
Supplementary Material for Information-Theoretic
World Model learning for Denoised Predictions

1 Derivations

In this section, we derive equations from the Section "Denoised Predictive Imagination".

1.1 Derivation of Equation (7)

We aim to minimize the Mutual Information (MI) from the beginning to timestep t i.e. min I(zt− ; zt).
To make our model action dependent, we introduce a conditional probability distribution
p(zt− , zt|at−),

I(z1; ...; zt) = Ep(z1,...,zt)

[
log

p(z1, ..., zt)∏t
k=1 p(zk)

]
,

(14)

= Ep(z1:t,a1,t−1)

[
log

p(z1:t) p(z1:t|a1:t−1)

p(z1:t|a1:t−1)
∏t
k=1 p(zk)

]
,

(15)

= Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)∏t
k=1 p(zk)

]
− Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)

p(z1:t)

]
.

(16)

The first term is similar to the variational upper bound introduced in Alemi et al. (2017). The second
term is the KL-divergence between p(z1:t|a1:t−1) and p(z1:t). Since the KL-divergence is always
non-negative, the first term in the equation provides an upper bound on the MI objective we seek to
optimize i.e.,

I(z1:t) ≤ Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)∏t
k=1 p(zk)

]
.

(17)

We can write the conditional distribution p(z1:t|a1:t−1) in its autoregressive form,

p(z1:t|a1:t−1) = p(z1, ..., zt|a1, ..., at−1),

= p(zt|zt−1, at−1, ..., z1, a1) p(zt−1, ..., z1|at−1, ..., a1),

= p(zt|zt−1, at−1, ..., z1, a1) p(zt−1|zt−2, at−2, ..., z1, a1) ... p(z1).

(18)

To address past states and actions within the conditional distribution, we treat them as history.
This history model is implemented through a Gated Recurrent Units (GRU, Cho et al. (2014)) that
encapsulates these past variables into a single history variable, ht = {zt−1, at−1, ..., z1, a1} =
{zt−1, at−1, ht−1}. Thus we can write our conditional probability in Equation (18) as,

p(z1:t|a1:t−1) = p(zt|zt−1, at−1, ht−1) p(zt−1|zt−2, at−2, ht−2) ... p(z1), (19)

= p(z1)

t−1∏
k=1

p(zk+1|zk, ak, hk). (20)



We can substitute the conditional distribution from Equation (20) into the Upper bound in Equa-
tion (17),

I(z1:t) ≤ Ep(z1:t,a1:t−1)

[
log�

��p(z1)
∏t−1
k=1 p(zk+1|zk, ak, hk)

���p(z1)
∏t−1
k=1 p(zk+1)

]
,

(21)

≤ Ep(z1:t,a1:t−1)

[
log

t−1∏
k=1

p(zk+1|zk, ak, hk)
p(zk+1)

]
,

(22)

≤
t−1∑
k=1

Ep(zk,ak)

[
log

p(zk+1|zk, ak, hk)
p(zk+1)

]
,

(23)

≤
t−1∑
k=1

I
(
zk+1; zk, ak, hk

)
. (24)

1.2 Derivation of Equation (9)

We aim to minimize the Mutual Information (MI) between the latent variables zt from the beginning
to time step t and the observations ot from the environment i.e. min I(zt−,t; ot−,t), where ·t−,t is the
variable from timestep 1 to t,

I(z1, ..., zt; o1, ..., ot) = Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t)

]
.

(25)

Here we introduce the conditional probability distribution p(zt− , zt|at−) with the aim of removing
out the denominator and including actions into our model,

I(z1:t; o1:t) = Ep(z1:t,o1:t,a1:t−1)

[
log

p(z1:t|o1:t) p(z1:t|a1:t−1)

p(z1:t|a1:t−1) p(z1:t)

]
,

(26)

= Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
− Ep(z1:t,a1:t−1)

[
log

p(z1:t)

p(z1:t|a1:t−1)

]
,

(27)

= Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
−DKL

(
p(z1:t)||p(z1:t|a1:t−1)), (28)

≤ Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
.

(29)

The second term is the KL-divergence between p(z1:t) and p(z1:t|a1:t−1), which is always non-
negative, leading to Equation (29) being an upper bound on our MI objective. The encodings at
every timesteps depends only on that observation’s timestep i.e. p(z1:t|o1:t) =

∏t
k=1 p(zk|ok).

Autoregressing the denominator according to Equation (20), we get,

I(z1:t; o1:t) = Ep(z1:t,o1:t)

[
log

p(z1|o1)
∏t−1
k=1 p(zk+1|ok+1)

p(z1)
∏t−1
k=1 p(zk+1|zk, ak, hk)

]
,

(30)

=

t−1∑
k=1

Ep(zk,ok)

[
log

p(zk+1|ok+1)

p(zk+1|zk, ak, hk)

]
−DKL

(
p(z1)||p(z1|o1)

)
. (31)

In Equation (8), we approximate this with the transition function with variational function qθ(zk+1|ẑ),
where ẑ = (zk, ak, hk). The transition function is a neural network with parameters θ. This is the
same transition function described in the Equation (9),

I(z1:t; o1:t) ≤
t−1∑
k=1

Ep(zk,ok)

[
log

p(zk+1|ok+1)

qθ(zk+1|ẑ)

]
−DKL

(
p(zk+1|ẑ)||qθ(zk+1|ẑ)

)
. (32)
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As KL-divergence is non-negative, this is the upper bound on our main objective,

I(z1:t; o1:t) ≤
t−1∑
k=1

Ep(zk,ok)

[
log

p(zk+1|ok+1)

qθ(zk+1|zk, ak, hk)

]
.

(33)

1.3 Derivation of Equation (10)

We aim to maximise the Mutual Information (MI) from the current timestep to the Horizon T i.e.,
max I(zt; zt+); where t+ = {t+ 1, ..., T},

I(zt; ...; zT ) = Ep(zt:T )

[
log

p(zt:T )∏T
k=t p(zk)

]
.

(34)

The numerator in Equation (34) can be factorised with chain rule,

p(zt, ..., zT ) = p(zt|zt+1, ..., zT ) p(zt+1|zt+2, ..., zT ) ... p(zT ), (35)
= p(zt|zt+1:T ) p(zt+1|zt+2:T ) ... p(zT ), (36)

= p(zT )
T−1∏
k=t

p(zk|zk+1:T ). (37)

Integrating Equation (37) in Equation (34),

I(zt:T ) = Ep(zt:T )

[
log�

��p(zT )
∏T−1
k=t p(zk|zk+1:T )

���p(zT )
∏T−1
k=t p(zk)

]
,

(38)

= Ep(zt:T )

 log

T−1∏
k=t

p(zk|zk+1:T )

p(zk)


.

(39)

Here we incorporate conditional probability p(zk|zk+1,ak) to remove p(zk|zk+1:T ) out of our equa-
tion.

I(zt:T ) = Ep(zt:T ,at:T )

 log

T−1∏
k=t

p(zk|zk+1:T ) p(zk|zk+1, ak)

p(zk|zk+1, ak) p(zk)


,

(40)

=

T−1∑
k=t

Ep(zk,ak)

[
log

p(zk|zk+1, ak)

p(zk)

]
+

T−1∑
k=t

DKL

(
p(zk|zk+1:T )||p(zk|zk+1, ak)

)
,

(41)

≥
T−1∑
k=t

Ep(zk,ak)

[
log

p(zk|zk+1, ak)

p(zk)

]
,

(42)

=

T−1∑
k=t

I
(
zk; zk+1, ak

)
. (43)

1.4 Derivation of Equation (12)

We aim to maximize the Mutual Information (MI) between the latent variables zt and the observations
ot from current time step t to time-horizon T i.e. max I(zt:T ; ot:T )

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

[
log

p(ot:T |zt:T )
p(ot:T )

]
,

(44)
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= Ep(zt:T ,ot:T )

 log

T∏
k=t

p(ok|zk)
p(ok)


.

(45)

Introducing a tractable variational decoder with parameters ψ,

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

 log

T∏
k=t

p(ok|zk) rψ(ok|zk)
rψ(ok|zk) p(ok)


,

(46)

=

T∑
k=t

Ep(zk,ok)

[
log

rψ(ok|zk)
p(ok)

]
+

T∑
k=t

DKL

(
p(ok|zk)||rψ(ok|zk)

)
, (47)

≥
T∑
k=t

Ep(zk,ok)

[
log

rψ(ok|zk)
p(ok)

]
,

(48)

=

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
−

T∑
k=t

Ep(ok)
[
log p(ok)

]
,

(49)

=

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
+

T∑
k=t

H(ok), (50)

=

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
.

(51)

The entropy term H(ok) is independent of the parameter ψ, and consequently, can be disregarded
during optimization.

2 Extended Related Work

In this section, an extended related work discussion is provided.

2.1 Relation to Human Psychology

Predictive Information is maximized by the brain at a higher, more abstract level as a strategy to
prevent sensory overload (Friston, 2005; Rao and Ballard, 1999). Imagine a scenario where you’re
driving a vehicle and nearing a bend in the road, beyond which visibility is limited. Based on the
experience of having faced congested traffic thus far (for say), you may anticipate a similar traffic
configuration beyond the bend. In these instances, you mentally simulate future possibilities based
on the historical experience and using the current location as a reference point. Notably, during
this mental forecast, you instinctively disregard exogenous noise like vehicle’s number plate, cloud
formations in the sky, or roadside billboards. This subconscious omission of inconsequential details
significantly influences the agent’s decision-making process (Nasr et al., 2008). While maintaining
scholarly modesty, it’s essential to clarify that our contribution in this paper does not constitute
an ultimate solution to the challenges described. Instead, our work introduces alternative ideas,
traversing similar territory and contributing fresh perspectives to the existing discourse.

2.2 Learning Representations and Reinforcement Learning

Recent methodologies (Chen et al., 2020; Henaff, 2020; Tian et al., 2020) have achieved notable
success in learning representations from unlabeled data. Approaches like (Laskin et al., 2020;
Oord et al., 2018; Shu et al., 2020; Ma et al., 2021) have effectively integrated these concepts into
reinforcement learning (RL). Some RL strategies prioritize learning state representations that solely
contain information beneficial for predicting future states (Oord et al., 2018; Ma et al., 2021; Hjelm
et al., 2019). However, they do not strive to find representations that encapsulate task-relevant details,
which are significant for decision-making. Diverging from previous studies, our strategy directly
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quantifies and compresses the predictive data, thereby ensuring that the representation bypasses
the incorporation of vast amounts of past information that holds no relevance for the future. Our
idea and approach shares a conceptual similarity with PI-SAC (Lee et al., 2020), where Conditional
Entropy Bottleneck (CEB) is utilised to find compact representations and data augmentation for
accelerating sample efficiency. A recent study (Stone et al., 2021) shows that data augmentation aids
in standard environments but falters when noisy distractors are introduced. Particularly, methods
like Dynamic Bottleneck (DB, Bai et al. (2021)) and Sequential Information Bottleneck for Robust
Exploration (SIBE, You et al. (2022)) aim at seeking compact representations under noisy conditions.
However, they do not focus on achieving noiseless future predictions or treating temporal noise along
representations.

3 Implementation Details

In this section further algorithmic implementation details are discused.

3.1 Algorithm

We jointly train DPI with Soft Actor-Critic by incorporating Equation (13) as an auxiliary objective.
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor-critic reinforcement learning
algorithm designed to optimize stochastic policies. It incorporates maximum entropy framework,
ensuring a stochastic policy that seeks to balance reward maximization with entropy maximization.
SAC employs a value function and two Q-functions (or critics) to reduce value overestimation. We
specifically utilise the same encoder architecture as in Yarats et al. (2021). It aims at learning the
latent state representation and policy jointly.
The training algorithm for DPI with SAC is presented in Algorithm 1. Estep is the environment step
function. φ and θ are the parameters of observation encoder and transition function respectively. They
are jointly optimised. The parameters of the two Q-function and the policy π are denoted by {ϕ1q, ϕ2q}
and ϕa respectively. {φm, ϕ̂1q, ϕ̂2q} are the parameters of the target encoder and target Q-functions
respectively, which updated with an exponential moving average. α is the temperature parameter.
λQ, λπ, λα and λDPI are the learning rates for four different objective functions.

Algorithm 1 Training Algorithm for SAC with DPI
Require: Estep, α,φ, θ, ψ, ϕa, ϕ1q, ϕ

2
q , L ▷ Environment and initial parameters.

1: D ← ∅ ▷ Initialize replay buffer
2: for each initial collection step do
3: at ∼ πrandom(·|ot) ▷ Sample action from a random policy
4: ot+1, rt+1 ∼ Estep(at) ▷ Apply action
5: D ← D ∪ (ot+1, at, rt+1) ▷ Append experience to replay buffer
6: end for
7: for every training step do
8: {(ot, at, rt, ot+1)}L+kt=k ∼ D ▷ Sample minibatch of sample from buffer
9: for t = 1 to L do

10: at ∼ πϕa
(at|ot) ▷ Sample action from the policy

11: ot+1, rt+1 ∼ Estep(at)
12: D ← D ∪ (ot+1, at, rt+1)
13: for each gradient step do
14: {ϕiq, φ} ← {ϕiq, φ} − λQ∇LQ(ϕiq, φ) for i ∈ {1, 2} ▷ Update soft Q-functions
15: ϕa ← ϕa − λπ∇Lπ(ϕa) ▷ Update policy
16: α← α− λα∇Lα(α) ▷ Adjust temperature
17: {φ, θ} ← {φ, θ} − λDPI∇LDPI(φ, θ) ▷ Update encoder and transition model
18: ϕ̂iq ← τϕiq + (1− τ)ϕ̂iq for i ∈ {1, 2} ▷ Update target Q-function
19: φm ← τφ+ (1− τ)φm ▷ Update target encoder
20: end for
21: end for
22: end for
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3.2 Model Architecture Details

Our implementation of Soft Actor-Critic (Haarnoja et al., 2018) is implemented in PyTorch and is
based on the implementation of SAC-AE (Yarats et al., 2021).

3.2.1 Critic and Actor Network

For our critic, we use double Q-learning, where each Q-function is a 3-layer MLP, using ReLU
activations after every layer, except the final one. Similarly, the actor is structured as a 3-layer MLP
with ReLUs, designed to produce the mean and covariance values of the diagonal Gaussian. The
hidden dimensions are set to 50 for actor and critic.

3.2.2 Observation Encoder and Decoder Networks

Encoder. Our encoder architecture aligns with the design proposed by Yarats et al. (2021). The
architecture starts with an initial convolutional layer featuring a 3 × 3 kernel and a stride of 2.
Subsequent to this, there are three more convolutional layers, each characterized by a 3 × 3 kernel
and a stride of 1, resulting in a total of four convolutional layers, which have RELU activations. The
50 dimensional output of the fully-connected layer is stabilized using layer normalization (Ba et al.,
2016), then divided into mean and standard deviation. We add tanh non-linearity on the standard
deviation, then perform reparameterization trick to produce encoder’s representation from the given
observation.

Decoder. Our decoder is structured with an initial fully connected linear layer, followed by three
deconvolutional layers with a 3 × 3 kernel and with a stride of 1, and the last layer with the same
kernel size and stride of 2.

3.2.3 Transition Network

Our transition model integrates representation zt (from the encoder) and action at into a single
encoding, denoted as zat, of size 256 via a fully connected linear layer. This encoding is subsequently
passed through three additional fully connected layers, each having the same size and all using the
Exponential Linear Units (ELU) as the activation function. To incorporate temporal dependencies, the
state-action encoding is merged with the past history variable ht−1 via a Gated Recurrent Unit (GRU)
mechanism. On another hand, this state-action encoding is concatenated (zinputt ) and passed via a
fully connected linear layer to generate the next representation mean µzt+1 and standard deviation
σzt+1 . They are then reparameterised to produce the next representation zt+1. The entire procedure
is comprehensively detailed in Algorithm 2.

Algorithm 2 Transition Model Pseudo-code
Require: zt, at, ht−1 ▷ Representation, Action and History

1: zat ← cat(zt, at) ▷ Concatenate Representation and action
2: zat ← ELU(fc1(zat)) ▷ Representation-action encoding
3: for i = 2 to 4 do
4: zat ← ELU(fci(zat))
5: end for
6: ht ← GRU(zat, ht−1) ▷ Current history variable for next representation
7: zinputt ← cat(zat, ht−1) ▷ Input for encoding next representation
8: µzt+1

← ELU(fcµ(z
input
t )) ▷ Next representation mean

9: σzt+1
← tanh(fcσ(z

input
t )) ▷ Next representation standard deviation

10: zt+1 ← µzt+1
+ ϵ⊙ exp(σzt+1

) ▷ Reparameterization trick

3.3 Code details

Upon publication, all code will be made publicly available. Additionally, we intend to release the
code for the benchmarked algorithms.
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4 Hyperparameters

To ensure a fair comparison, we maintained the original hyperparameters for each method and used
the code as provided by the authors. The only adjustment we made is in how background images are
incorporated into the observation. The complete set of Hyperpameters essential to implement our
approach are provided in the Table I.

Table I: Hyperparameter settings and descriptions for the SAC with DPI implementation

Parameter name Value Description
Replay buffer capacity 2.5× 105 Maximum number of past experiences stored for

off-policy learning.
Image size 84× 84× 3 RGB image of size 84× 84.
Batch size 32 Number of experiences sampled from the replay

buffer for each update.
Discount γ 0.99 Factor by which future rewards are discounted in

the Q-function.
Optimizer Adam Optimization algorithm used for training; Parame-

ters: β1 = 0.9, β2 = 0.999, ϵADAM = 10−7.
Critic learning rate 10−5 Learning rate used to update the critic’s parame-

ters.
Critic target update frequency 2 Frequency of copying weights from the critic to

the target critic.
Critic Q-function soft-update rate τQ 0.005 Rate of soft-updating the critic’s Q-function.
Critic encoder soft-update rate τϕ 0.005 Rate of soft-updating the critic’s encoder.
Actor learning rate 10−5 Learning rate used to update the actor’s parameters.
Actor update frequency 2 Frequency of actor parameter updates.
Actor log stddev bounds [-10, 2] Bounds on the logarithm of the actor’s policy stan-

dard deviation.
Encoder learning rate 10−5 Learning rate used to update the encoder’s parame-

ters.
Decoder learning rate 10−5 Learning rate used to update the decoder’s parame-

ters.
Temperature learning rate 10−4 Learning rate for the temperature parameter in the

SAC’s objective.
Init temperature 0.1 Initial temperature parameter that scales the en-

tropy term in SAC’s objective.

4.1 Sequence Length

A crucial aspect in our method is selecting the length of the time sequence. Ideally, it could span
from the trajectory’s start to a certain time horizon in the future. In our method, we establish that
each information term can be splitted in a Markovian fashion, due to the incorporation of the history
variable. For our experiments, we’ve chosen a time sequence length of three timesteps.

4.2 Action Repeat

Following Dreamer (Hafner et al., 2020), we designate repeat action of 2 for each environment. We
adopt the same settings for all our baselines.

4.3 Weighing Coefficients

We performed a grid search on the weighing coefficients from a range of 1 to 10−5. We empirically
found out that setting α2 large makes the algorithm unstable, as the ICLUB loss dominates other terms
significantly. The best settings are shown in the Table II.
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Table II: Environment and their Coefficients

Environment Weighing Coefficients
α1 α2 β1 β2

Cheetah Run 10−1 10−3 10−2 10−2

Walker Walk 10−2 10−4 10−2 1

Cartpole Swingup 10−2 10−3 10−1 10−1

The coefficients are as follows, α1: Weighing coefficient for ILTC , α2: Weighing coefficient for
ICLUB , β1: Weighing coefficient for IRec and β2: Weighing coefficient for IRec.

5 Experiments and Analysis

5.1 Videos Configuration

In this study, we slightly modified the background from what has been traditionally done in previous
research. These minor alterations significantly influenced the outcomes. Our experimental conditions
closely resembles that of Temporal Predictive Coding (TPC, Nguyen et al. (2021)), but we find it
crucial to articulate this explicitly here.

1. Contrary to the predominant use of grayscale images in benchmarking across numerous past
studies, including Denoised MDPs (Wang et al., 2022), Task Informed Abstractions (TIA, Fu et al.
(2021)), Deep Bismulation for Control (DBC, Zhang et al. (2021)),Dreamer (Hafner et al., 2020),
with the notable exception of TPC (Nguyen et al. (2021)), our work deviates by employing RGB
videos instead.

2. We eliminated the ground plane to fully expose the natural background in the observations.

3. In order to ensure generalizability, we leverage a large collection of videos, segregating them into
distinct sets for training and testing. Specifically, we’ve independently sampled 100 videos each
for both training and testing. These natural videos are incorporated from Kinetics 400 dataset (Kay
et al., 2017) at random.

For transparent benchmarking and easy access, we will subsequently upload these videos to a cloud
storage platform on publication.

5.2 Baseline Methods

DBC. We used the observation of size 84 × 84 and stacked 3 consecutive frames following the
original work (Zhang et al., 2021). We used the same hyperparameters mentioned in its paper.

Others. Utilizing the Recurrent State-Space Model (RSSM) as their transition model (Hafner et al.,
2019), these methods follow an identical training schedule. For all the methods, we use 64×64 images
and use the same parameters described in their respective papers. In order to maintain homogeneity,
we used the same number of actions for all the baselines. The author’s open source-code are utilised
for their implementation without any changes.

5.3 Results in Standard Settings

While our main focus isn’t on noiseless environments, we evaluated our method against baseline
approaches in such settings. We observed that Dreamer outperforms all the methods in most of the
environment in these settings. As depicted in Figure 1, our method is competitive in most of the
environments.
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Figure 1: Standard setting. Performance comparison of our method (DPI) and baselines on six
observation-based continuous control tasks from DMC Suite. Mean of 3 runs; shaded areas are 95%
confidence intervals.

5.4 Results in Random Cartpole Settings

The presented results for the Cartpole swingup task in random background settings shows the
performance of DPI in comparison with two relevant baselines: Dreamer-V2 (Hafner et al., 2021)
and Self-Predictive Representations (SPR, Schwarzer et al. (2021)). As illustrated in Figure 2, it is
evident that DPI outperforms the performance of both Dreamer-V2 and SPR in this setting.

Figure 2: Random setting. Performance comparison of our method (DPI) and two relevant baselines
on Cartpole swingup environment. Mean of 3 runs; shaded areas are 95% confidence intervals.

5.5 Computational Costs

All the experiments were done on a single GPU, that required atmost 8GB memory for all the tasks.
We use multiple NVIDIA GPUs for training: 4070 (DBC and DPI), 4090 (DPI and Denoised MDPs),
3090 (TPC), P500 (TIA and Dreamer). Training time required for each run heavily depends on the
CPU specification too. It also heavily relies on the batch size the algorithms are trained on. Single
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seed of each method on average takes following time: DPI: 8 ∼ 20 hours, TIA: 15 ∼ 24 hours,
Denoised MDPs: 5 ∼ 8 hours, TPC: 30 ∼ 40 hours, Dreamer: 15 ∼ 24 hours, DBC: 12 ∼ 20 hours.

6 Reconstructions

6.1 Reconstruction in the natural background setting

In our experiments, we explore the type of information encoded by different model encoders when
trained in natural background settings. As depicted in Figure 3, while Dreamer (3rd row) attempts to
encode both the agent and the background, DPI (2rd row) emphasizes on encoding the task-relevant
agent, while the background is blurred. On the other hand, Denoised MDPs (Wang et al., 2022) also
incorporate the background of other natural videos in the dataset, a consequence of overfitting on the
training background noise, failing to generalise and separate the background from the agent.

Figure 3: Reconstruction. Observation reconstruction of DPI versus Dreamer in the Natural
background setting. First row: Ground Truth, Second row: DPI, Third row: Dreamer, Fourth Row:
Denoised MDPs.

6.2 Reconstruction in blended backgrounds

We conduct experiments to investigate the challenges encountered in environments where the agent
blends with their background due to similar colors. This phenomenon of color-based blending makes
it difficult for the encoder to bifurcate between task-relevant features and background noise.
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Figure 4: Reconstruction in blended environments. Observation reconstruction of DPI in the
Natural background setting with similar color of agent and the background. First row: Ground Truth,
Second row: DPI reconstruction

As illustrated in Figure 4, DPI prioritizes capturing task-relevant information and opts not to encode
the background when it exhibits similar colors. In the reconstructions, the agent stands out distinctly,
whereas the background appears blurred, underscoring DPI’s focus on the agent over the surrounding
noise.

6.3 Reconstruction of Cartpole swingup in random backgrounds

To investigate further into whether our method effectively emphasizes on relevant details, we carried
out additional experiments on the Cartpole Swingup task. The findings from these experiments are
shown in Figure 5.

Figure 5: Reconstruction in cartpole environment in random settings. Observation reconstruction
of DPI in the Cartpole environment in random background setting. First row: Ground Truth, Second
row: DPI reconstruction

7 Ablation Analysis

In this section, we delve into an ablation study for the Cheetah Run environment, breaking down
the components of the DPI model. Our experiment is conducted on various settings, each excluding
distinct components in DPI (See Equation (13) for reference). Specifically, we consider:

A No latent consistency; removes ILTC from LDPI by setting α1 = 0.
B No upper bound minimization; removes ICLUB from LDPI by setting α2 = 0.
C No lower bound maximization; removes INCE from LDPI by setting β2 = 0.
D No reconstruction; removes IRec from LDPI by setting β1 = 0.
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Figure 6: Ablation Analysis. Evaluating the impact of individual components removal on DPI’s
performance on Cheetah Run from DMC Suite. Mean of 3 runs; shaded areas are 95% confidence
intervals.

The results of the experiments on Cheetah Run are illustrated in the Figure 6. Here we discuss the
potential effects of these terms:

A No latent consistency settings eliminates the regularization of the latent representation from the
transition from the observation encoder. This results into a drop in performance and noise addition
from the past observations into the predicted observations (Figure 7, Third row).

B No upper bound minimization setting impacts the performance and stability in natural setting.
This term is responsible for finding the current state representation from the past inputs. Exclusion
of this term results in added noise in the current representations, potentially leading to higher
variance and reduced performance. This can be seen in the Figure 7 (Fourth Row), where the
learning algorithm is not able to accurately differentiate background video from the agent and as a
result induces much more noise than in original DPI’s reconstruction. The results are similar to A.

C No lower bound maximization; removes INCE from LDPI by setting β2 = 0. This term is
responsible for predictive dynamics in the latent space. Based on our findings, omitting this
term most profoundly diminishes the model’s performance compared to the other components.
A plausible explanation might be that this term prevents the representation from collapsing by
incorporating the target encoder and updating it through a moving average. This is evident in the
reconstructed image shown in Figure 7 (Fourth row), where all the observations converge to a
singular representation, leading to similar outputs during reconstruction. It’s worth mentioning
that only the agent remains and the background is entirely eliminated in this scenario. This could
be attributed to ICLUB taking control and effectively filtering out all the noise.

D No reconstruction; removes IRec from LDPI by setting β1 = 0. As our approach is reconstruction
based, not including reconstruction loss also has a profound impact on the learning.
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Figure 7: Ablation Reconstruction. Evaluating the impact of individual components removal on
DPI’s reconstruction on Cheetah Run from DMC Suite. First row: Ground Truth, Second row:
DPI, Third row: A, Fourth row: B, Fifth row: C. We have not included D as it does not have the
reconstruction.
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