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1 FORMULA CORRECTION
Equation (9) is corrected as

log 𝑝 (X2.5D |I) = log𝑞(z)− log
����det 𝜕F

𝜕X2.5D

���� ,
and equation (13) is corrected as

Lprior = −
𝑚∑︁
𝑖=1

log𝑝 (X̂(𝑖 )2.5D |I) .

2 METHOD DETAILS
2.1 Top-𝑘 Nearest Neighbor Grouping
Given the 2D image dataset {I1, I2, . . . , I𝑚}, extract the 2D human-
object keypoints Π𝜌 (X3D) and camera pose 𝜌 = (Rcam, tcam) for
each image and obtain the intermediate representation X2.5D ac-
cording to the left side of equation (6) and equation (7) to form the
2D human-object keypoint dataset {X(1)2.5D,X

(2)
2.5D, . . . ,X

(𝑚)
2.5D}. The

top-𝑘 nearest neighbor grouping algorithm takes this 2D keypoint
dataset as input and outputs the neighbor index set for each image
{N1,N2, . . . ,N𝑚}. The detailed algorithm is shown in algorithm 1.
We state by initializing the neighbors randomly (line 1), then itera-
tively update the neighbor set by comparing the images that have
common neighbors (lines 6-20). In each iteration, the neighbor set
for 𝑝-th image is updated if the 𝑞-th image has a smaller distance to
the cluster of 𝑝-th image. We also compare the similarity between
the 𝑞-th image and the items in the cluster of 𝑝-th image to ensure
the diversity of viewports in the cluster of 𝑝-th image. The distance
𝑑 (X(𝑖 )2.5D,X

( 𝑗 )
2.5D) is calculated according to the equation (11). After

getting the neighbor index set {N1,N2, . . . ,N𝑚}, we compute the
cluster for 𝑝-th image as

G𝑝 =

{(
Π𝜌𝑖 (X3D), 𝜌𝑖 , 𝑑

(
X(𝑝 )2.5D,X

(𝑖 )
2.5D

))
|𝑖 ∈ N𝑝

}
.

These clusters are used to train the normalizing flow by minimizing
the equation (10).

Figure 1: The process of acquiring the occlusion maps.

2.2 Mean Occlusion Map
To get the occlusion map for each image, as shown in figure 1, we
first render the SMPL mesh and the object mesh onto the image
plane to get the occlusion mask of the image. The points that fall

Algorithm 1 Top-𝑘 nearest neighbor grouping with 2D human-
object keypoints.

Input: The 2D keypoint dataset {X(1)2.5D,X
(2)
2.5D, . . . ,X

(𝑚)
2.5D}, number

of iterations 𝑛, number of neightbors 𝑘 , similarity threshold 𝑠 .
Output: The neighbor index set for each image {N1,N2, . . . ,N𝑚}.

1: Randomly initialize the neighbor index set for each image
{N1,N2, . . . ,N𝑚}.

2: for 𝑝 ← 1 to𝑚 do
3: N ′𝑝 ← {𝑖 |𝑝 ∈ N𝑖 }
4: end for
5: iter← 1
6: while iter ≤ 𝑛 do
7: for 𝑡 ← 1 to𝑚 do
8: for 𝑝 ∈ N𝑡 ∪ N ′𝑡 , 𝑞 ∈ N𝑡 ∪ N ′𝑡 do
9: 𝑑max ← max𝑖∈N𝑝

1
𝑘

∑
𝑗∈N𝑝

𝑑 (X(𝑖 )2.5D,X
( 𝑗 )
2.5D)

10: 𝑖max ← argmax𝑖∈N𝑝

1
𝑘

∑
𝑗∈N𝑝

𝑑 (X(𝑖 )2.5D,X
( 𝑗 )
2.5D)

11: 𝑑𝑞 ← 1
𝑘

∑
𝑖∈N𝑝

𝑑 (X(𝑖 )2.5D,X
(𝑞)
2.5D)

12: 𝑠max ← max𝑖∈N𝑝
∥X(𝑖 )2.5D − X

(𝑞)
2.5D∥

13: if 𝑑𝑞 < 𝑑max and 𝑠max < 𝑠 then
14: Delete 𝑖max from N𝑝 and delete 𝑝 from N ′

𝑖max
.

15: N𝑝 ← N𝑝 ∪ {𝑞},N ′𝑞 ← N ′𝑞 ∪ {𝑝}.
16: end if
17: end for
18: end for
19: iter← iter + 1
20: end while
21: return {N1,N2, . . . ,N𝑚}

into the occlusion region are treated as under occlusion. We further
decide whether the front surface is under occlusion or the back
surface is under occlusion according to the mask of the person.
Here we refer to the front surface as the surface close to the image
plane, while the back surface as the surface away from the image
plane. The vertex on the front surface of SMPL mesh is treated as
under occlusion if its corresponding projected 2D points satisfy
the following conditions: (1) it fails into the occlusion region on
the image plane, and (2) the person mask at its position is zero.
The vertex on the back surface is treated as under occlusion if its
corresponding projected 2D points satisfy the following conditions:
(1) it fails into the occlusion region on the image plane, and (2) the
person mask at its position is one. The conditions for the object
are defined similarly. This occlusion information is very valuable
to help us to narrow down the contact region. After getting the
occlusion map for each image, we average them to get the mean
occlusion map for each object. In figure 2, we show the averaged
occlusion maps for each object. We can see that the mean occlusion
map closely resembles the contact map. This suggests that the
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Figure 2: Mean occlusion maps for each object. The occlusion
regions are highlighted using red color.

occlusion maps can serve as an effective substitute for contact maps
in situations where direct contact information is not available.

3 DATASET DETAILS
The annotation pipeline for the WildHOI dataset is depicted in
figure 6. We use the annotations generated by this pipeline to obtain
camera 6D pose 𝜌 = {Rcam, tcam}, 2D human-object keypoints
Π𝜌 (X3D), and the occlusion map {ch, co} for each image, which
is utilized to train the normalizing flow. To validate our method,
we manually annotate a small fraction of images to form the test
dataset. The statistics of the WildHOI dataset are shown in table
1. In this reconstruction process, two crucial details are missing:
object 6D pose annotation and human-object spatial relationship
annotation. Both of these aspects will be elaborated following.

3.1 Object 6D Pose Annotation
Object Keypoint Set Directly label the location and orientation of
the object in the image is time-consuming and laborious. One com-
mon way to annotate the 6D pose of the object is annotating the 2D
position of the predefined 3D keypoints in the image plane to build
up the 2D-3D corresponding and using the RANSAC/P𝑛P algorithm
to solve the 6D pose of the object. However, due to the various tex-
tures of objects in the wild and the occlusion between the human
and the object, it is very challenging to predefine these 3D key-
points and accurately annotate their corresponding location in the
image plane. To address these challenges, we divide the object mesh
into several parts {P1,P2, . . . } and select several keypoints for each
part P𝑖 = {x(1)3D , x(2)3D , . . . }. In figure 3, we show the keypoints that
we selected for annotation. Most keypoints are distributed on the
edge of the object mesh. Then the annotators are asked to annotate
the position of the keypoints and their corresponding part labels
K = {(x(1)2D , 𝑙1), (x(2)2D , 𝑙2), . . . } for each image.

Figure 3: The pre-selected keypoint sets for each object. Dif-
ferent parts are colored using different colors.

Solve the 6DPoseGiven the annotations {(x(1)2D , 𝑙1), (x(2)2D , 𝑙2), . . . },
the 6D pose of the object is solved by

{R★, t★} = argmin
R,t

∑︁
(x2D,𝑙 ) ∈K

min
x3D∈P𝑙

∥Π(Rx3D + t) − x2D∥2,

where Π is the camera perspective projection function. In figure 4,
we show several annotation examples. From these examples, we
can see that the effectivenees of this annotation scheme.

Figure 4: The keypoint annotations and the solved 6D pose.

Figure 5: The selected contact regions that are likely under
contact during interaction.
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Category barbell baseball bat basketball bicycle cello skateboard tennis bat violin

Training Videos 204 372 84 224 204 280 339 184
Frames 37,869 39, 871 36, 647 43, 094 101, 737 101, 643 82, 820 31, 049

Testing Videos 40 79 22 57 52 63 84 47
Frames 200 589 130 268 181 511 473 181

Table 1: The scale of the WildHOI dataset.

Figure 6: This figure shows the annotation pipeline for the WildHOI dataset. We use state-of-the-art model such as bigdetection,
SAM, ViTPose, SMPLer-X, CDPN to extract bounding boxes, masks, wholebody keypoints, SMPL parameters, and object 6D pose
for each image. The 6D pose is annotated using a human-in-the-loop annotation pipeline, which involves human annotators
validating and correcting the poses predicted by CDPN.

barbell baseball basketball bicycle cello skateboard tennis violin average

PHOSA 3.00 6.96 8.46 1.12 0.55 3.33 5.07 0.00 4.07
Ours 51.50 48.39 30.77 85.07 82.32 45.01 42.07 57.46 52.82
Draw 45.50 44.65 60.77 13.81 17.13 51.66 52.85 42.54 43.11

Table 2: The percentage of better images voted by annotator on WildHOI test dataset.

3.2 Human-Object Spatial Relation Annotation
Contact Annotation For most cases, the relative pose between
the human and the object can be tuned through the contact maps.
We predefine the possible contact regions on the surface of the
SMPL mesh and the object meshes. Then the annotators are asked
to annotate which contact region is under contact, rather than
annotating the contact points pointwisely. The contact regions we
defined are shown in figure 5. With the contact labels, we optimize

the relative pose between the human and the object by minimzing
the contact loss. Denote the predifined contact regions for the
human as {Rh1 ,R

h
2 , . . . } and the contact regions for the object as

{Ro1 ,R
o
2 , . . . }, where each contact region is a set of points. The

contact annotation is denoted as C = {(𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . }, where
each item represents the pair of the index of contact region in SMPL



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

mesh and the object mesh respectively.

Lcontact =
∑︁
(𝑖, 𝑗 ) ∈C


1
|Rh

𝑖
|

∑︁
ph∈Rh

𝑖

min
po∈Ro

𝑗

∥ph − po∥+ (1)

1
|Ro

𝑗
|

∑︁
po∈Ro

𝑗

min
ph∈Rh

𝑖

∥ph − po∥
 . (2)

The contact loss is optimized with the projection loss and the regu-
larization loss.
Annotation forNon-Contact InteractionTypes For non-contact
interaction types, we use the interactive tools to manually annotate
the 6D pose of the object in the SMPL local coordinate system. As
shown in figure 7, the annotators are asked to tune the location
and the rotation of the object to make the relative spatial relation
between the human and the object seem consistent in other views.

The annotations generated by the above annotation process are
visualized in figure 9. We use these pseudo annotations to evaluate
the performance of our method on the WildHOI dataset.

Figure 7: The interactive annotation tool for labeling the
pose of the object.

4 ADDITIONAL EXPERIMENTS
Ablation on the Number of Virtual Cameras. In table 3, we
show the reconstruction accuracy with varying numbers of the
virtual camera𝑚. As the number of virtual cameras increases from
1 to 32, both the SMPL error and the object error decrease. This
indicates that using more virtual cameras can lead to more accurate
reconstructions. However, using more virtual cameras in the post-
optimization stage leads to increased computational complexity
with only marginal improvement in accuracy. The optimal choice
for the number of virtual cameras is 4-8, striking a balance between
accuracy and computational efficiency.

𝑚 1 4 8 16 32

SMPL (cm) ↓ 4.77 4.59 4.55 4.54 4.52
Obj. (cm) ↓ 13.21 11.55 11.32 11.32 11.23

Table 3: The impact of the numbers of the virtual camera on
the reconstruction accuracy.

Human Evaluation on WildHOI-test dataset We also conduct
the human evaluation on the WildHOI-test dataset. We render the
reconstruction results of different methods onto different view-
ports, shuffle the results, and deliver the results to annotators for
evaluation. Annotators are asked to indicate which reconstruction
is better. At the same time, if the reconstruction results of both
methods are similar or both do not meet the requirements and can-
not be distinguished, the annotators should mark them as a draw.
The final human evaluation score is computed as the fraction of
better images. In table 2, we show the fraction of the better images
selected by the annotator. The last line represents a draw, i.e. the
annotator cannot distinguish which is better. It can be observed
that our method outperforms PHOSA in most categories, especially
on the bicycle and cello categories. More qualitative comparisons
are shown in figure 10, 11, 12. However, our method fails in some
cases, as shown in figure 8.

image PHOSA Ours PHOSA Ours

Figure 8: The failures of our method.
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Figure 9: Visualization of the annotation in the WildHOI-test dataset.
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Figure 10: Qualitative Comparison on WildHOI dataset.
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Figure 11: Qualitative Comparison on WildHOI dataset.
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Figure 12: Qualitative Comparison on WildHOI dataset.
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