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Abstract

Training models on synthetic data is an effective strategy
for improving large multimodal models (LMMs) due to the
scarcity of high-quality paired image-text data. Existing
methods generate multimodal datasets but do not address
specific reasoning deficiencies in LMMs. In contrast, hu-
mans learn efficiently by focusing on past failures. In-
spired by this, we propose a synthetic data generation ap-
proach that analyzes an LMM’s reasoning failures using
frontier models to generate and filter high-quality exam-
ples. Our method produces a 553k-example multimodal in-
struction tuning dataset, leading to improved LMM perfor-
mance, even surpassing models trained on equivalent real
data demonstrating the high value of generating synthetic
data targeted to specific reasoning failure modes in LMMs.

1. Introduction
Recent advancements in large language models (LLMs) can
be attributed largely to scaling models and training data.
However, high-quality data availability limits further scal-
ing [38, 41]. As a result, synthetic data generation is gain-
ing traction for augmenting datasets. High-quality syn-
thetic data generation has grown more feasible with increas-
ing LLM capabilities, enabling synthetic data production at
scale [7, 13, 14, 20, 34, 44]. Synthetic data is particularly
valuable for training large multimodal models (LMMs),
which combine an LLM with a vision encoder to enable
text generation conditioned on multimodal inputs. Real data
for training LMMs is relatively scarce due to the lack of
naturally-occurring images paired with high-quality text.

Existing approaches for generating multimodal synthetic
data face two key limitations. First, they depend on real im-
ages paired with synthetic text generated by another LMM,
restricting their use when image data is scarce. Second, they
generate data arbitrarily without prioritizing useful exam-
ples, leading to inefficiencies in both data generation and
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training. For a broader discussion of previous methods, see
Section 6 in the supplementary material. Unlike standard
synthetic data generation, humans learn efficiently by fo-
cusing on examples tied to past reasoning failures. Ericsson
et al. [8] suggest expert learning benefits from explicit in-
struction, error diagnosis, and targeted feedback. Since hu-
mans learn from failures [3, 6], seeking examples related to
past errors aids mastery, while problems involving familiar
reasoning are often ignored.

Inspired by this observation, we propose a synthetic data
generation approach based on an LMM’s reasoning failures.
We first evaluate the LMM on a benchmark dataset and use
a strong frontier model to analyze its errors. The frontier
model then generates related question-answer pairs and im-
age descriptions, which can link to existing images or guide
synthetic image generation. Finally, we ensure quality using
an LMM-as-a-judge filtering process. Our approach gener-
ates a 553k-example multimodal dataset from LLaVA-1.5-
7B’s [22] reasoning failures. Training experiments show
our synthetic data improves LLaVA’s performance across
various downstream tasks, even surpassing training on real
datasets, unlike prior work requiring significantly more ex-
amples to match real data performance [12]. Our method
achieves greater gains compared to previously-proposed
synthetic datasets, demonstrating the value of grounding
synthetic data in model failure analysis.

2. Dataset construction

Diagnosing model failures To generate our tailored syn-
thetic data, we first analyze reasoning failures in a base-
line LMM using a more advanced frontier LMM. The fron-
tier model is selected for its superior multimodal reasoning
capabilities and high accuracy on diverse vision-language
benchmarks. Reasoning failures are identified by evaluating
both models on the training sets of vision-language bench-
marks, and selecting samples where the baseline LMM pro-
duces incorrect responses, while the frontier model suc-
ceeds. This process generates a subset of failure cases per
benchmark, providing a focused challenging dataset, which



Original Sample Analyze Failure
Modes

Question: What 
colors are in this 
sweater?

Answer: Pink, 
green, white

LLaVA: Pink

- Focus on Dominant Features: By 
focusing solely on the dominant 
color, Model A failed to account for 
other significant colors present in 
less prominent but still important 
parts of the sweater (white and 
green)
- Pattern and Detail Recognition: 
The patterns on the upper part of 
the sweater include both green 
and white. Model A appears to 
have missed or overlooked these 
details when analyzing the image. 
This indicates a gap in recognizing 
and interpreting detailed patterns 
or secondary elements and 
integrating them…

- Contextual Limitation: The 
question asked for "colors" in 
plural, suggesting multiple colors 
should be identified. If Model A 
does not sufficiently process the 
textual prompt to anticipate 
multiple answers, this can…

Suggest New 
Samples

Q: What patterns and textures are 
visible on the models' outfits?
A: Stripes, polka dots, floral designs
Image Description: Models walking 
on a fashion runway, wearing outfits 
with mixed patterns and textures 
including stripes, polka dots, and…

Q: What colors and artistic 
techniques are visible in the painting?
A: Various colors (red, blue, yellow, 
green) with cubism, surrealism, and 
impressionism techniques.
Image Description: An abstract 
painting featuring a mixture of colors 
and artistic styles such as cubism, 
surrealism, and impressionism…

Q: How many primary colors are in 
this sweater?
A: Three

Q: What colors are mainly used in 
the painting?
A: Pink, green, white
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Figure 1. Illustration of our approach. Given a sample from an existing dataset which LLaVA answers incorrectly, we prompt a frontier
model to analyze LLaVA’s reasoning failures and propose new synthetic samples which require similar types of reasoning.

we denote as Model Failure Sets (MFS).

Synthetic data generation Using the resulting MFS, we
guide the frontier model through a structured multi-turn
process to diagnose the failure reasons of the baseline LMM
and generate new training samples that address these fail-
ure modes, as illustrated in Figure 2 in Section 7.3 of the
supplementary material (SM). In the first steps, the fron-
tier model is prompted to describe the image and analyze
reasoning errors by examining the question, ground truth
answer, and the incorrect response generated by the base-
line LMM. Next, the frontier model is instructed to propose
new challenging samples designed to target the identified
failure modes, which consist of a detailed image descrip-
tion, a clear question, and a deterministic answer. We ex-
plore two different approaches for sourcing images: utiliz-
ing existing real images (Method 1), or using synthetically
generated images (Method 2).

Specifically, in Method 1, we leverage the original im-
age from a failed sample and prompt the frontier model to
generate 10 new question-answer pairs per sample, follow-
ing the prompt in Figure 2, omitting the final step. This
is especially effective for benchmarks like InfoVQA and
ScienceQA, since text-to-image models often struggle with
precise text rendering and spatial accuracy. In Method 2, the
frontier model generates a question-answer pair and a de-
tailed image prompt using the prompt in Figure 2. Each im-
age prompt is then fed into a text-to-image diffusion model
to generate 10 synthetic images at varying guidance scales,
producing 100 fully synthetic samples per failed sample.

To enhance data diversity, we use a variation of our

prompt instructing the frontier LMM to “provide examples
that challenge Model A’s weaknesses using scenarios from
entirely different domains or situations”. This instruction
is added to Step 4 in Figure 2 to encourage samples genera-
tion in different domains. Domain-similar samples preserve
the original theme, while non-similar samples offer broader
contextual diversity for improved generalization, see Fig-
ure 6 in Section 7.3 (SM). We also enforce constraints on
question format and instructions, as detailed in Section 7.3.

Filtering We apply a filtering process using the same
frontier LMM which produced the samples. The LMM is
instructed to evaluate each synthetic sample given an image,
question, and answer on a scale of 1 to 3, where 1 indicates
an incorrect sample, 2 being partially correct, and 3 fully
correct. The prompt used for filtering is provided in Figure
3 in Section 7.4 (SM). Only samples rated 3 were included
in the final dataset to ensure quality and reliability.

Dataset overview Our synthetic dataset consists of
553,992 samples incorporating both real and generated im-
ages derived from the MFS of LLaVA-1.5-7B, with Vicuna-
1.5-7B [46] base LLM, on four benchmark training sets:
VizWiz [11], InfoVQA [27], ScienceQA [25], and OK-
VQA [26]. These benchmarks were chosen to ensure a wide
range of visual and reasoning challenges, as detailed in Sec-
tion 7.2 (SM). We use GPT-4o [30] as the frontier LMM
for analyzing the reasoning failures of LLaVA-7B due to
its strong multimodal reasoning capabilities, and FLUX.1-
schnell Labs [18] text-to-image model to generate the syn-
thetic images. Table 3 in Section 7.2 (SM) provides an



Dataset Model N Nsyn EM Score

InfoVQA

LLaVA 624,610 0 26.7
LLaVAreal 634,684 0 31.6
LLaVAsyn 634,684 10,074 30.8
LLaVAsyn 687,071 62,461 33.0
LLaVAsyn 710,610 86,000 34.3

ScienceQA

LLaVA 624,610 0 70.7
LLaVAreal 630,195 0 70.0
LLaVAsyn 630,195 5,585 71.8
LLaVAsyn 646,594 21,984 73.0

OK-VQA

LLaVA 624,610 0 57.0
LLaVAreal 633,619 0 54.3
LLaVAsyn 633,619 9,009 61.3
LLaVAsyn 687,071 62,461 61.3
LLaVAsyn 749,532 124,922 61.5

Table 1. In-domain evaluation of baseline LLaVA, LLaVA models
trained using synthetically augmented data (LLaVAsyn) and using
training data augmented with real in-domain data (LLaVAreal).

overview of each benchmark, including the original size of
the training split, the MFS size of LLaVA-7b, and the total
number of synthetic samples retained after filtering.

As previously described, we utilize two methods for syn-
thetic data generation, depending on the dataset: for In-
foVQA and ScienceQA, we apply Method 1, which gen-
erates new question-answer pairs based on the original real
images. For OK-VQA, we employ Method 2, generating
synthetic images along with corresponding question-answer
pairs, and for VizWiz we apply both methods. Overall, our
final dataset consists of 42% real-image-based samples and
58% fully synthetic samples. All samples in the final dataset
contain a single-turn conversation, featuring a question and
a short answer. Our filtering approach effectively removes
lower-quality synthetic samples, with synthetic-image sam-
ples exhibiting higher removal rates compared to real-image
samples, further details in Section 7.2 (SM). Examples of
our dataset can be seen in Section 11 (SM).

Additionally, the large volume of filtered data ensures
broad coverage of LLaVA-7B’s reasoning failures across
benchmarks, as listed in Section 9.5 (SM).

3. Experiments
Details of experimental setting We fine-tune LLaVA-
1.5-7B using a subset of the LLaVA-Instruct-1.5-mix-665K
dataset [23], which contains 665K user-GPT conversations
focused on visual prompts. Since our approach targets
image-grounded reasoning, we use only the 624K samples
with images. We then augment this visually oriented subset
with our synthetic MFS data (Section 2). The final training
set combines real image-text conversations with targeted
synthetic examples to address reasoning failures.

For fine-tuning, we used Vicuna-1.5-7B weights as the
LLM backbone and leveraged the pretrained multimodal
projector from LLaVA-1.5-7b. We followed the original

LLaVA training procedure, ensuring a fair comparison to
existing methods, with training details provided in Section
8 (SM). We refer to models trained with a mixture of the
original LLaVA-Instruct dataset and our synthetic data as
LLaVAsyn. As a baseline, we report the performance of
LLaVA trained under the same setting but without any ad-
ditional synthetic data added to the training dataset (i.e.,
Nsyn = 0). Additionally, for each dataset from which rea-
soning failures were derived for synthetic data generation,
we report the performance of a LLaVA model trained on an
equivalent amount of real data sourced from the correspond-
ing training dataset (denoted as LLaVAreal). This provides
a measure of the efficiency of our synthetic data relative to
training on real in-domain data.

We used a variety of multimodal reasoning benchmarks
for evaluating models. For in-domain evaluations (i.e., eval-
uating on a withheld validation set corresponding to the
training set from which reasoning failures were derived),
we used the InfoVQA, OK-VQA and ScienceQA validation
sets. Since InfoVQA and ScienceQA questions rely heavily
on reading text contained in the images, we further evalu-
ated models on TextVQA [33] and OCR-Bench [9]. Finally,
because our synthetic dataset was designed to enhance the
model’s reasoning capabilities, we chose MMBench [24]
and MMMU [45] as additional OOD benchmarks.

Synthetic data augmentation results Table 1 provides
in-domain evaluation results utilizing synthetic data derived
from InfoVQA, ScienceQA, and OK-VQA. Notably, aug-
menting the LLaVA-Instruct dataset with our synthetic data
achieves performance comparable to or better than using
an equivalent amount of real domain-specific data in most
cases. This result is particularly significant given that the
synthetic samples were generated using only a small subset
of the original training data: specifically, only those exam-
ples where LLaVA scored 0.0 while GPT scored 1.0. For
instance, with OK-VQA, the original training set consists
of 9,009 samples, but we utilized only 607 training sam-
ples which LLaVA failed on in order to generate 9009 syn-
thetic samples, resulting in a performance boost of 13%
on the OK-VQA test set. Similarly, our approach utilized
only 28% of the ScienceQA training dataset to generate full
synthetic replacements, yet still resulted in better perfor-
mance than training directly on the real dataset. We also ob-
serve that performance improves as the amount of synthetic
data used for data augmentation increases. In practice, it
may be desirable to combine synthetically generated data
which was derived from reasoning failures across differ-
ent datasets. We therefore provide results for two different
sized mixtures of our synthetic data derived from InfoVQA,
ScienceQA, and OK-VQA reasoning failures in Table 2. In
addition to in-domain evaluations for these three datasets,
we provide results for the four other datasets mentioned



Base LLM N Nsyn Augmentation Data TextVQA OCR-Bench InfoVQA OK-VQA ScienceQA MMBench MMMU

Vicuna-7B 624,610 0 N/A (baseline) 47.0 31.9 26.7 57.0 70.7 52.3 36.4

Vicuna-7B 687,071 62,461

ALLaVA 47.9 34.0 28.4 50.4 71.2 50.2 36.7
CoSyn-400K 47.1 31.8 28.5 55.8 71.5 52.4 34.6
SimVQA 46.8 31.6 26.6 54.4 71.1 53.5 34.7
Ours 47.4 33.2 33.1 60.8 73.1 52.5 36.2

Vicuna-7B 749,532 124,922
ALLaVA 47.2 34.1 28.8 49.4 66.5 43.5 34.2
CoSyn-400K 46.8 32.7 29.6 57.7 70.9 51.9 36.9
Ours 47.4 34.5 33.2 61.1 73.0 52.5 37.4

Gemma-2B 624,610 0 Ours 39.9 28.3 21.8 51.7 62.3 29.2 32.3
749,532 124,922 40.9 29.9 29.8 54.8 65.2 30.7 31.7

Qwen2-7B 624,610 0 Ours 45 31.4 26.7 59.2 77.9 63 42.3
749,532 124,922 46.2 32.5 27 60.6 80.7 63.5 42.2

Table 2. Training data augmentation experimental results. N denotes the total number of training examples, Nsyn denotes the number
of synthetic examples in the training dataset generated using our approach. The first section of the table compared the same base LLM
(Vicuna) trained on various datasets with our dataset, while the second section compares different LLM backbones trained on our dataset.

previously to measure the impact on OOD generalization.
We also provide results for LLaVA models trained on
three alternative synthetically generated datasets: ALLaVA,
CoSyn-400k, and SimVQA. From Table 2, we observe that
our synthetic data outperforms all baselines in the maxi-
mum data augmentation setting (Nsyn = 124, 922). When
augmenting training sets with half as much data, we ob-
serve that our synthetic data produces the greatest improve-
ments in-domain, whereas the ALLaVA dataset, which con-
tains only real images paired with synthetic text, performs
slightly better in other OOD settings. Finally, training
LLaVA on the mixed synthetic dataset yields similar in-
domain performance to training it separately on failures
from each individual dataset (Table 1).

To evaluate the generalization ability of our synthetic
dataset, we trained models using the same datasets but
with different backbone LLMs. In the following experi-
ments, we used Gemma-2B [35] and Qwen2-7B [42] as
base LLMs. We adopted the LLaVA two-phase training
procedure: pretraining on the LLaVA 558k dataset [23]
followed by instruction fine-tuning. Table 2 indicates that
our synthetic data in its maximum augmentation setting,
Nsyn = 124, 922, outperform the baseline for both LLaVA-
Gemma-2B and LLaVA-Qwen-7B almost on all bench-
marks. Notably, despite being generated based on LLaVA-
Vicuna-7B failure mechanisms, our synthetic data enhance
the performance of other models whether they are of same
size (Qwen2-7B) or smaller (Gemma-2B).

4. Analysis and Ablations
We analyzed the quality of our dataset, as detailed in Sec-
tion 9 (SM). We conducted a human evaluation of our
dataset (Section 9.1) and found that fully synthetic sam-
ples match or slightly exceed the fidelity of real-image-
based sample. The evaluation also demonstrates excellent

alignment between generated questions, answers, and im-
age prompts. In Section 9.2, we tested our data in low re-
source setting by replacing portions of the original dataset
with fully synthetic samples. Even with up to 25% substi-
tution, the model finetuned on our dataset matches or out-
performs the baseline LLaVA, highlighting the efficiency
of our targeted dataset. Section 9.3 quantitatively describes
the impact of filtering on data quality and shows that our fil-
tering approach improves model performance. Section 9.4
compares two frontier LMMs for synthetic data generation,
showing that Qwen2-VL [39] produces samples with lower
downstream performance than GPT-4o (See example in Fig-
ure 5). Finally, Section 9.5 identifies reasoning failures
and shows that targeted synthetic data improves LLaVA-
Instruct’s performance on related benchmarks.

5. Conclusion
We introduced a new approach for generating multimodal
synthetic data based on analyzing a model’s reasoning fail-
ures. This led to a multimodal instruction tuning dataset
with over 553k synthetic examples derived from LLaVA’s
failures. Experiments show that our data significantly im-
proves LLaVA’s performance on InfoVQA, ScienceQA,
and OK-VQA, even surpassing training on an equivalent
amount of real data. Furthermore, models trained on our
synthetic dataset exhibit improvements in OOD evaluations
and outperform training on other existing synthetic datasets
when training data augmentation is scaled, showing con-
sistent improvements across different base models. We also
showed that training LLaVA only on examples derived from
specific failure modes improves its performance on tasks
which require corresponding forms of reasoning. Ablations
and human evaluations confirm the effectiveness and qual-
ity of our approach, highlighting the potential of targeted
synthetic data generation to address model deficiencies.
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[47] Ingo Ziegler, Abdullatif Köksal, Desmond Elliott, and Hin-
rich Schütze. Craft your dataset: Task-specific synthetic
dataset generation through corpus retrieval and augmenta-
tion. arXiv preprint arXiv:2409.02098, 2024. 1


	Introduction
	Dataset construction
	Experiments
	Analysis and Ablations
	Conclusion

