monitor. 
Output: toggle computer <frame_token_1> <vis_token_4> <stop>.
Follow the instruction: Go the white computer.
Output: goto computer <frame_token_1> <vis_token_3> <stop>.
Follow the instruction: Go to the white computer. Which computer are you 
referring it? The laptop on the left desk.
Output: goto computer <frame_token_1> <vis_token_13> <stop>.
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3

 

3

5
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Act according to the instruction: Approach the upper fridge.
Output: goto freezer <frame_token_1> <vis_token_17> <stop>. 
Act according to the instruction: Pick up the milk bottle from the fridge.
Output: pickup milk <frame_token_1> <vis_token_22> <stop>.
Act according to the instruction: Open the top left cabinet.
Output: pickup milk <frame_token_1> <vis_token_4> <stop>.
Act according to the instruction: Open the top right cabinet.
Output: pickup milk <frame_token_1> <vis_token_3> <stop>.

4

22

17

3

Figure 5. Qualitative examples of Sim2Real transfer. The EMMA Policy model fine-tuned for action
prediction on the Alexa Arena trajectory data is able to generalize to real images.

Sim2Real Transfer We can demonstrate the ability of the Policy model that has been trained on
the Alexa Arena action prediction dataset to generalize in the domain of real images. To quantify
the model’s ability, we create a synthetic evaluation dataset using scene graphs from the validation
set of the GQA dataset [15]. We generate “pick up” and “go to” instructions that refer to objects in
the scene along with their attributes. In total, we create 72, 870 test samples that include 903 object
classes. Out of these, only 56 object classes, such as “table”, “banana”, also appear in the Alexa
Arena. We evaluate the accuracy of the predicted objects using an IoU threshold of 0.5. Table 9
shows the results on all object classes, and on the object classes that overlap with Alexa Arena objects.
We observe that the performance on all objects does not significantly lag behind the performance
on Alexa Arena objects. This shows that the model is able to generalize the action prediction tasks
to new objects in the domain of real images. Since the test data are generated, we cannot guarantee
that the instructions reference an object without ambiguity when there are multiple objects of the
same class within an image. For this reason, we additionally report performance for unambiguous
instructions, meaning instructions where there is only one occurrence of the target object class, for
which we observe even better performance (see examples in Figure 5).

In the previous section, we show that end-to-end action prediction benefits from pretraining on
real images. Here we also show that fine-tuning for action prediction using data from a simulated
environment can generalize in the domain of real images without further training. This is an
encouraging result for potential future applications reinforcing the value of embodied AI simulation
platforms that facilitate research without the cost of experimenting with real robots.

7.3 Offline Mission Evaluation

We evaluated the EMMA Alexa Skill on the validation missions of trajectory data [12]. The system
is evaluated based on the Mission Success Rate (MSR) and the average Number of Robot Actions
(NRA). As this evaluation is offline, we disabled all features which led to asking confirmation or
clarification questions that would not receive an answer. Therefore, instead of asking for additional
information, EMMA must use the available information and guess the action to take. If EMMA
guesses wrong, there is no opportunity for recovery. Without opportunity to self-correct, following

16



instructions may not be relevant for the current view of the agent, which will likely lead the Policy
model to hallucinate actions to perform.

As shown by Table 10, EMMA does not perform as well as other models on this validation set.
However, we believe that this difference stems from a discrepancy between the language used in
the trajectory dataset versus how users interact with EMMA. This discrepancy arises from the fact
that the trajectory data are collected by annotators generating instructions for continuous replays
of the agent trajectories while agents experience trajectories step-by-step. For the purposes of the
Alexa Prize SimBot Challenge, we have tailored the EMMA Alexa Skill towards minimizing user
frustrations and correcting missteps through clarification questions.

Table 10. Results comparing the Mission Success Rate (MSR) and the Number of Robot Actions
(NRA) taken by EMMA to the models from Gao et al. [12] on the validation trajectory data.

Method MSR (%) NRA

Neural-Symbolic 18.19 11.82

VL-model 22.80 12.73

EMMA 16.12 13.03

7.4 Human Evaluation
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Figure 6. Illustration of EMMA’s ratings during the semifinals and generalization phase.

Figure 6 presents the average scores of our system from January 22nd 2023 to March 22nd 2023,
covering part of the customer feedback, the semifinals, and the generalization period. We tried to
continuously improve system and add useful features based on user feedback. The main features that
have had a positive contribution are the action anticipator, agent memory, and searching across rooms.
From the end of the initial customer feedback period to the beginning of the semifinals, we observe a
significant fluctuation in our daily ratings. We attribute this fluctuation to technical issues related
to the search routine. However, from the second half of the semifinals, there is a clear boost in our
ratings — especially during the generalization phase.

8 Conclusions & Future Work

We described EMMA, a foundation model for embodied task completion. We designed a careful
experimental evaluation to assess many aspects of our model design. First, we used publicly available
V+L benchmarks to assess the ability of our foundation model to perform important tasks for an
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embodied AI agent such as visual question answering and visual grounding. EMMA is superior
(or competitive) to other V+L models of comparable size. Additionally, we demonstrated strong
performance on the Alexa Arena dataset in both action prediction and visual ambiguity detection.
Finally, our model partially exhibits cross-task generalization and zero-shot transfer from the Alexa
Arena to real-world scenes.

We have identified two main areas of improvement for future work. First, during the live interaction
phase, it became apparent that guiding the user is key to an enjoyable and successful experience. We
found that some users start exploring the game — often without watching the tutorial — and require
the agent to help when they get stuck. Our current system can handle certain information-seeking
requests and provides feedback for unsuccessful actions. We plan to further improve the ability to
help the user by answering user questions about objects. Secondly, we have observed that users may
provide high-level commands that our model may not be able to perform. Therefore, we plan to
extend EMMA with the ability to execute high-level commands, which we believe will make our
system more robust and generalizable.
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A Pretraining Dataset

For pretraining, we aggregate five publicly available datasets leading to a total of 10.4M samples.
Table 11 shows the pretraining dataset statistics. As multiple datasets source the same underlying
images, extra care was taken to ensure that the model was not trained on any instances from the test
set.

Table 11. Dataset statistics for pretraining.

Dataset # Images # Samples Tasks

VQA-v2 [13] 83K 443K VQA
GQA [15] 86K 987K VQA
COCO Captioning [23] 118K 592K MLM, ITM, Captioning
Conceptual Captions [35] 3M 3M MLM, ITM, Captioning

Visual Genome [18] 108K 5.4M
MLM, Dense Captioning, Visual
Grounding, Relationship Detection

Total 3.3M 10.4M

B Policy Dataset

As mentioned in Section 5, we generate synthetic data augmentations to train the Policy model on
the tasks of action execution and visual grounding. Table 12 shows the distribution of the synthetic
samples per action type. Figure 7 shows the distribution of trajectory and synthetic samples per
object. This demonstrates the importance of data augmentations for domain-specific objects, such as
the Generator and the Embiggenator, for which the pretraining cannot offer prior knowledge.

Table 12. Synthetic examples for the action execution and visual grounding (VG) tasks. Action
execution is further decomposed into action types.

Split Break Clean Close Fill Goto Open Pickup Place Pour Scan Toggle VG

Train 11.4K 2.0K 19.6K 7.2K 83.9K 31.8K 53.7K 69.8K 8K 29.7K 28.5K 202K
Validation 2.3K 1K 4.6K 1K 47.3K 15.6K 13.2K 27.3K 2.9K 12.7K 7.1K 102K

C Natural Language Generation

Section 4.4 summarizes our template-based NLG component. Table 13 shows example rules and
templates used to respond when the system receives an AlreadyHoldingObject error code. These
examples demonstrate how the session state can be used to create from general fallback rules to very
specific conditions, allowing the generation of diverse and contextual responses.
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Figure 7. Distribution of examples for each object. Synthetic instructions are generated because the
trajectory data covers a subset of all possible object classes found within the Alexa Arena.

Table 13. Examples of the templates used by the NLG component to generate more contextual
responses given the current situation.

Description Received AlreadyHoldingObject error code from the Alexa Arena

Rule environment_intent_type == "already_holding_object"

Template <prosody rate="105\%"><amazon:emotion name="disappointed" intensity="medium">
I can't hold anything else - my inventory space is limited
</amazon:emotion></prosody>

Description Received AlreadyHoldingObject error code from the Alexa Arena after trying to pickup something

Rule environment_intent_type == "already_holding_object"
and environment_intent_action_type == "Pickup"

Template I am sorry - I can only hold one thing at a time

Description Received AlreadyHoldingObject error code from the Alexa Arena after trying to pickup a known object that
has an area > 200px2

Rule environment_intent_type == "already_holding_object"
and environment_intent_action_type == "Pickup"
and object_area != null
and object_area > 200
and environment_intent_entity != null

Template I can only hold one thing at a time so I cannot pick up the
{environment_intent_entity}.

Description Received AlreadyHoldingObject error code from the Alexa Arena after the user has directly asked us to
pickup something for the second time

Rule environment_intent_type == "already_holding_object"
and intent_type_counter["already_holding_object"] > 2
and current_turn_has_user_utterance

Template I can only hold on thing at a time - you can see what i'm holding in the bottom right
of your screen!
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