
Appendix

Recursive Bayesian Networks: Generalising and Unifying Probabilistic Context-Free
Grammars and Dynamic Bayesian Networks

Table of Contents

A Theory 15

A.1 Transformation to Chomsky Normal Form . 15

A.2 Relation to PCFGs . 17

A.2.1 Abstraction of a PCFG . 17

A.2.2 Expansion of a PCFG . 18

A.3 General Inside and Outside Probabilities . 18

A.3.1 Inside Probabilities . 18

A.3.2 Outside Probabilities . 19

A.3.3 Joint Inside and Outside Probabilities 20

A.4 Gaussian RBNs . 20

A.4.1 Marginalisation . 20

A.4.2 Approximation . 22

A.4.3 Tree Induction . 22

B Example 23

B.1 Preliminaries . 23

B.2 Calculations . 24

C Experiments 26

C.1 Details for Quantitative Evaluation . 26

C.2 Hierarchical Music Analysis . 28

C.2.1 Chromatic versus Diatonic Transposition 28

C.2.2 Chord Labels . 29

A Theory

A.1 Transformation to Chomsky Normal Form

Transforming an RBN into CNF is done analogously to the procedure for PCFGs. We assume the
original RBN does not contain any epsilon productions, that is, a non-terminal variable always
produces one or more other non-terminal and/or terminal variables.

1) Eliminate terminal variables from mixed transitions: This is done by introducing intermediate
non-terminal variables. For each transition

p(x(1), x(2), . . . , y(1), y(2), . . . |x) , (41)

with non-terminal variables x(1), x(2), . . . ∈ X and terminal variables y(1), y(2), . . . ∈ Y , we intro-
duce new non-terminal variables xy(1) , xy(2) , . . . and replace the transition by

p(x(1), x(2), . . . , xy(1) , xy(2) , . . . |x) , (42)

where the new non-terminals xy(i) replace the original terminals y(i). We then add new deterministic
transitions

p(y(1) |xy(1))

p(y(2) |xy(2)) (43)

15

...

that convert each non-terminal to its equivalent terminal variable. For the newly added non-terminals,
there is only a single transition and hence a degenerate structural variable that can only take a single
value.

2) Eliminate more than two latent non-terminal variables: This is done by introducing new non-
terminals that capture combinations of multiple old non-terminals. Below, we show how the number
of non-terminals can be reduced by one. Applying this procedure repeatedly allows for reducing the
number of non-terminals from an arbitrary number down to two, as required for CNF. A transition

p(x(1), x(2), . . . , x(n) |x) (44)

that generates n non-terminals x(1), . . . , x(n) is rewritten as

p(x(1), x(2), . . . , x(n−1) |x′) p(x′, x(n) |x) , (45)

where we introduced the new non-terminal variable x′ = (x(1), x(2), . . . , x(n−1)) that stores all the

information from the first n− 1 original non-terminals. The actual “work” is done by p(x′, x(n) |x),
which is the equivalent of the original n-fold transition. p(x(1), x(2), . . . , x(n−1) |x′) is a determinis-
tic transition that just “unpacks” the information stored in x′. Repeating this procedure to come to
only pairwise transitions corresponds to a chain of these deterministic “unpacking” operations. As
above, the newly added non-terminals have only a single possible transition.

3) Eliminate unary cycles: Unary cycles pcycle(x
′ |x), where x and x′ are the same non-terminal

template variable (x ≡ x′), are first transformed into unary transitions to a new non-terminal variable
and then eliminated as described below. We define a new non-terminal variable x̄ = (x′, n), where
n > 0 represents the number of steps taken in the cycle before exiting it and x′ is the value at the
moment of exiting it. The transition distribution to x̄ is

p(x̄ |x) = p(x′, n |x) =
{
p(z 6=cycle |x) pcycle(x

′ |x) if n = 1∫
p(z=cycle |x′′) pcycle(x

′ |x′′) p(x′′, n− 1 |x) dx′′ if n > 1 ,
(46)

where in the recursive case, the variables of all intermediate steps are successively marginalised
out. In practical applications, if p(z=cycle |x′′) < 1, the probability of remaining in the cycle
decays exponentially and the recursion can be truncated after a number of steps. If on the other hand
p(z=cycle |x′′) ≈ 1 so that truncating is not possible, one can work with the stationary distribution
of the resulting Markov chain (i.e. the Markov chain with transition distribution pcycle(x

′ |x)).
The structural probability to take a transition from x to x̄ is p(z=cycle |x), i.e. the probability of
entering the cycle in the first place. The RBN cell of x̄ is identical to that of x, except for the transition
into the cycle, which is eliminated (the structural distribution thus has to be renormalised for the
remaining transitions). The transitions use only the x′-component of x̄, ignoring the n-component. In
this way, we have expresses the state after an arbitrary number of steps in the unary cycle as a distinct
value of the new non-terminal variable x̄.

4) Eliminate unary transitions between non-terminal variables: Unary transitions punary(x
′ |x),

where x and x′ are different non-terminal template variables, are transformed by treating x′ as an

intermediate variable and marginalising it out. All transitions p(1), . . . , p(n) from x′ to some other
variables (terminal and/or non-terminal)

p(1)(. . . |x′)
... (47)

p(n)(. . . |x′)

are replaced by a set of new transitions p1, . . . , pn from x directly to the respective variables, with
the intermediate variable x′ marginalised out

p1(. . . |x) =
∫

p(1)(. . . |x′) punary(x
′ |x) dx′

... (48)

16

pn(. . . |x) =
∫

p(n)(. . . |x′) punary(x
′ |x) dx′ .

The intermediate variable x′ and its RBN cell is eliminated if it was only reachable via x. The
new transitions p1, . . . , pn are merged into the cell of x, while the original transition punary to x′ is
removed. This requires redefining the structural distribution p(z |x) such that the probability mass
p(z=unary |x) that was formerly assigned to punary is now split among the new transitions p1 to pn
according to the structural distribution p(z′ |x′) of x′. Specifically, for a new transition pi, we define

p(z=i |x) := p(z=unary |x) p(z′=i |x′) . (49)

A.2 Relation to PCFGs

As described in Section 2.1, a PCFG can be rewritten as an RBN by abstraction or expansion, where
abstraction produces an equivalent RBN that describes the same relations in a more abstract and
compact way, while expansion produces a more general RBN using the original PCFG as a skeleton.
We describe the two procedures in detail below and use the following definition of a PCFG:

Definition 2 (Probabilistic Context-Free Grammar). A PCFG is a tuple (N,T, S,R,W) of

N : non-terminal symbols T : terminal symbols S : start symbol (50)

R : production rules ∈ N × (N ∪ T)∗ W : rule weights . (51)

A.2.1 Abstraction of a PCFG

Theorem 1. A PCFG in CNF can be abstracted to an equivalent discrete RBN in CNF with one latent
(non-terminal) template variable x and one observed (terminal) template variable y by defining the
prior, transition, and structural distributions as

pP(x=A) =
WS→A∑
A′
WS→A′

(11) pN(x
′=B, x′′=C |x=A) =

WA→BC∑
B′,C′

WA→B′C′

(12)

pT(y=b |x=A) =
WA→b∑
b′
WA→b′

(13) pS(z |x=A) =

∑

B,C
WA→BC

∑

X
WA→X

if z=N
∑

b
WA→b

∑

X
WA→X

if z=T ,

(14)

where A,B,C ∈ N are non-terminal symbols of the PCFG, b ∈ T is a terminal symbol, X ∈ N2∪T
is any right-hand side of a rule, z=N and z=T indicate a non-terminal and terminal transition,
respectively, WA→X is the weight of the corresponding PCFG rule, and rules that do not exist in the
original PCFG are taken to have zero weight.

To show equivalence, we need to prove that the transition probabilities from a given non-terminal
symbol A are the same in the original PCFG and the new RBN.

Proof. In the RBN, the probability for a non-terminal transition A → BC is

P (A → BC) = pS(z=N |x=A) pN(x
′=B, x′′=C |x=A) (52)

=

∑
B′,C′

WA→B′C′

∑
X
WA→X

WA→BC∑
B′,C′

WA→B′C′

(53)

=
WA→BC∑
X
WA→X

(54)

and that for a terminal transition A → b is

P (A → b) = pS(z=T |x=A) pT(y=b |x=A) (55)

=

∑
b′
WA→b′∑

X
WA→X

WA→b∑
b′
WA→b′

(56)

=
WA→b∑
X
WA→X

, (57)

which matches the corresponding probabilities in the PCFG, gained by normalising the respective
weights.

17

Conversely, any discrete RBN can be rewritten as a PCFG.

Theorem 2. A discrete RBN with n latent non-terminal template variables x1, . . . , xn, m observed
terminal template variables y1, . . . , ym, and a prior pP(x1) over x1 can be rewritten as a PCFG
with

N := x1 ⊕ · · · ⊕ xn (58)

T := y1 ⊕ · · · ⊕ ym (59)

WA→X :=

pP(X) if A = S ∧X ∈ x1

p(z=i |A) pi(X |A) if a matching transition exists in the RBN

0 else ,

(60)

where · ⊕ · concatenates the value ranges of the respective variables, X ∈ xi denote that the value
X is in the value range of the RBN variable xi, and the second case in (60) requires there be a
transition pi(x1, . . . , xk |xi) such that A ∈ xi and X ∈ x1 ⊕ · · · ⊕ xk.

A.2.2 Expansion of a PCFG

Expansion of a PCFG to an RBN uses the PCFG as a “skeleton” to define the number of template
variables and the structural transitions. The domains and transitions for the variables need to be
added, which results in an RBN that is more powerful than the original PCFG. Specifically, we have

X := {xA |A ∈ N} and Y := {yb | b ∈ T} (61)

for the sets of latent non-terminal and observed terminal template variables and

p(zA=X |xA) =
WA→X∑
X′ WA→X′

with A ∈ N and X,X ′ ∈ (N ∪ T)∗ (62)

for the structural transitions. Additional, we have to define the domain for each of the non-terminal
and terminal variables in X and Y , and for each rule A → X1 X2 . . . from the original PCFG, we have
to define a concrete transition distribution p(vX1

, vX2
, . . . |xA) for the RBN (where vX1

, vX2
, . . . ∈

X ∪ Y are non-terminal or terminal variables in the RBN, respectively, depending on whether
X1, X2, . . . ∈ N ∪ T are non-terminal or terminal symbols in the PCFG).

Expansion of a PCFG into an RBN seems appealing if a simple PCFG can be used to describe the
type of variables (as opposed to their values) as well as the structure of the generative process. The
actual transitions on the variables’ values may then take place on a sub-symbolic/continuous level,
which cannot be described by a PCFG.

A.3 General Inside and Outside Probabilities

A.3.1 Inside Probabilities

The inside probability

β(xi:k) = p(Yi:k |xi:k) (63)

is the probability of generating the observed terminal variables Yi:k from the latent non-terminal
variable xi:k. This means that we need to marginalise over all possible paths of generation. Transitions
may directly generate observed variables, but they may also generate lower-level non-terminals, in
which case we have to recurse using the respective inside probabilities from those variables.

Let Tx ⊆ T be the set of possible transitions from the latent non-terminal template variable x ∈ X (of
which xi:k is one specific instantiation), with p(zi:k=τ |xi:k) being the probability for the transition
τ ∈ Tx to be selected. This constitutes the first sum in (64) below, which marginalises over the
transitions.

The transition τ generates η new non-terminal and/or terminal variables, where η is the arity of
τ . These may be located at different positions in the parse chart, depending on which part of the
observed variables Yi:k is generated from them. That is, the variables’ locations in the parse chart
are not known during generation and are determined in hindsight once all observed variables are
generated; thus, they are known for parsing. We denote the respective splitting points by j1, . . . , jη−1

(they have to fulfill the condition i < j1 < . . . < jη−1 < k) and the respective variables by

18

vi:j1 , . . . , vjη−1:k ∈ X ∪Y . The second multi-sum in (64) aggregates the probabilities of the different
splitting possibilities, that is, of all valid assignments of j1, . . . , jη−1 (η− 1 degrees of freedom). For
instance, a transition of arity η = 2 has one free splitting point j1 to sum over.

Some of the generated variables may be observed/terminal variables, for which nothing more needs
to be done as they directly constitute the respective part of Yi:k. For the subset of non-terminal
variables, which we denote by {vj:j′ ∈ X}, we need to insert their respective inside probabilities and
marginalise them out. This constitutes the product and multi-integral in (64).

The general form of the inside probabilities then is

β(xi:k) =
∑

τ∈Tx

pS(zi:k=τ |xi:k)
∑

· · ·
∑

i<j1<...<jη−1<k∫
· · ·

∫

{vj:j′∈X}

pτ (vi:j1 , . . . , vjη−1:k |xi:k)
∏

{vj:j′∈X}

β(vj:j′) . (64)

The concrete RBNs considered in the paper have only two transitions, one non-terminal transition of
arity two and one terminal transition of arity one (for CNF) or more (for the extended GRBNs used
in the quantitative evaluation and for modelling music). For non-terminal transition of arity two, the
multi-sum in (64) reduces to a single sum and the multi-integral to a double integral, which gives us
(20). For the terminal transition, (64) simplifies to (19) or the extended version (38), respectively.

A.3.2 Outside Probabilities

The outside probability

α(xj:j′) = p(Y0:j , xj:j′ ,Yj′:n) (65)

is the joint probability of generating the latent non-terminal variable xj:j′ as well as the prefix and
suffix of observed terminal variables, Y0:j and Yj′:n, respectively. For this, we now have to consider
all possible ways how xj:j′ as well as the prefix and suffix could have been generated from a parent
non-terminal x̄ (x and x̄ may correspond to the same template variable or to two different ones).

Let T −1
x ⊆ T denote the set of transitions that include x as one of the generated variables. Importantly,

if x appears multiple times in the generated variables of a particular transition, these different options
of generating x are represented as multiple distinct entries in T −1

x , one for each occurrence. The first
sum in (66) runs over these different possibilities of generating x.

For a transition τ ∈ T −1
x of arity η, let j0, . . . , jη be the splitting points, including the start and end

point j0 and jη of the parent variable x̄j0:jη , which have to fulfill the condition 0 ≤ j0 < . . . < jη ≤ n
(where n is the length of the sequence). One pair of adjacent splitting points (jm, jm+1) corresponds
to the occurrence of xj:j′ , where m is the position (starting at zero) at which x appears in the
generated variables of the particular transition τ . We therefore have the additional constraints jm = j
and jm+1 = j′, resulting in η − 1 remaining free indices to sum over (as for the inside probabilities
above). This corresponds to the second multi-sum in (66).

The set of non-terminal variables generated from the parent x̄j0:jη , excluding xj:j′ , is denoted by

{vl:l′ ∈ X} \ xj:j′ . Together with the directly generated terminal variables, these generate part of the
prefix and suffix, Yj0:j and Yj′:jη . The remaining prefix and suffix, Y0:j0 and Yjη :n, are generated

from the parent variable x̄j0:jη . For the parent, we recurse via its outside probability α(x̄j0:jη), while
for the newly generated non-terminal variables (except xj:j′), we have to use the respective inside
probability β(vl:l′) in (66). Additionally, we have to marginalise out the parent (first integral) and the
newly generated non-terminal variables (second multi-integral).

The general outside probabilities then are

α(xj:j′) =
∑

τ∈T −1
x

∑
· · ·

∑

0≤j0<...<jη≤n

jm=j∧jm+1=j′

∫

x̄j0:jη

∫
· · ·

∫

{vl:l′∈X}\xj:j′

psa(zj0:jη=τ | x̄j0:jη) (66)

pτ (vj0:j1 , . . . , xj:j′ , . . . , vjη−1:jη | x̄j0:jη)α(x̄j0:jη)
∏

{vl:l′∈X}\xj:j′

β(vl:l′) .

19

For a non-terminal transition of arity two, as we have it in the paper, the multi-sum in (66) reduces to a
single sum and {vl:l′ ∈ X} \ xj:j′ contains only a single non-terminal, the second child. Importantly,

T −1
x has two elements, one for xj:j′ being generated as the right child and one for it being generated

as the left child, which gives us (22).

A.3.3 Joint Inside and Outside Probabilities

The joint inside and outside probabilities (23) and (24) for an RBN in CNF are computed analogously
to (19–22) for the normal inside and outside probabilities, that is,

β̂i:i+1 = pS(zi:i+1=T |xi:i+1) pT(yi+1 |xi:i+1) (67)

β̂i:k = pS(zi:k=N |xi:k)

k−1∑

j=i+1

pN(xi:j , xj:k |xi:k) β̂i:j β̂j:k (68)

α̂0:n = pP(x0:n) (69)

α̂j:k =
[j−1∑

i=0

pS(zi:k=N |xi:k) pN(xi:j , xj:k |xi:k) α̂i:k β̂i:j

]
+

[n∑

l=k+1

pS(zj:l=N |xj:l) pN(xj:k, xk:l |xj:l) α̂j:l β̂k:l

]
. (70)

This differs from (19–22) only by dropping the integrals and dependencies on the non-terminal
variables (as their values are now fixed). Joint inside and outside probabilities for the general case are
obtained from (64) and (66) analogously, i.e. again by dropping the integrals and dependencies on
the non-terminal variables.

A.4 Gaussian RBNs

In the following, we present derivations for the extended case of GRBNs, described in Section 2.3.1,
which includes linear transformations T for the left child. For this, we will make use of the fact that a
normal distribution over a transformed variable Tx can be rewritten as

N (Tx;µ,Σ) =
1

||T ||N (x;T−1µ, T−1ΣT⊤−1
) (71)

= N (x;T⊤µ, T⊤ΣT) , (72)

where ||T || is the absolute value of the determinant of T and in (72) we made use of the fact that in

our case, the transformation matrices are orthonormal, so that T−1 = T⊤ and ||T || = 1.

Note that for an implementation, some of the results should be rewritten in order to minimise the
number of matrix inverses that need to be taken. In particular, the identity

(Σ−1
1 +Σ−1

2)
−1

= Σ1(Σ1 +Σ2)
−1

Σ2 (73)

is useful for the implementation, but we omit it in our derivation for clarity.

A.4.1 Marginalisation

For the inside probability β(xi:k), the integral in (20) is
∫∫

pN(xi:j , xj:k |xi:k)β(xi:j)β(xj:k) dxi:j dxj:k

=
∑

τ

wτ c
(β)
i:j c

(β)
j:k

∫∫
N (xi:j ;Tτxi:k,ΣNL)N (xj:k;xi:k,ΣNR)

N (xi:j ;µ
(β)
i:j ,Σ

(β)
i:j)N (xj:k;µ

(β)
j:k ,Σ

(β)
j:k) dxi:j dxj:k (74)

=
∑

τ

wτ c
(β)
i:j c

(β)
j:k N (Tτxi:k;µ

(β)
i:j ,ΣNL +Σ

(β)
i:j)N (xi:k;µ

(β)
j:k ,ΣNR +Σ

(β)
j:k) (75)

=
∑

τ

wτ c
(β)
i:j c

(β)
j:k N (xi:k;T

⊤
τ µ

(β)
i:j , T

⊤
τ [ΣNL +Σ

(β)
i:j]Tτ)N (xi:k;µ

(β)
j:k ,ΣNR +Σ

(β)
j:k) (76)

20

=
∑

τ

wτ c
(β)
i:j:k N (xi:k;µ

(β)
i:j:k,Σ

(β)
i:j:k) (77)

with

c
(β)
i:j:k := c

(β)
i:j c

(β)
j:k N (T⊤

τ µ
(β)
i:j ;µ

(β)
j:k , T

⊤
τ [ΣNL +Σ

(β)
i:j]Tτ +ΣNR +Σ

(β)
j:k) (78)

µ
(β)
i:j:k := Σ

(β)
i:j:k

[
T⊤
τ

(
ΣNL +Σ

(β)
i:j

)−1

µ
(β)
i:j +

(
ΣNR +Σ

(β)
j:k

)−1

µ
(β)
j:k

]
(79)

Σ
(β)
i:j:k :=

[(
T⊤
τ [ΣNL +Σ

(β)
i:j]Tτ

)−1

+
(
ΣNR +Σ

(β)
j:k

)−1
]−1

, (80)

where in (74) we inserted (31) and (36); in (75) we used (33) twice to rewrite the pairwise products
of Gaussians over xi:j and xj:k and marginalise them out; in (76) we used (72) to rewrite the
transformation; and in (77) we used (33) a third time to rewrite the resulting product as a single
Gaussian over xi:k.

For the outside probability α(xj:k), the integrals in (22) for xj:k being generated as the right child
are∫∫

pN(xi:j , xj:k |xi:k)α(xi:k)β(xi:j) dxi:j dxi:k (81)

=
∑

τ

wτ c
(α)
i:k c

(β)
i:j

∫∫
N (xi:j ;Tτxi:k,ΣNL)N (xj:k;xi:k,ΣNR)

N (xi:k;µ
(α)
i:k ,Σ

(α)
i:k)N (xi:j ;µ

(β)
i:j ,Σ

(β)
i:j) dxi:j dxi:k (82)

=
∑

τ

wτ c
(α)
i:k c

(β)
i:j

∫
N (xj:k;xi:k,ΣNR)N (xi:k;µ

(α)
i:k ,Σ

(α)
i:k)N (Tτxi:k;µ

(β)
i:j ,Σ

(1)) dxi:k (83)

=
∑

τ

wτ c
(α)
i:k c

(β)
i:j

∫
N (xj:k;xi:k,ΣNR)N (xi:k;µ

(α)
i:k ,Σ

(α)
i:k)N (xi:k;T

⊤
τ µ

(β)
i:j , T

⊤
τ Σ(1)Tτ) dxi:k

(84)

=
∑

τ

wτ c
(α)
i:k c

(β)
i:j

∫
N (xj:k;xi:k,ΣNR)N (xi:k;µ

(2),Σ(2))N (µ
(α)
i:k ;T

⊤
τ µ

(β)
i:j ,Σ

(3)) dxi:k (85)

=
∑

τ

wτ c
(α)
i:k c

(β)
i:j N (µ

(α)
i:k ;T

⊤
τ µ

(β)
i:j ,Σ

(3))N (xj:k;µ
(2),Σ(4)) (86)

=
∑

τ

wτ c
(α)
i:j:k N (xj:k;µ

(α)
i:j:k,Σ

(α)
i:j:k) (87)

with

Σ(1) = ΣNL +Σ
(β)
i:j Σ(2) =

[(
Σ

(α)
i:k

)−1
+
(
T⊤
τ Σ(1)Tτ

)−1
]−1

(88)

Σ(3) = Σ
(α)
i:k + T⊤

τ Σ(1)Tτ µ(2) = Σ(2)
[(
Σ

(α)
i:k

)−1
µ
(α)
i:k + T⊤

τ

(
Σ(1)

)−1
µ
(β)
i:j

]
(89)

Σ(4) = ΣNR +Σ(2) (90)

and

c
(α)
i:j:k = c

(α)
i:k c

(β)
i:j N (µ

(α)
i:k ;T

⊤
τ µ

(β)
i:j ,Σ

(α)
i:k + T⊤

τ [ΣNL +Σ
(β)
i:j]Tτ) (91)

µ
(α)
i:j:k =

[(
Σ

(α)
i:k

)−1
+

(
T⊤
τ [ΣNL +Σ

(β)
i:j]Tτ

)−1
]−1[(

Σ
(α)
i:k

)−1
µ
(α)
i:k + T⊤

τ

(
ΣNL +Σ

(β)
i:j

)−1
µ
(β)
i:j

]

(92)

Σ
(α)
i:j:k = ΣNR +

[(
Σ

(α)
i:k

)−1
+
(
T⊤
τ [ΣNL +Σ

(β)
i:j]Tτ

)−1
]−1

, (93)

where in (81) we took the constant termination probability (30) out of the integral and dropped it;
in (82) we inserted (31), (32) and (36); in (83) we applied (33) to marginalise out xi:j ; in (84) we
used (72) to rewrite the transformation; in (85) and (86) we used (33) twice to marginalise out xi:k;
and in (87) we rewrote the final result using (91–93). Due to the asymmetric terms in the outside
probabilities, the result is somewhat more complex than for the inside probabilities.

21

Analogously, the integrals in (22) for xj:k being generated as the left child are
∫∫

pN(xj:k, xk:l |xj:l)α(xj:l)β(xk:l) dxj:l dxk:l (94)

=
∑

τ

wτ c
(α)
j:l c

(β)
k:l

∫∫
N (xj:k;Tτxj:l,ΣNL)N (xk:l;xj:l,ΣNR)

N (xj:l;µ
(α)
j:l ,Σ

(α)
j:l)N (xk:l;µ

(β)
k:l ,Σ

(β)
k:l) dxj:l dxk:l (95)

=
∑

τ

wτ c
(α)
j:l c

(β)
k:l

∫
N (xj:k;Tτxj:l,ΣNL)N (xj:l;µ

(α)
j:l ,Σ

(α)
j:l)N (xj:l;µ

(β)
k:l ,Σ

(1′)) dxj:l (96)

=
∑

τ

wτ c
(α)
j:l c

(β)
k:l

∫
N (T⊤

τ xj:k;xj:l, T
⊤
τ ΣNLTτ)N (xj:l;µ

(2′),Σ(2′))N (µ
(α)
j:l ;µ

(β)
k:l ,Σ

(3′)) dxj:l

(97)

=
∑

τ

wτ c
(α)
j:l c

(β)
k:l N (µ

(α)
j:l ;µ

(β)
k:l ,Σ

(3′))N (T⊤
τ xj:k;µ

(2′),Σ(4′)) (98)

=
∑

τ

wτ c
(α)
j:l c

(β)
k:l N (µ

(α)
j:l ;µ

(β)
k:l ,Σ

(3′))N (xj:k;Tτµ
(2′), TτΣ

(4′)T⊤
τ) (99)

=
∑

τ

wτ c
(α)
j:k:l N (xj:k;µ

(α)
j:k:l,Σ

(α)
j:k:l) (100)

with

Σ(1′) = ΣNR +Σ
(β)
k:l Σ(2′) =

[(
Σ

(α)
j:l

)−1
+
(
Σ(1′)

)−1
]−1

(101)

Σ(3′) = Σ
(α)
j:l +Σ(1′) µ(2′) = Σ(2′)

[(
Σ

(α)
j:l

)−1
µ
(α)
j:l +

(
Σ(1′)

)−1
µ
(β)
k:l

]
(102)

Σ(4′) = T⊤
τ ΣNLTτ +Σ(2′) (103)

and

c
(α)
j:k:l = c

(α)
j:l c

(β)
k:l N (µ

(α)
j:l ;µ

(β)
k:l ,Σ

(α)
j:l +ΣNR +Σ

(β)
k:l) (104)

µ
(α)
j:k:l = Tτ

[(
Σ

(α)
j:l

)−1
+

(
ΣNR +Σ

(β)
k:l

)−1
]−1[(

Σ
(α)
j:l

)−1
µ
(α)
j:l +

(
ΣNR +Σ

(β)
k:l

)−1
µ
(β)
k:l

]
(105)

Σ
(α)
j:k:l = ΣNL + Tτ

[(
Σ

(α)
j:l

)−1
+
(
ΣNR +Σ

(β)
k:l

)−1
]−1

T⊤
τ . (106)

A.4.2 Approximation

A Gaussian mixture distribution p(x) with normalised mixture weights ci, means µi, and covariance
matrices Σi can be approximated with a single Gaussian as

p̂(x) = N (x; µ̂, Σ̂) with µ̂ =
∑

i

ci µi and Σ̂ =
∑

i

ci

[
Σi + (µi − µ̂)(µi − µ̂)⊤

]
. (107)

The approximation p̂(x) matches the first and second moments of p(x) and minimises the Kullback-
Leibler divergence (KLD) DKL[p(x) ‖ p̂(x)] [61, 18]. This direction of the KLD is the one used
e.g. in expectation propagation, not the one used in e.g. variational methods [18]. That means, p̂(x)
will adequately represent the support and uncertainty of p(x) (e.g. it will be non-zero wherever p(x)
is non-zero). On the other hand, a value of x may have a high probability in p̂(x) even though in p(x)
it has not (also see Figure 4).

A.4.3 Tree Induction

Exact joint optimisation of the structure and the continuous latent variables is intractable. We therefore
choose the best tree for a GRBN based the maximum of the (approximated) inside probability.
Inserting (30) and (77) into (20), we have

β(xi:k) = (1− pterm)
k−1∑

j=i+1

∑

τ

wτ c
(β)
i:j:k N (xi:k;µ

(β)
i:j:k,Σ

(β)
i:j:k) , (108)

22

x0:1

x0:2

x0:3

x0:4

x1:2

x1:3

x1:4

x2:3

x2:4

x3:4

y1=0 y2=1 y3=2 y4=0

x0:4

x0:3

x3:4x0:1

x1:3

x1:2 x2:3

y1 y2 y3 y4

Figure 7: Parse chart for a sequence of length n = 4 with best tree estimate (see text for details).

which is maximised by taking the mode of the Gaussian and maximising over j and (if using
transpositions) τ

max
(xi:k,j,τ)

wτ c
(β)
i:j:k N (xi:k;µ

(β)
i:j:k,Σ

(β)
i:j:k) = max

(j,τ)
wτ c

(β)
i:j:k

∣∣∣2πΣ(β)
i:j:k

∣∣∣
− 1

2

(109)

If we have multi-terminal transitions (or more generally other possible transitions), we also have to
maximise over the different possible transitions. For each non-terminal variable, we compute and
store the best choice during bottom-up computations of the inside probabilities. Afterwards, we can
construct the best tree by starting at the root node and recursively picking the best structure top-down.

B Example

In this section, we present the complete calculations for the inside probabilities, the tree estimate,
and the marginal likelihood for a basic GRBN (no transpositions or multi-terminal transitions) on a
simple example sequence of length n = 4 (also see Figure 7). We assume parameters

µP = 0 ΣP = ΣNL = ΣNR = ΣT = 1 pterm = 1/2 (110)

in (27–30) and a scalar sequence

Y = (y1, y2, y3, y4) = (0, 1, 2, 0) . (111)

B.1 Preliminaries

Inside probabilities are approximated with a single Gaussian

β(xi:k) ≈ c
(β)
i:k N (xi:k;µ

(β)
i:k ,Σ

(β)
i:k) , (31)

specified by c
(β)
i:k , µ

(β)
i:k , and Σ

(β)
i:k , which are the relevant quantities to be computed.

At the bottom level, we use (19) for the base case and insert (29) and (30) to obtain

β(xi:i+1) = pterm N (yi+1;xi:i+1,ΣT) , (112)

where we can directly read off c
(β)
i:k , µ

(β)
i:k , and Σ

(β)
i:k .

For the higher levels, we have to use (20) for the recursive case, where inserting (77) to solve the
integrals in closed form gives

β(xi:k) = (1− pterm)

k−1∑

j=i+1

c
(β)
i:j:k N (xi:k;µ

(β)
i:j:k,Σ

(β)
i:j:k) (113)

with parameters given by (78–80) as

c
(β)
i:j:k = c

(β)
i:j c

(β)
j:k N (µ

(β)
i:j ;µ

(β)
j:k , 1 + Σ

(β)
i:j + 1 + Σ

(β)
j:k) (114)

23

µ
(β)
i:j:k = Σ

(β)
i:j:k

[(
1 + Σ

(β)
i:j

)−1

µ
(β)
i:j +

(
1 + Σ

(β)
j:k

)−1

µ
(β)
j:k

]
(115)

Σ
(β)
i:j:k =

[(
1 + Σ

(β)
i:j

)−1

+
(
1 + Σ

(β)
j:k

)−1
]−1

, (116)

where we already inserted ΣNL = ΣNR = 1.

If the sum in (113) has only a single term, we immediately get

c
(β)
i:k = (1− pterm) c

(β)
i:j:k µ

(β)
i:k = µ

(β)
i:j:k Σ

(β)
i:k = Σ

(β)
i:j:k . (117)

If there is more than one term in the sum in (113), this means that there are multiple splitting options
that are marginalised out and we therefore need to do two things.

First, we have to identify the best splitting option to be able to compute the tree estimate. This is
done by using (109) and comparing the values of

c
(β)
i:j:k√
Σ

(β)
i:j:k

, (118)

where

∣∣∣Σ(β)
i:j:k

∣∣∣ = Σ
(β)
i:j:k in the scalar case and we left out shared constant factors.

Second, we have to approximate the resulting mixture with a single Gaussian using (107), where the
mixture weights have to be normalised. For the univariate/scalar case considered here, we then get

µ
(β)
i:k =

∑k−1
j=i+1 c

(β)
i:j:k µ

(β)
i:j:k∑k−1

j=i+1 c
(β)
i:j:k

(119)

Σ
(β)
i:k =

∑k−1
j=i+1 c

(β)
i:j:k

[
Σ

(β)
i:j:k + (µ

(β)
i:j:k − µ

(β)
i:k)

2
]

∑k−1
j=i+1 c

(β)
i:j:k

(120)

c
(β)
i:k = (1− pterm)

k−1∑

j=i+1

c
(β)
i:j:k . (121)

Finally, the marginal likelihood (17) is obtained as

p(Y) =

∫
β(x0:n) pP(x0:n) dx0:n (122)

≈
∫

c
(β)
0:n N (x0:n;µ

(β)
0:n,Σ

(β)
0:n)N (x0:n; 0, 1) dx0:n (123)

=

∫
c
(β)
0:n N (µ

(β)
0:n; 0,Σ

(β)
0:n + 1)N (x0:n; µ̄, Σ̄) dx0:n (124)

= c
(β)
0:n N (µ

(β)
0:n; 0,Σ

(β)
0:n + 1) (125)

where we have used (33) to rewrite the product of Gaussians and inserted µP = 0 and ΣP = 1.

The normal distribution is defined as

N (x;µ,Σ) =
1√
2π|Σ|

exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
(126)

=
1√
2πΣ

exp

[
−1

2

(x− µ)2

Σ

]
, (127)

where the second line is for the scalar case.

B.2 Calculations

We start with the inside probabilities at the bottom level for the latent variables x0:1, x1:2, x2:3, x3:4

and from (112) we read off (without any approximations)

c
(β)
i:i+1 = pterm = 1/2 µ

(β)
i:i+1 = yi+1 Σ

(β)
i:i+1 = ΣT = 1 (128)

24

with

µ
(β)
0:1 = 0 µ

(β)
1:2 = 1 µ

(β)
2:3 = 2 µ

(β)
3:4 = 0 . (129)

Next, we compute the inside probabilities on the first level for the variables x0:2, x1:3, x2:4. The only
possible splitting option is for j = i+ 1 and from (117) we get (again without approximation)

c
(β)
i:i+2 = (1− pterm) p

2
term N (yi+1; yi+2, 4), µ

(β)
i:i+2 = (yi+1 + yi+2)/2, Σ

(β)
i:i+2 = 1 (130)

and hence

c
(β)
0:2 =

1

24e
1
8

√
2π

≈ 2.20 · 10−2 µ
(β)
0:2 = 0.5 Σ

(β)
0:2 = 1 (131)

c
(β)
1:3 =

1

24e
1
8

√
2π

≈ 2.20 · 10−2 µ
(β)
1:3 = 1.5 Σ

(β)
1:3 = 1 (132)

c
(β)
2:4 =

1

24e
1
2

√
2π

≈ 1.51 · 10−2 µ
(β)
2:4 = 1 Σ

(β)
2:4 = 1 . (133)

Turning to the values for x0:3 and x1:4, we now have two terms in the sum in (113), which means
that we need to evaluate the best split and approximate the mixture. The corresponding parameters of
the mixture are given by (114–116) as

c
(β)
i:j:k = c

(β)
i:j c

(β)
j:k N (µ

(β)
i:j ;µ

(β)
j:k , 4) , µ

(β)
i:j:k = (µ

(β)
i:j + µ

(β)
j:k)/2 , Σ

(β)
i:j:k = 1 , (134)

which results in

c
(β)
0:1:3 =

1

27πe
13
32

≈ 1.66 · 10−3 µ
(β)
0:1:3 = 3/4 Σ

(β)
0:1:3 = 1 (135)

c
(β)
0:2:3 =

1

27πe
13
32

≈ 1.66 · 10−3 µ
(β)
0:2:3 = 5/4 Σ

(β)
0:2:3 = 1 (136)

and

c
(β)
1:2:4 =

1

27πe
1
2

≈ 1.51 · 10−3 µ
(β)
1:2:4 = 1 Σ

(β)
1:2:4 = 1 (137)

c
(β)
1:3:4 =

1

27πe
13
32

≈ 1.66 · 10−3 µ
(β)
1:3:4 = 3/4 Σ

(β)
1:3:4 = 1 . (138)

To identify the best split for each variable based on (118), we see (all variances are equal) from

c
(β)
0:1:3 = c

(β)
0:2:3 and c

(β)
1:2:4 < c

(β)
1:3:4 , (139)

that for x0:3 both splits are equally well and for x0:3 the split x1:4 → (x1:3, x3:4) at j = 3 is better.
This is intuitively clear, since generating (y2, y3) = (1, 2) from the same non-terminal variable
x1:3 = 1.5 is more likely than generating (y3, y4) = (2, 0) from x2:4 = 1, given that in both cases
the values are generated from a Gaussian with variance 1.

We approximate the mixtures with a single Gaussian with parameters given by (119–121) as

c
(β)
0:3 ≈ 1.66 · 10−3 µ

(β)
0:3 = 1 Σ

(β)
0:3 =

17

16
(140)

c
(β)
1:4 ≈ 1.58 · 10−3 µ

(β)
1:4 ≈ 0.869 Σ

(β)
1:4 ≈ 1.016 . (141)

Finally, we have the inside probability for the root variable x0:4 with three terms in the sum in (113)
with parameters

c
(β)
i:j:k = c

(β)
i:j c

(β)
j:k N (µ

(β)
i:j ;µ

(β)
j:k , 1 + Σ

(β)
i:j + 1 + Σ

(β)
j:k) (142)

µ
(β)
i:j:k = Σ

(β)
i:j:k

[(
1 + Σ

(β)
i:j

)−1

µ
(β)
i:j +

(
1 + Σ

(β)
j:k

)−1

µ
(β)
j:k

]
(143)

Σ
(β)
i:j:k =

[(
1 + Σ

(β)
i:j

)−1

+
(
1 + Σ

(β)
j:k

)−1
]−1

(144)

25

10 25

10 21

10 17

10 13

10 9

10 5

10 1
noise level: 0.01

ground truth
HC/CPD
RBN max

0 10 20 30 40 50

10 31

10 27

10 23

10 19

10 15

10 11

10 7

10 3

noise level: 0.15
ground truth
HC/CPD
RBN max

0 10 20 30 40 50

Figure 8: Example of the synthetic data used in the quantitative evaluation with noise levels of
0.01 (left) and 0.15 (right). (bottom): Generated three-dimensional time series; vertical dashed
lines indicate the segments identified by the change point detection (CPD) method. (top): The
ground-truth tree (green), the tree estimate from hierarchical clustering (HC) based on the CPD
segmentation (blue), and the tree estimate of the RBN (orange). The grey scale indicates the marginal
node probabilities based on the RBN.

and hence

c
(β)
0:1:4 ≈ 1.43 · 10−4 µ

(β)
0:1:4 ≈ 0.433 Σ

(β)
0:1:4 ≈ 1.004 (145)

c
(β)
0:2:4 ≈ 6.38 · 10−5 µ

(β)
0:2:4 = 0.75 Σ

(β)
0:2:4 = 1 (146)

c
(β)
0:3:4 ≈ 1.45 · 10−4 µ

(β)
0:3:4 ≈ 0.492 Σ

(β)
0:3:4 ≈ 1.015 . (147)

For the splitting options, (118) gives

c
(β)
0:1:4√
Σ

(β)
0:1:4

≈ 1.427 · 10−4 c
(β)
0:2:4√
Σ

(β)
0:2:4

≈ 6.38 · 10−5 c
(β)
0:3:4√
Σ

(β)
0:3:4

≈ 1.439 · 10−4 (148)

and we see that the split x0:4 → (x0:3, x3:4) for j = 3 is the best one. Intuitively, this makes sense
because it splits between y3 and y4, which is the biggest step. Not we have only minor differences
between the split options, because for simplicity we have chosen our variance parameters with a
value of 1, which is relatively large compared to the spread of the values. Choosing smaller variances
would result in more prominent splitting preferences.

We can now construct the full tree by also picking the best split for x0:3, which is a tie between
splitting at j = 1 and j = 2, so we can choose either one (in practice one might consider random tie
breaking to avoid biases due to variable order). The resulting tree is shown in Figure 7.

The parameters for the inside probability of x0:4, given by approximating the three Gaussian mixture
components, are

c
(β)
0:4 ≈ 1.76 · 10−4 µ

(β)
0:4 = 0.515 Σ

(β)
0:4 = 1.021 . (149)

Based on (125) this results in a marginal likelihood of

p(Y) ≈ 4.63 · 10−5 . (150)

C Experiments

C.1 Details for Quantitative Evaluation

We performed a quantitative evaluation on synthetic data for the task of segmenting a noisy time
series and inferring the underlying tree. We used the Gaussian RBN for music (Section 2.3.1) with

26

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

terminal_std=(0.01,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

terminal_std=(0.05,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

terminal_std=(0.1,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

terminal_std=(0.15,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

terminal_std=(0.2,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

terminal_std=(0.25,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

terminal_std=(0.01,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

re
ca

ll

terminal_std=(0.05,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

re
ca

ll

terminal_std=(0.1,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
ca

ll

terminal_std=(0.15,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
ca

ll

terminal_std=(0.2,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

terminal_std=(0.25,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

1.0

F1

terminal_std=(0.01,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

F1
terminal_std=(0.05,)

search method
Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.2

0.4

0.6

0.8

F1

terminal_std=(0.1,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1

terminal_std=(0.15,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1

terminal_std=(0.2,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

10 3 10 2 10 1 100 101 102 103

penalty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

terminal_std=(0.25,)
search method

Pelt
Binseg
BottomUp
Window

cost function
CostL2
CostAR
CostRank

Figure 9: Grid search for best parameters and CPD method, based on the F1 score w.r.t. the ground-
truth change points. The combination of Pelt search method with CostL2 cost function performed
best (with optimal parameters selected) in all cases.

some simplifications: 1) data were continuous and not categorical, 2) they had only three dimensions
instead of twelve, 3) the prior distribution did not have any transpositions, 4) the left child could only
be transposed by zero or one step. The data were sampled from this model, using zero prior mean,
Σp = 1, ΣNL = ΣNR = 1 · 0.12, λ = 5, equal weights W0 = W1 = 0.5 for transposition by zero or

one, and ΣT = 1 · noise2 with different noise levels {0.01, 0.05, 0.1, 0.15, 0.2, 0.25}. We used a
terminal probability of pterm = 0.6 for sampling and rejected any sequences with a length outside the
range of 50–55. An example of the data is shown in Figure 8.

For comparison, we used the best-performing change point detection (CPD) method from the
ruptures library [72] for segmenting the time series, combined with bottom-up hierarchical clus-
tering (HC) for inferring the tree structure (“HC/CPD”). For each noise level, we selected the CPD
method and parameters with best F1 score based on the ground-truth segments of 100 training
sequences (see Figure 9). In HC, pairs of adjacent segments with the smallest Euclidean/L2 distance
between their mean values were successively combined to construct the tree. For the RBN, all
parameters were trained from scratch by minimising the marginal likelihood of the observations
of only 10 training sequences (i.e. no ground-truth information and less training data than for the
baseline was used), separately for each noise level.

The models were evaluated on 500 test sequences by computing their precision and recall w.r.t. the
ground-truth trees. Each possible node was treated as a separate binary classification task and the
results reflect the number of correctly predicted nodes. Note that due to the strongly unbalanced class
distribution (many more possible node locations than actual nodes in the tree) precision and recall or
the combined F1 score are the appropriate performance metrics (as opposed to e.g. accuracy). For the
RBN they were computed in two different ways: 1) based on the best-tree estimate (“RBN max”) and
2) based on the marginal node probabilities (18) (“RBN marginal”).

Precision and recall are computed from the true positive (TP), false positive (FP), and false negative
(FN) rates

recall =
TP

TP + FN
(151)

precision =
TP

TP + FP
(152)

F1 = 2
precision · recall
precision + recall

(153)

For the single-tree estimates (baseline model and best-tree estimate from RBNs) we compared the
ground-truth and estimated tree node-by-node to count correctly predicted nodes (TP), nodes that
are in the prediction but not the ground-truth (FP), and nodes that are in the ground-truth but not
the prediction (FN). For the marginal node probabilities, we computed the corresponding rates by
counting all nodes in the ground-truth tree (TP+FN), summing the marginal probabilities over all

27

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

C Dm7/C G7/B C Am D7/C G/B Cmaj7/B Am7 D7 G C#dim7/G Dm/F Bdim7/F C/E Fmaj7/E Dm7 G7 C C7 Fmaj7 F#dim7 Abdim7 G7 Gsus64 G7sus4 G7 F#dim7/G Gsus64 G7sus4 G7 C7/C F/C G7/C C

D7 Dm/F G7D7/C

D7 Bdim7/F G7

G7 G7 Gsus64 G7G7/B

G/B

G C/E C

Fmaj7

G7 G7

G7

F/C

C

G

C

G7

G7

G7/C

C

C

G7

C

C

C

C

Figure 10: Harmonic analysis of Johann Sebastian Bach’s Prelude No. 1 in C major, BWV 846

nodes in the ground-truth tree (TP), and summing the marginal probabilities over all possible nodes
(TP+FP).

C.2 Hierarchical Music Analysis

The scores were pre-processed by computing pitch-class distributions (PCDs), as used for the
identification of musical keys [74, 75, 76], using the pitchscapes library [71]. We used a resolution
of 70 equally spaced time slices per piece, resulting in sequences of 12-dimensional categorical
distributions. The tree shown in Figure 6(c) for Johann Sebastian Bach’s Prelude No. 1 in C major,
BWV 846, corresponds to a harmonic expert analysis performed by the authors. Figure 10 shows the
annotated tree with additional chord labels, which are provided in a simplified notation commonly
used in Jazz lead sheets to be more accessible to a broad audience. In Table 1, we list the results
for all 24 preludes. For a better interpretation of the model and the presented results, there are two
relevant points to consider.

C.2.1 Chromatic versus Diatonic Transposition

It is interesting to look in more detail at what musical aspects the model can or cannot represent. In a
nutshell, it can represent chromatic transposition but cannot represent diatonic transposition, which
has a number of consequences, as described in the following.

The transpositions of the left child perform a cyclic rotation of the corresponding probabilities in
the pitch-class distribution represented by the latent variable, which corresponds to a chromatic
transposition. This determines not only which pitch classes have a significant probability to occur (the
in-scale tones) but also the specific weights. For instance, the tonic and fifth scale degree typically
have the highest weights. A transposition by 5 or 7 semitones from a current major key (say C
major) thus corresponds to a modulation to the sub-dominant (F major) or dominant (G major)
key, respectively. This includes adaptation of the fourth and seventh scale degree of the target key,
respectively (B→B♭ for F major; F→F♯ for G major), as well as the correct assignment of strong
weights to the tonic and fifth scale degree.

However, diatonic transposition cannot be represented in this way. For instance, to represent a
modulation from C major to A minor, the model has two options that are both far from optimal. 1) It
can choose not to apply a chromatic transposition, which ensures that all in-scale tones are correctly
represented (i.e. they have significant weight). This, however, means that the relative weights are
not appropriate for A minor. In particular, the strong weights on the tonic and fifth scale degree are
not present and, instead, the third and seventh scale degree (C and G, the former tonic and fifth scale
degree) have disproportionally strong weight. Correcting these weights has to occur through the

28

Gaussian transitions, which can only be explained with a relatively high transition variance. 2) The
second option would be to perform a chromatic transposition by 9 semitones, which ensures that
the strongest weights remain on the tonic and fifth scale degree of the new key. However, three
out-of-scale tones (C♯, F♯, G♯) now have a high weight, while the respective in-scale tones do not.
Again, this has to be corrected for by the Gaussian transition noise at a potentially even higher cost
than in the first case.

This is a highly plausible explanation for why we only see non-zero weights for the identity and
(chromatic) transposition by a fifth in our experiments. Any diatonic modulations are best explained
by reweighting using via Gaussian transition noise without a transposition, rather than by a chromatic
transposition, which would require an even stronger reweighting (except for modulation to the
sub-dominant and dominant key, which can be appropriately explained by a chromatic transposition).

C.2.2 Chord Labels

It is important to note that the chord labels in the expert annotation convey significantly more
information than just what pitch classes can be expected to occur in the respective section. For
example, the very same pitch-class distribution of G–C–E could amongst others be labeled as a
C major chord in second inversion, a G major chord with 64-suspension (Gsus64), or an A minor
seventh chord with omitted root, which might be easily confused by a musically untrained annotator.
Which of these labels is correct depends in many cases on the context, such as how a chord resolves
to the next one. While these differences are important from a musical perspective (they express a
different experience of the same musical events), our model was trained to only predict pitch-class
distributions. Therefore, in its current state, it cannot reproduce these distinctions, but we expect
future versions to significantly improve in this respect.

Table 1: Results for all major preludes in Johann Sebastian Bach’s
“Wohltemperiertes Klavier I & II”. (left): Expected value of the latent vari-
ables, i.e. the mean of (18), colour-coded using a key-finding algorithm
from the pitchscapes library [71]. (right): Marginal node probability,
i.e. the normalisation of (18) as well as the RBN tree estimate.

Johann Sebastian Bach Prelude No. 1 in C major BWV 846 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 19

10 15

10 11

10 7

10 3

101

105

Johann Sebastian Bach Prelude No. 3 in C♯ major BWV 848 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

(continued on next page)

29

Johann Sebastian Bach Prelude No. 5 in D major BWV 850 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Johann Sebastian Bach Prelude No. 7 in E♭ major BWV 852 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 10

10 9

10 8

10 7

10 6

10 5

Johann Sebastian Bach Prelude No. 9 in E major BWV 854 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 18

10 15

10 12

10 9

10 6

10 3

Johann Sebastian Bach Prelude No. 11 in F major BWV 856 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 33

10 29

10 25

10 21

10 17

10 13

10 9

10 5

(continued on next page)

30

Johann Sebastian Bach Prelude No. 13 in F♯ major BWV 858 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 17

10 14

10 11

10 8

10 5

10 2

Johann Sebastian Bach Prelude No. 15 in G major BWV 860 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 27

10 23

10 19

10 15

10 11

10 7

10 3

Johann Sebastian Bach Prelude No. 17 in A♭ major BWV 862 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 11

10 9

10 7

10 5

10 3

Johann Sebastian Bach Prelude No. 19 in A major BWV 864 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

(continued on next page)

31

Johann Sebastian Bach Prelude No. 21 in B♭ major BWV 866 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 15

10 13

10 11

10 9

10 7

10 5

Johann Sebastian Bach Prelude No. 23 in B major BWV 868 Wohltemperiertes Klavier I

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Johann Sebastian Bach Prelude No. 1 in C major BWV 870 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 8

10 6

10 4

10 2

100

Johann Sebastian Bach Prelude No. 3 in C♯ major BWV 872 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 11

10 9

10 7

10 5

(continued on next page)

32

Johann Sebastian Bach Prelude No. 5 in D major BWV 874 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 9

10 8

10 7

10 6

10 5

10 4

Johann Sebastian Bach Prelude No. 7 in E♭ major BWV 876 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 10

10 8

10 6

10 4

Johann Sebastian Bach Prelude No. 9 in E major BWV 878 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 9

10 8

10 7

10 6

10 5

10 4

Johann Sebastian Bach Prelude No. 11 in F major BWV 880 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 13

10 11

10 9

10 7

10 5

10 3

(continued on next page)

33

Johann Sebastian Bach Prelude No. 13 in F♯ major BWV 882 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 18

10 15

10 12

10 9

10 6

10 3

Johann Sebastian Bach Prelude No. 15 in G major BWV 884 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 11

10 9

10 7

10 5

Johann Sebastian Bach Prelude No. 17 in A♭ major BWV 886 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 10

10 8

10 6

10 4

10 2

Johann Sebastian Bach Prelude No. 19 in A major BWV 888 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 10

10 9

10 8

10 7

10 6

10 5

10 4

(continued on next page)

34

Johann Sebastian Bach Prelude No. 21 in B♭ major BWV 890 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
10 8

10 7

10 6

10 5

10 4

10 3

Johann Sebastian Bach Prelude No. 23 in B major BWV 892 Wohltemperiertes Klavier II

C c

C# c#

D d

D# d#

E e

F f

F# f#

G g

G# g#

A a

A# a#

B b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

10 14

10 12

10 10

10 8

10 6

10 4

End of Table 1

35

	 Appendix
	Theory
	Transformation to Chomsky normal form
	Relation to pcfg
	Abstraction of a pcfg
	Expansion of a pcfg

	General Inside and Outside Probabilities
	Inside Probabilities
	Outside Probabilities
	Joint Inside and Outside Probabilities

	Gaussian RBNs
	Marginalisation
	Approximation
	Tree Induction

	Example
	Preliminaries
	Calculations

	Experiments
	Details for Quantitative Evaluation
	Hierarchical Music Analysis
	Chromatic versus Diatonic Transposition
	Chord Labels

