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A Broader impact

A.1 Positive potential impacts

At the very outset, our problem aims at selecting exogenous events from a stream of events. Such a
problem has a wide variety of applications in real life,
Preventing misinformation flow. Misinformation is easily spread in social networks, which often
has a negative impact on people’s social life. For such a information cascade like fake news/rumor,
our algorithm may be useful.
Viral marketing. While making marketing strategy, we can use our approach to get to know which
user is more sensitive to exogenous events. These users can be used as seed users for improvement in
viral marketing.
Improvement in cyber security. Cyber attacks cause tremendous damage to institutes and individu-
als. For example, DDoS attack sends a very large number of malicious requests in a short period of
time with unpredictable pattern. Unlike real requests which are often relevant to historical events,
these malicious requests usually shows exogenous pattern as they are history-irrelevant. In the context
of cyber security, we can detect potential malicious events and prevent system from attacks using our
model.

A.2 Negative potential impacts

Privacy concerns. Our model can select exogenous events from a series of events, and can para-
metrically estimate relationship between users. Currently, it does not protect privacy of users. In
particular, the social relationship of users can be leaked through the parameters of the trained model.
Therefore, it would be important to design privacy preserving event selection method using tools
from differential privacy.

Bias introduced in our model: We have not tried anything to eliminate the unfairness and bias in
training and prediction process. As a result, it can introduce bias into the algorithm. For example, in
a cascade extracted from a community that is broadly represented by a specific group of persons, our
model can label an event triggered by a user from any other group as exogenous. Therefore, it would
be an important task to introduce fairness within the algorithm.
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B Discussion on problem setup

B.1 Benefits and limitations of our approach

Benefits of our approach. Existing approaches [21, 12] model the arrival time dynamics of an event
using superposition of exogenous and endogenous intensity functions, i.e., µ+ λθ . We first put such
an approach in context. More specifically, we first consider a partition (S,HT \S) for endogenous
and exogenous events. Then, we model the density of arrival times e = (y, t) as,

pθ(S,HT \S) = µ|S|
∏

e∈HT \S

λθ(t |Ht) exp

(
−µT −

∫ T

0

λθ(τ |Hτ )dτ

)
. (13)

Now, if the prior probability of partition (S,HT \S) is pprior(S), then the likelihood of (only) the
arrival times of the observed events becomes

pθ(HT ) =
∑
S∈2HT

pθ(S,HT \S) pprior(S)

=
∑
S∈2HT

[ ∏
e∈HT

µI[e∈S] [λθ(t |Ht)]I[e 6∈S]pprior(S)

]
× exp

(
−µT −

∫ T

0

λθ(τ |Hτ )dτ

)
(14)

Now, if pprior(S) is constant, i.e., pprior(S) = pprior, then it immediately gives,

pθ(HT ) ∝
∏
e∈HT

(µ+ λθ(t |Ht)) × exp

(
−µT −

∫ T

0

λθ(τ |Hτ )dτ

)
(15)

Hence, such an approach [21, 12] captures a particular case when every partition is equally likely,
which may not be true in general. To avoid this problem, we aim to find S which maximizes the
underlying likelihood function.

Furthermore, note that the exogenous distribution parameters µ and q in existing works [21, 12] are
often treated as deterministic variables, which, however, cannot characterize the uncertainty of the
exogenous influence. We tackle this challenge by modeling the uncertainty, i.e.,

λ(t) = µ ∼ Gamma(αλ, βλ), m(y) = q ∼ Beta(αm,y, βm,y). (16)

Limitations of our approach. Apart from the limitations addressed in Appendix A and Conclusion
in the main paper, another key technical limitation of our approach is lack of inherent scalability. The
stochastic greedy algorithm does reduce the running time by comparing across a limited amount of
data. However, such an approach can often affect the predictive performance. It would be interesting
to consider similar setup like [39] to improve scalability of our method.

B.2 Hardness analysis

Proposition 1 Solving the optimization problem in Eq. (5) is NP-hard.

Proof. We consider the particular case of MTPP models where the intensity function is constant.

λθ(t |Ht) = λ0, mθ(y |Ht) = mθ(y |Ht). (17)

Moreover, we consider the special case when C = {+1,−1, 0} and

mθ(y |Ht) =

{
e−(1−y·θ>φ(Ht))2 if, y ∈ {+1,−1}
1−∑y∈{−1,+1} e

−(1−y·θ>φ(Ht))2 if, y = 0,
(18)

λ0 = exp(E[log(µ · q)]). (19)

Here φ(Ht) is a representation vector for Ht. We assume that (i) Φ =
[φ>(Ht1);φ>(HtN ); ..;φ>(HtN )] has full row rank N and (ii) HT only contains marks
y ∈ {+1,−1} and (iii) ρ = 0. Then the log-likelihood (6) becomes:
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∑
ei∈HT \S

[log(λθ(ti |Hti)) + logmθ(yi |Hti)]−
∫ T

0

λθ(τ |Hτ ) dτ + |S|E[log(µ · q)]− TE[µ]

=
∑

ei∈HT \S

logmθ(yi |Hti)− T λ0 + |S|E[log(µ · q)] + (|HT | − |S|) log λ0 − T E[µ]

(i)
= −

∑
ei∈HT \S

(1− yi · θ>φ(Hti))2 − T λ0 − T E[µ] (20)

The equality (i) is obtained by putting the particular instance described in Eqs. (18) — (19). The
next steps of the proof follows directly from De et al. [15, Proof of Theorem 1], which is described
below to make the proof self-contained. More specifically, we first define θ0 = Φ−1

R (y − r), where
y = [y1, .., yN ], r ∈ RN . where Φ−1

R is the right inverse of Φ an r is an arbitrary real vector. A trite
calculation shows that θ>0 φ(Hti) = yi − ri. Finally, if we define a new variable θ′ = θ − θ0, then
we can write as follows:

(1− yi · θ>φ(Hti))2 = (1− yi · θ′>φ(Hti)− y2
i + yiri)

2

= (ri − θ′>φ(Hti))2 (Since yi ∈ ±1) (21)

Hence, maximizing the objective defined Eq. (20) w.r.t. θ and S is equivalent to minimizing the∑
ei∈HT (ri − θ′>φ(Hti))2 which is known to be NP-hard [4].

C Proofs of the technical results in Section 4

Unless otherwise stated, we denote ‖·‖ as ‖·‖2 and a � b means pointwise inequality, i.e., ai ≥ bi
for all i ≤ dim(a)

C.1 Monotonicity and approximate submodularity for linear MTPP

Theorem 3 Assume that the endogenous events follow a linear MTPP (9). Then the set function
F (S) defined in Eq. (7) is monotone in S if ρ ≥ ρmin = (0.5/e) · κ2

max,λ · exp
(
− 2E[log(µ · q)]

)
,

where µ and q are the intensity and the mark distribution for the exogenous events and κmax,λ =

maxt≤T ‖κλ(t)‖22.

Proof. From Lemma 9 in Appendix D, we have that: for e = (y, t) 6∈ S,

F (S ∪ {e})− F (S) ≥ ρ ‖θ∗(HT \S)‖2 − log λθ∗(HT \S)(t |Ht) + E[log(µ · q)]
≥ min

θλ
[ρ ‖θλ‖22 − log(θ>λ κλ(t))] + E[log(µ · q)] (22)

(i)

≥ min
θλ

[
ρ

(
θ>λ κλ(t)

)2
‖κλ(t)‖2

− log(θ>λ κλ(t))

]
+ E[log(µ · q)]

≥ min
x

[
ρx2

κ2
max,λ

− log(x)

]
+ E[log(µ · q)]

(ii)

≥ E[log(µ · q)] + log

[√
2eρ

κ2
max,λ

]
> 0, (23)

where inequality (i) is due to Cauchy-Schwartz inequality
∥∥a>b∥∥

2
≤ ‖a‖2 · ‖b‖2; inequality (ii) is

due to Proposition 11 and the last inequality holds true by assumption on ρ.

Theorem 4 Given that the same conditions in Theorem 3 as well as
∥∥∫∞

0
κλ(t)dt

∥∥ ≤ K < ∞,
κmax,• = maxt≤T ‖κ•(t)‖, κmin,• = minv∈[d],t≤T |κ•,v(t)|. If K,κmax,•, κmin,• > 0, then the set
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function F (S) is α-submodular in S with

α ≥ αF =
log
[√

2eρ/κ2
max,λ

]
+ E[log(µ · q)]

κmax,λ

2κmin,λ
+ log

4κmax,λ

κ2
min,λ

+ log
(√

2ρκmax,λ

κmin,λ
+K

)
+

κ2
max,m log 2

2ρ +
√

κ2
max,m log 2

ρ + E[log(µ · q)]
(24)

Proof. We prove the theorem in two steps. In the first step, we bound F (S∪e)−F (S) using the proof

of previous theorem, i.e., Theorem 3. Hence, F (S∪e)−F (S) ≥ E[log(µ·q)]+log
[√

2eρ/κ2
max,λ

]
.

Next we bound F (T ∪ {e})− F (T ).

F (T ∪ {e})− F (T )
(i)

≤ ρ ‖θ∗(HT \(T ∪ {e}))‖2 − log λθ∗(HT \(T ∪{e}))(t |Ht)
− logmθ∗(HT \(T ∪{e}))(y |Ht) + E[log(µ · q)]

= ρ ‖θ∗λ(HT \(T ∪ {e}))‖2 − log
(
θ∗λ(HT \(T ∪ {e}))>κλ(t)

)
+ ρ ‖θ∗m(HT \(T ∪ {e}))‖2 + log

[
1 + exp

(
−y · θ∗m(HT \(T ∪ {e}))>κm(t)

)]
+ E[log(µ · q)] (25)

Here, inequality (i) is due to Lemma 10. Bounding F (T ∪ {e}) − F (T ) requires bounding
the two terms in Eq. (25), i.e., ρ ‖θ∗λ(HT \(T ∪ {e}))‖2 − log(θ∗λ(HT \(T ∪ {e}))>κλ(t)) and,
ρ ‖θ∗m(HT \(T ∪ {e}))‖2 + log[1 + exp

(
−y · θ∗m(HT \(T ∪ {e}))>κm(t)

)
].

Bounding the first term i.e., ρ ‖θ∗λ(HT \(T ∪ {e}))‖2 − log(θ∗λ(HT \(T ∪ {e}))>κλ(t)):
We note that

∇θλ

[
ρ |HT \(T ∪ {e})| · ‖θλ‖2

−
∑

ei∈HT \(T ∪{e})

log(θ>λ κλ(ti)) +

∫ T

0

θ>λ κλ(τ) dτ

]∣∣∣∣∣
θλ=θ∗λ(HT \(T ∪{e}))

= 0, (26)

as the corresponding maximum value occurs at θλ = θ∗λ(HT \(T ∪ {e})). Hence, we have that:

2ρ |HT \(T ∪ {e})| · θ∗λ(HT \(T ∪ {e}))

−
∑

ei∈HT \(T ∪{e})

κλ(ti)

θ∗λ(HT \(T ∪ {e}))>κλ(ti)
+

∫ T

0

κλ(τ) dτ = 0 (27)

As, κλ(·) � 0 (� indicates pointwise inequality), the above equation implies that:

2ρ |HT \(T ∪ {e})| ·θ∗λ(HT \(T ∪ {e}))

�
∑

ei∈HT \(T ∪{e})

κλ(ti)

θ∗λ(HT \(T ∪ {e}))>κλ(ti)

�
∑

ei∈HT \(T ∪{e})

κλ(ti)

‖θ∗λ(HT \(T ∪ {e}))‖1 κλ(ti)

�
∑

ei∈HT \(T ∪{e})

κλ
‖θ∗λ(HT \(T ∪ {e}))‖1 min

v∈[d],ei,ej∈HT
κv(ti, tj)

(i)

�
∑

ei∈HT \(T ∪{e})

κλ
‖θ∗λ(HT \(T ∪ {e}))‖2 min

v∈[d],ei,ej∈HT
κv(ti, tj)

(28)
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In each of the above, we consider pointwise inequality (or equality) by �. (i) is due to the fact that
‖θλ‖1 ≥ ‖θλ‖2. Eq. (28) further implies that,

2ρ |HT \(T ∪ {e})| · ‖θ∗λ(HT \(T ∪ {e}))‖2 θ∗λ(HT \(T ∪ {e})) min
v∈[d],ei,ej∈HT

κv(ti, tj) �
∑

ei∈HT \(T ∪{e})

κλ

=⇒ 2ρ |HT \(T ∪ {e})| · ‖θ∗λ(HT \(T ∪ {e}))‖22 min
v∈[d],ei,ej∈HT

κv(ti, tj) ≤

∥∥∥∥∥∥
∑

ei∈HT \(T ∪{e})

κλ

∥∥∥∥∥∥
≤ |HT \(T ∪ {e})|κmax,λ

=⇒ ‖θ∗λ(HT \(T ∪ {e}))‖ ≤ θmax,λ =

√
κmax,λ

2ρκmin,λ
(29)

Eqs. (27) and (29) suggest that,

2ρ |HT \(T ∪ {e})| θmax,λ +K ≥ κmin,λ |HT \(T ∪ {e})|
‖θ∗λ(HT \(T ∪ {e}))‖κmax,λ

=⇒ ‖θ∗λ(HT \(T ∪ {e}))‖ ≥ θmin,λ =
κmin,λ

κmax,λ

(
2ρ
√

κmax,λ

2ρκmin,λ
+K

) (30)

Hence, we bound ρ ‖θ∗λ(HT \(T ∪ {e}))‖2 − log(θ∗λ(HT \(T ∪ {e}))>κλ(t)) as follows:

ρ ‖θ∗λ(HT \(T ∪ {e}))‖2 − log(θ∗λ(HT \(T ∪ {e}))>κλ(t))

≤ ρ θ2
max,λ − log[‖θλ‖1 κmin,λ]

(i)

≤ ρ θ2
max,λ − log[‖θλ‖2 κmin,λ]

≤ ρ θ2
max,λ − log [θmin,λ κmin,λ]

=
κmax,λ

2κmin,λ
+ log

(
κmax,λ

κ2
min,λ

)
+ log

(
K +

√
2ρκmax,λ

κmin,λ

)
. (31)

Here inequality (i) is due to the fact that ‖θλ‖1 ≥ ‖θλ‖2.

Bounding the second term i.e., ρ ‖θ∗m(HT \(T ∪ {e}))‖2 + log[1 + exp
(
−y · θ∗m(HT \(T ∪ {e}))>κm(t)

)
]:

First, we note that

ρ|HT \(T ∪ {e})| ‖θ∗m(HT \(T ∪ {e}))‖2

≤ ρ|HT \(T ∪ {e})| ‖θ∗m(HT \(T ∪ {e}))‖2

+
∑

ei∈HT \(T ∪{e})

log[1 + exp
(
−yi · θ∗m(HT \(T ∪ {e}))>κm(ti)

)
]

(i)

≤ |HT \(T ∪ {e})| · log 2

=⇒ ‖θ∗m(HT \(T ∪ {e}))‖ ≤
√

log 2

ρ
, (32)

where (i) is due to the fact that:

ρ|HT \(T ∪ {e})| ‖θ∗m(HT \(T ∪ {e}))‖2

+
∑

ei∈HT \(T ∪{e})

log[1 + exp
(
−yi · θ∗m(HT \(T ∪ {e}))>κm(ti)

)
] (33)

≤ ρ× 0 +
∑

ei∈HT \(T ∪{e})

log[1 + exp
(
−yi · 0>κm(ti)

)
] = |HT \(T ∪ {e})| · log 2 (34)

which is because, θ∗m(HT \(T ∪ {e})) is the minimum of Eq. (33).
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Hence, we have that:
ρ ‖θ∗m(HT \(T ∪ {e}))‖2 + log [1 + exp

(
−y · θ∗m(HT \(T ∪ {e}))>κm(t)

)
]

≤ ρ ‖θ∗m(HT \(T ∪ {e}))‖2 + log 2 + θ∗m(HT \(T ∪ {e}))>κm(t) + (θ∗m(HT \(T ∪ {e}))>κm(t))2/2

≤ ρ ‖θ∗m(HT \(T ∪ {e}))‖2 + log 2 + ‖θ∗m(HT \(T ∪ {e}))‖κmax,m + ‖θ∗m(HT \(T ∪ {e}))‖2 κ2
max,m/2

≤ 2 log 2 + κ2
max,m log 2/(2ρ) + κmax,m

√
log 2/ρ (35)

First we add the bounds in Eqs. (31) and (35) and then put it into Eq. (25) to obtain the required
bound on F (HT \(T ∪{e}))−F (T ). The above result together with the bound on F (S ∪ e)−F (S)
gives us the required bound on α.

C.2 Monotonicity and approximation guarantee for nonlinear MTPP

Theorem 5 Assume that the endogenous events follow a nonlinear MTPP with exponentially bounded
intensity function, as described in Eq. (10) with λmax ≤ exp(−E[log(µ · q)]). Then the set function
F (S) defined in Eq. (7) is monotone in S if ρ ≥ 0.25 a2/ (log [1/λmax] + E[log(µ · q)]), where µ
and q are the intensity and the mark distribution for the exogenous events.

Proof. From Lemma 9 in Appendix D, we have that: for e = (y, t) 6∈ S,
F (S ∪ {e})− F (S) ≥ ρ ‖θ∗(HT \S)‖2 − log λθ∗(HT \S)(t |Ht) + E[log(µ · q)]

≥ min
θ

[ρ ‖θ‖2 − log λmax − a ‖θ‖] + E[log(µ · q)]

≥ −a
2

4ρ
+

[
log

(
1

λmax

)
+ E[logµ+ log q]

]
> 0 (36)

The last inequality follows from the assumption of ρ. This readily proves the theorem.

Theorem 6 Given the same conditions in Theorem 5 and
∫∞

0
‖λ0(t |Ht)‖2dt ≤ Λmax <∞, the set

function F (S) is α-submodular in S with

α ≥ αF =
log
[
exp

(
−a2E[log(µ · q)]/4

)
/λmax

]
Λmax + (a+ b)

√
log(1/λminmmin) + Λmax

ρ
+ 2 log(1/λminmmin) + E[log(µ · q)]

(37)

Proof. In the first step, we bound F (S ∪ e) − F (S) using the proof of previous theorem, i.e.,
Theorem 5. Hence, F (S ∪ e) − F (S) ≥ log

[
exp

(
−a2E[log(µ · q)]/4

)
/λ0

]
. Next we bound

F (T ∪ {e})− F (T ). We observe that:
F (T ∪ {e})− F (T )

(i)

≤ ρ ‖θ∗(HT \(T ∪ {e}))‖2 − log λθ∗(HT \(T ∪{e}))(t |Ht)
− logmθ∗(HT \(T ∪{e}))(y |Ht) + E[log(µ · q)]

(ii)

≤ ρ ‖θ∗(HT \(T ∪ {e}))‖2 + (a+ b) ‖θ∗(HT \(T ∪ {e}))‖ − log(λminmmin) + E[log(µ · q)]
(38)

Here, inequality (i) is due to Lemma 10 and inequality (ii) comes from the fact that λ ≥
λ0 exp(−a ‖θ‖) and m ≥ exp(−b ‖θ‖). In order to bound Eq. (38), we bound ‖θ‖. To this
aim, we have:

ρ ‖θ∗(HT \(T ∪ {e}))‖2 |HT \(T ∪ {e})|
≤ ρ ‖θ∗(HT \(T ∪ {e}))‖2 |HT \(T ∪ {e})|
−

∑
ei∈HT \(T ∪{e})

log [λθ∗(HT \(T ∪{e}))(ti |Hti) ·mθ∗(HT \(T ∪{e}))(yi |Hti)]

+

∫ T

0

λθ∗(HT \(T ∪{e}))(τ |Hτ ) dτ (39)
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which is less than the value of the objective given by θ = 0. Thus,

ρ ‖θ∗(HT \(T ∪ {e}))‖2 |HT \(T ∪ {e})| ≤ |HT \(T ∪ {e})| log(1/λminmmin) + Λmax

=⇒ ‖θ∗(HT \(T ∪ {e}))‖2 ≤
log(1/λminmmin) + Λmax

ρ
(40)

To this end, we have:

F (T ∪ {e})− F (T ) ≤ Λmax + (a+ b)

√
log(1/λminmmin) + Λmax

ρ

+ 2 log(1/λminmmin) + E[log(µ · q)] (41)

The above result together with the bound on F (S ∪ e)− F (S) gives us the required bound.

C.3 Representation of MTPPs using exponential bounds

Here, we discuss that under some mild conditions, popular MTPP models [17, 89] can admit
exponential bounds when the hidden states hi are bounded, i.e., ||hi|| < hmax. Furthermore, we
assume that ti − ti−1 ≤ δmax, t0 > tmin > 0.
Exponential boundedness of RMTPP. RMTPP [17] considers exponential intensity function, i.e.,

λθ(ti+1 |Hti) = exp(w>hi + ν(t− ti) + v). (42)

Then we have:

exp(−(hmax + δmax + 1)‖[w, ν, v]‖2) ≤ λθ(ti+1 |Hti) ≤ exp((hmax + δmax + 1)‖[w, ν, v]‖2)
(43)

Exponential boundedness of THP. In Transformer Hawkes Process [89], a softplus activation
function is used for intensity modeling. More specifically, we have:

λθ(ti+1 |Hti) =

J∑
j=1

Softplus
(
αj
t− ti
ti

+w>j hi + vj

)
(44)

In the following, we formally prove the exponential bounds for THP.

Proposition 8 Given a Transformer Hawkes Process [89] with the intensity function (44). If in
Eq. (44), we have uj = αj

t−ti
ti

+w>j hi + vj ≥ umin > 0; the hidden states hi are bounded, i.e.,
||hi|| < hmax; and, ti − ti−1 ≤ δmax, t0 > tmin > 0, then we have:

λ0 exp(−a||θ||2) ≤ λθ(ti+1 |Hti) ≤ λ0 exp(a||θ||2) (45)

where, λ0 = J , a =
√
D (2 + log 2/umin)(δmax/tmin + hmax + 1).

Proof. Define ω = 2 + log 2/umin Due to the fact that 1− 1/x ≤ log(x) ≤ x− 1, we have:

exp(uj)

1 + exp(uj)
≤ Softplus(uj) ≤ exp(uj)

(i)
=⇒ 0.5 · exp(−2|uj |) ≤ Softplus(uj) ≤ exp(2|uj |),
(ii)
=⇒ exp(−ω|uj |) ≤ Softplus(uj) ≤ exp(ω|uj |),

=⇒
J∑
j=1

exp(−ω|uj |) ≤ λθ(ti+1 |Hti) ≤
J∑
j=1

exp(ω|uj |), (46)

where (i) is due to the fact that

exp(−|uj |)(exp(uj) + 1) ≤ 2 =⇒ exp(−|uj |)
2

≤ 1

1 + exp(uj)
and exp(−|uj |) ≤ exp(uj),

(ii) is due to the fact that

exp(−2|uj | − (|uj |/umin) log 2) ≤ 1

2
exp(−2|uj |) (47)
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Now we have the following bounds.

J∑
j=1

exp(ω|uj |) ≤
J∑
j=1

exp

(
ω

∣∣∣∣αj t− titi
+w>j hi + vj

∣∣∣∣)
(i)

≤ J exp

ω J∑
j=1

‖[wj , αj , vj ]‖1 (δmax/tmin + hmax + 1)


(ii)

≤ J exp
(
ω
∥∥�Jj=1[wj , αj , vj ]

∥∥
1

(δmax/tmin + hmax + 1)
)

(iii)

≤ J exp
(√

Dω
∥∥�Jj=1[wj , αj , vj ]

∥∥
2

(δmax/tmin + hmax + 1)
)
. (48)

Here D is the total number of parameters, i.e., D = J(dim(w) + 2); � indicates concatenation;
inequality (i) is due to that |a · b| < ||a||1 bmax, inequality (ii) is due to that

∑
i ||ai||1 = || �i ai||1

and inequality (iii) is due to the fact that ||a||1 ≤
√

dim(a)||a||2. Moreover, we have:

J∑
j=1

exp(−ω|uj |)
(i)

≥ J exp

−ω J∑
j=1

∣∣∣∣αj t− titi
+w>j hi + vj

∣∣∣∣ /J


(ii)

≥ J exp

−ω J∑
j=1

‖[wj , αj , vj ]‖1 (δmax/tmin + hmax + 1)/J


(iii)

≥ J exp
(
−ω

∥∥�Jj=1[wj , αj , vj ]
∥∥

1
(δmax/tmin + hmax + 1)/J

)
(iv)

≥ J exp
(
−
√
Dω

∥∥�Jj=1[wj , αj , vj ]
∥∥

2
(δmax/tmin + hmax + 1)/J

)
,

≥J exp
(
−
√
Dω

∥∥�Jj=1[wj , αj , vj ]
∥∥

2
(δmax/tmin + hmax + 1)

)
, (49)

where (i) is due to A.M ≥ G.M, inequality (ii) is due to that |a · b| < ||a||1 bmax, inequality (iii) is
due to that

∑
i ||ai||1 = || �i ai||1 and inequality (iv) is due to the fact that ||a||1 ≤

√
dim(a)||a||2.

Eqs. (48) and (49) give us required parameters for the exponential bounds, i.e., λ0 and a in Eq. (45).

C.4 Approximation guarantees of Algorithm 1

We first restate the Theorem 7.

Theorem 7 Assume that the training algorithm TRAIN() in Algorithm 1 provides imperfect estimates
of the underlying model parameters, with L(θ∗(HT \S);S;HT ) − L(θ̂(HT \S);S;HT )) ≤ ε for

all S and that it runs with |V| = O
(
|HT |
k log(1/δ)

)
(cf. line number 3). Then,

E[F (S)] ≥ (1− exp (−α∗F )− α∗F · δ) · F (S∗)− kε (50)

where the expectation is taken over many draws of V (cf. line number 3), S∗ is the solution of the
optimization problem (8) and α∗F is the submodularity ratio, computed using Theorems 4 and 5.

Proof Through the rest of this proof, we denote F (S) = L(θ∗(HT \S);S;HT ) and F̂ (S) =

L(θ̂(HT \S);S;HT )). So essentially, we assume we do not have access to F but rather an ap-
proximation F̂ . In other words, we pick i ∈ argmaxj∈V\Si F̂ (j|Si). Note that for any set S,
|F (S) − F̂ (S)| ≤ ε. Hence, it implies that F (S) − ε ≤ F̂ (S) ≤ F (S) + ε. Given this, we
have that F (i|S) − 2ε ≤ F̂ (i|S) = F̂ (S ∪ i) − F̂ (S) ≤ F (i|S) + 2ε. Now given a î such that
F̂ (̂i|S) ≥ F̂ (i|S),∀i /∈ S, we have that F (̂i|S)− 2ε ≥ F (i|S) + 2ε which implies that:

F (̂i|S) ≥ F (i|S) + 4ε (51)
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Next, we study the bound for the stochastic greedy algorithm (Algorithm 1). Following Lemma 2
from [55], at every round of the stochastic greedy algorithm, and combining with Equ. (51), we have:

E(F (ai+1|Si)) ≥
1− δ
k

∑
a∈S∗\Si

[F (a|Si)− 4ε] (52)

Here ai+1 is the element picked at the ith round of stochastic greedy. Also, Si is the set obtained by
stochastic greedy in the ith step of greedy. Following from α-submodularity, we have that:∑

a∈S∗\Si

F (a|Si) ≥ αF (S∗|Si) ≥ α(F (S∗)− F (Si)) (53)

This is because while picking the best item in the stochastic greedy algorithm, we have access only to
F̂ and not F . This implies,

E[F (Si+1)− F (Si)] ≥ [(1− δ)α− 4kε/OPT]/kE[F (S∗)− F (Si)] (54)
Here, we denote F (S∗) = OPT. Next, define Γi = E[f(S∗)− f(Si)]. We then have the following
recursion:

Γi − Γi+1 ≥ [(1− δ)α− 4kε/OPT]/kΓi (55)
which implies that Γi+1 ≤ {1− [(1− δ)α− 4kε/OPT]/k}. Using induction, we get:

E[F (Sk)] ≥ (1− (1− (1− δ)α
k

− 4ε/OPT)k)F (S∗) (56)

Since δ, ε ≈ 0, this gives us an approximation factor of 1− e−α − αδ − kε/OPT .

Combining everything, this proves the result:
E[F (S)] ≥ (1− exp (−α∗F )− α∗F · δ) · F (S∗)− kε (57)
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D Additional theoretical results

Lemma 9 Given that F (S) is defined in Eq. (7), then for any e = (y, t) ∈ HT \S , we have:

F (S ∪ {e})− F (S) ≥ ρ ‖θ∗(HT \S)‖2 − log λθ∗(HT \S)(t |Ht) + E[log(µ · q)]. (58)
Here λθ and mθ can take any functional form.

Proof. Let us first define:

Lλ (θ,S;HT ) = −ρ |HT \S| ‖θ‖2 +
∑

ei∈HT \S

log λθ(ti |Hti)−
∫ T

0

λθ(τ |Hτ ) dτ (59)

Lp (θ,S;HT ) =
∑

ei∈HT \S

logmθ(yi |Hti), (60)

Hence, we have that L(•) = Lλ (•) + Lp (•)
F (S ∪ {e})− F (S)

= L (θ∗(HT \(S ∪ {e})),S ∪ {e};HT )− L (θ∗(HT \S),S;HT ) + E[log(µ · q)]
= L (θ∗(HT \(S ∪ {e})),S ∪ {e};HT )− L (θ∗(HT \S),S ∪ {e};HT )︸ ︷︷ ︸

≥0

+ L (θ∗(HT \S),S ∪ {e};HT )− L (θ∗(HT \S),S;HT ) + E[log(µ · q)]
(i)

≥
[
Lλ (θ∗(HT \S),S ∪ {e};HT )− Lλ (θ∗(HT \S),S;HT )

+ Lp (θ∗(HT \S),S ∪ {e};HT )− Lp (θ∗(HT \S),S;HT )

]
+ E[log(µ · q)]

=ρ ‖θ∗(HT \S)‖2 − log λθ∗(HT \S)(t |Ht)− logmθ∗(HT \S))(y |Ht) + E[log(µ · q)]
(ii)

≥ ρ ‖θ∗(HT \S)‖2 − log λθ∗(HT \S)(t |Ht) + E[log(µ · q)], (61)
where (i) is due to the fact that θ∗(HT \(S ∪ {e})) = argmaxθ L (θ,S ∪ {e};HT ); (ii) is due to the
fact that mθ is a probability distribution.

Lemma 10 Given that F (·) is defined in Eq. (7), then for any e = (y, t) ∈ HT \T , we have:

F (T ∪ {e})− F (T ) ≤ ρ ‖θ∗(HT \(T ∪ {e}))‖2 − log λθ∗(HT \(T ∪{e}))(t |Ht)
− logmθ∗(HT \(T ∪{e}))(y |Ht) + E[log(µ · q)] (62)

Here λθ and mθ can take any functional form.

Proof. We note that:
F (T ∪ {e})− F (T )

= L (θ∗(HT \(T ∪ {e})), T ∪ {e};HT )− L (θ∗(HT \T ), T ;HT ) + E[log(µ · q)]
= L (θ∗(HT \(T ∪ {e})), T ∪ {e};HT )− L (θ∗(HT \(T ∪ {e})), T ;HT )

+ L (θ∗(HT \(T ∪ {e})), T ;HT )− L (θ∗(HT \T ), T ;HT )︸ ︷︷ ︸
≤0

+E[log(µ · q)]

(i)

≤ ρ ‖θ∗(HT \(T ∪ {e}))‖2
− log λθ∗(HT \(T ∪{e}))(t |Ht)− logmθ∗(HT \(T ∪{e}))(y |Ht) + E[log(µ · q)]. (63)

Here, inequality (i) is due to
θ∗(HT \T ) = argmax

θ
L (θ, T ;HT ) .

Proposition 11 minx(ax2 − log x) = 1
2 + log(

√
2a).

Proof. Differentiating with respect to x, we have: x = 1/
√

2a, which readily gives the result.
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Figure 3: Variation of mean absolute error E(|t − t̂|) and mark prediction error (MPE) Pr(y 6= ŷ)
against the number of observations |HT | on synthetic data.
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Figure 4: Scalability analysis. Variation of time taken against |HT | and |S|/|HT |. In the left figure,
we set |S|/|HT | = 0.3 and in the right figure, we set |HT | = 200.

E Additional experiments on synthetic data

E.1 Quantitative analysis

Here, we investigate the variation of performance against the number of observations |HT | on
synthetic data for various values of k, the prespecified number of exogenous events. Figure 3
summarizes the results, which shows that, (i) as the number of observed events are increasing, the
prediction error decreases; and, (ii) as k increases, the prediction error increases.

E.2 Scalability analysis

Next, we analyze the time taken by our method against |HT |— the total number of observations
and |S|/|HT |, the prespecified fraction of exogenous events. Figure 4 summarizes the figure which
shows that, for a sequence with |HT | = 500, our method takes less than 13 minute to converge in
single AMD Ryzen 7 3700X CPU with 32GB RAM machine.
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Dataset |HT | |C| Class imbalance factor
Club 9409 3 3.88
Election 1584 3 2.62
Series 16318 3 1.83
Verdict 10691 3 2.13
BookOrder 15000 2 1.04

Table 4: Datasets statistics. Class imbalance factor indicates the ratio of highest to lowest occurring
marks.

F Additional details about the experiments with real data

F.1 Dataset details

We use five datasets in our experiments for evaluation. The first four datasets were used in previous
work [84, 41, 17].

1. Club [84, 41]: It gathers the tweets on Barcelona getting the first place in La-liga, from
May 8 to May 16, 2016.

2. Election [84, 41]: It gathers the tweets on British election, from May 7 to May 15, 2015.
3. Series [84]: It gathers the tweets on promotion on the TV show “Games of Thrones”, from

May 4 to May 12, 2015.
4. Verdict [41]: It gathers the tweets on the verdict for the corruption-case against Jayalalitha,

an Indian politician, from May 6 to May 17, 2015.
5. BookOrder [17]: It gathers the limited book order data from NYSE of the high frequency

transactions for a stock in one day.

Table 4 lists some of the statistics of theses datasets. For an event e = (y, t), the arrival times are
available in each dataset. For the BookOrder dataset, mark y is available in the data. However for
the Twitter datasets, we extract y as follows: y = +1 if s ∈ (0, 1], y = 0 if s = 0 and y = −1 if
s ∈ [−1, 0), where s is the sentiment of the message.

F.2 Additional implementation details for base MTPP models

(i) RMTPP [17] 2: Here we select batch size 64, initial learning rate 0.1 and L2 penalty as 1e− 3.
(ii) THP [89] 3: Here we select batch size 16, initial learning rate 1e − 4 and L2 penalty as 0 as
the implementation contains no L2 penalty. In addition, we used dropout rate 0.3, model depth 64,
hidden layer size 128, head number 4 and layer number 4. (iii) SAHP [87] 4. Here we select batch
size 16, initial learning rate 1e− 4 and L2 penalty as 3e− 4. In addition, we used dropout rate 0.1,
model depth 16, hidden layer size 16, head number 8 and layer number 4. (iv) Linear model: For
experiments with synthetic data, we used linear models5[73] to build event simulator and parameter
estimator.

F.3 Compute resource

We used a single AMD Ryzen 7 3700X CPU with 32GB RAM machine, no graphical card is needed
given all the models and data size in the experiments are moderate.

2https://github.com/musically-ut/tf_rmtpp
3https://github.com/SimiaoZuo/Transformer-Hawkes-Process
4https://github.com/QiangAIResearcher/sahp_repo
5https://github.com/sandeepsoni/MHP
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G Additional experiments with real data

Time prediction error in terms of MAE E(|t− t̂|) Mark prediction error Pr(y 6= ŷ)
TPP-SELECT Base MTPP TPP-SELECT Base MTPP

Club 3.78±0.00 3.80±0.00 0.49±0.01 0.79±0.02
Election 13.66±0.00 13.71±0.01 0.62±0.01 0.79±0.03
Series 1.98±0.01 2.13±0.02 0.62±0.00 0.67±0.01
Verdict 3.50±0.00 3.58±0.05 0.65±0.00 0.69±0.02
BookOrder 0.29±0.01 0.55±0.05 0.38±0.01 0.49±0.01

Table 5: Performance in terms of E(|t− t̂|), i.e., the mean absolute error (MAE) for time prediction
(left half) and the misclassification error Pr(y 6= ŷ) for the mark prediction (right half) for TPP-
SELECT and the corresponding base MTPP model which is Self Attentive Hawkes Process (SAHP)
in this case. Here, this base MTPP model is learned over the entire sequence of observed events. In
all experiments, we considered 80% training and 20% test set.
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