
Appendices to OSOA: One-Shot Online Adaptation of
Deep Generative Models for Lossless Compression

A Appendix to Section 3

In this section, we adopt a bottom up explanation of OSOA and present two toy examples respectively
for FIFO and FILO style entropy coders. For the bottom up explanation part, we start from principles
and properties of common entropy coders, briefly summarise the ideas to synergise DGMs with
the entropy coders proposed in recent work and arrive at how OSOA accommodates DGMs based
lossless compression algorithms with different styles of entropy coders.

A.1 Entropy coders

At the high level, the problem of lossless compression can be formulated as a problem finding a
bijective map between the data domain and the code domain (the image of the data domain under
such a map), such that the expected length of the variable in the code domain is less than the expected
length of the variable in the data domain. And a general principle for achieving shorter expected
length is to assign a shorter code to a more frequent symbol. Popular entropy coders, i.e., Huffman
coding [3], arithmetic coding [10] and asymmetric numeral systems [1], define three different families
of solutions to lossless compression under such principle.

Toy Example 1 Here we use a simple example to explain the ideas and properties of above three
entropy coders. Assume the variable x has possible values {a1, a2, a3, a4, a5}, with probabilities in
Tab 1.

Table 1: The simplex of the Toy Example 1

SYMBOL a1 a2 a3 a4 a5

PROBABILITY 0.32 0.08 0.16 0.02 0.42

Huffman Coding Huffman coding gives such a bijective map through a binary tree generation
process. For a given probabilistic distribution, it starts from the two least probable symbols, a2 and
a4, and forms a subtree a2

∨
a4, where the less probable symbol is the right leaf. The two symbols a2

and a4 are substituted by the subtree a2
∨

a4 with probability as sum of the two symbols, 0.10. Then
the same iteration is conducted until no more nodes can be added, cf. Fig 1. For a certain symbol, the
code of it reads from the root to the leaf node, e.g., 0110 for a2. And the decoding process is to look
up the codebook given by the tree. Note that Huffman coding is a prefix code, in the sense that no
codeword is the prefix of another code. As a result, codewords of different symbols are isolated and a
symbol sequence can be decode from the codeword sequence as the original order. For example, the
code word for the symbol sequence a5a3a2 is 10100110.

Arithmetic Coding Arithmetic coders partition an interval into subintervals according to a simplex,
associate one symbol with one subinterval and use a real number in that interval to represent the
associated symbol. To encode a symbol sequence, arithmetic coders start from the unit interval
I0 = [0, 1] and find the associated subinterval I1 for the first symbol. Then I1 will be partitioned
again according to the simplex and a subinterval I2 will be found for the second symbol. The iterative
process is conducted until the end of the sequence and a real number in the last interval is used to
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Figure 1: The Huffman tree for Toy Example 1.

represent the symbol sequence. To decode a sequence, one just need to examine which subinterval in
I0 the real number belongs to and decodes the associated symbol as the first one. Then one examines
which subinterval in I1 the real number belongs to and decodes the second symbol. To enable the
iterative process to stop at the correct step, a termination symbol can be introduced. Without loss of
generality, we assume a2 is the termination symbol, where the codeword for a5a3a2 by AC can be
0.77, cf. Fig. 2. Note that the full sequence a5a3a2 is represented by a single codeword and one has
to decode a5 before being able to decode a3. As a result, entropy coders of such fashion are referred
to as of First-In-First-Out (FIFO) stytle, i.e., the queue style,.

Figure 2: Arithmetic coding for Toy Example 1.

Asymmetric Numeral Systems Here we present rANS. rANS first approximates the probability of
each symbol ai with a rational number `ai

m , where m =
∑

`ai
. The cumulative count is defined as

bai
=

∑i−1
j=1 `aj

. Furthermore, the inverse cumulative count function is defined as

b−1(y) = arg min
aj

{y <

j∑
i=1

`ai
}. (1)

For a sequence {st}Tt=1, the function to encode st is

xt = bxt−1

`st
c ∗m + mod(xt−1, `st) + bst . (2)
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And the function to decode st is

st = b−1(mod(xt,m)), (3)

xt−1 = bxt

m
c ∗ `st + mod(xt,m)− bst . (4)

Note that {xt}Tt=0 is the codeword sequence generated during the encoding process and only xT is
needed for decoding. The initial codeword state x0 can be initialised as 0.

Using the same Toy Example 1, we first compute the information as listed in Tab 2.

Table 2: Information needed of rANS for Toy Example 1

SYMBOL a1 a2 a3 a4 a5

PROBABILITY 0.32 0.08 0.16 0.02 0.42
`ai 32 8 16 2 42
bai 0 32 40 56 58

The encoding process for the sequence a5a3a2 is as follows

1. x0 = 0

2. x1 = b 0
42c ∗ 100 + mod(0, 42) + 58 = 58

3. x2 = b 5816c ∗ 100 + mod(58, 16) + 40 = 350

4. x3 = b 3508 c ∗ 100 + mod(350, 8) + 32 = 4338.

And the codeword for the sequence is 4338.

The decoding process is as follows

1. x3 = 4338

2. s3 = b−1(mod(4338, 100)) = a2 and x2 = b 4338100 c ∗ 8 + mod(4338, 100)− 32 = 350

3. s2 = b−1(mod(350, 100)) = a3 and x1 = b 350100c ∗ 16 + mod(350, 100)− 40 = 58

4. s1 = b−1(mod(58, 100)) = a5 and x0 = b 58
100c ∗ 42 + mod(58, 100)− 58 = 0.

Different from Huffman coding and Arithmetic Coding, ANS decodes the symbols in the reverse order
as the encoding one. As a result, the fashion of coding with ANS is referred to as of First-In-Last-Out
(FILO) style, i.e., the stack style.

Adaptive coding We presented three coding examples respectively for each entropy coder with a
fixed distribution of the symbols. All of the mentioned entropy coders allow for changes of the
distributions during the coding process. For Huffman coding, it involves dynamic adjustments of
the tree [5]. For AC, it involves different partitions at different steps [6]. For ANS, it involves
different values of `ai

’s and bai
’s [1]. While current DGMs based lossless compression algorithms

only consider static coding, OSOA introduces and validates adaptive coding for DGMs based lossless
compression algorithms.

A.2 DGMs based lossless compression

The entropy coders reviewed in Sec A.1 are elementary functional units in a DGMs based lossless
compression algorithm. As reviewed in Sec. 2, recent research focus on how to synergise above
entropy coders with different types of DGMs, i.e., VAEs, Normalizing Flows, etc. The main reason
is that for a data variable x, normally we do not have direct access to the explicit form of p(x) but
instead some factorisation form of it in DGMs. Here we use a single latent VAE as an example to
illustrate the components in a DGM based lossless compression algorithm, i.e., a deep generative
model and an entropy coder and an algorithm to connect the model and the coder.

Toy Example 2 In a single latent VAE, we have the observation variable x and the latent variable z.
The modelled distributions are prior p(z), likelihood p(x|z) and the approximate posterior q(z|x).
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For a chosen discretisation scheme, we denote the discrete distributions by p̄(z), p̄(x|z) and q̄(z|x).
The entropy coder adopted here is rANS. The algorithm connects the VAE and rANS is called bits
back ANS (bb-ANS) [7]. In bb-ANS, an auxiliary amount of initial bits are required, which is denoted
by c0.

To encode a given sample x1, one 1) decodes z1 from c0 with q̄(z|x) using rANS and gets the code
c10, 2) encodes x1 to c10 with p̄(x|z) using rANS and gets the code c20 and 3) encodes z1 to c20 with
p̄(z) and gets c1.

To decode x1 from c1, since ANS is an FILO style coder, one has to reverse the above process and
swap the operations of encoding and decoding. Specifically, one 1) decodes z1 from c1 with p̄(z)
using rANS and gets c20, 2) decodes x1 from c20 with p̄(x|z) using rANS and gets c10 and 3) encodes
z1 to c10 with q̄(z|x) using rANS and gets c0.

Due to the same reason of FILO coders, if one first encodes x1 with above algorithm and then encodes
x2 with above algorithm, one can only first decode x2 and then decodes x1. Note that for FIFO
coders, e.g., AC, one can only first decode x1 and then decode x2.

A.3 OSOA

From Sec. A.2, one can see that a DGM based lossless compression framework adds one more layer,
i.e., the deep generative model layer, to the entropy coder layer and synergise these two layers by an
algorithm, e.g., bb-ANS in the above example. The proposed OSOA actually adds another layer, i.e.,
the model adaptation layer, to DGMs based lossless compression frameworks and synergise these
two layers by different algorithms for FIFO style and FILO style entropy coders, which is adopted
in a particular DGM based lossless compression framework. In this section, we present two simple
examples respectively for DGMs based lossless compression frameworks with FIFO entropy coders
and FILO entropy coders.

Toy Example 3 We have three batches to compress, i.e., B1, B2 and B3 and a DGM based lossless
compression framework with a FIFO entropy coder. Moreover, we have a pretrained model p0 for the
DGM in the above framework.

The encoding include three steps as follows and illustrated in Fig. 3.

1. Use p0 to compress B1 with the inbuilt algorithm of the framework, then use B1 to update
p0 and get p1.

2. Use p1 to compress B2 with the inbuilt algorithm of the framework, then use B2 to update
p1 and get p2.

3. Use p2 to compress B3 with the inbuilt algorithm of the framework.

Note that since we do not have more batches, we do not need to use B3 to update p2.

Figure 3: An illustration of OSOA encoding with arithmetic coding (AC) for Toy Example 3. C.push
denotes the encoding operation of the AC codec.

The decoding include three steps as follows and illustrated in Fig. 4.

1. Use p0 to decompress B1 with the inbuilt algorithm of the framework, then use B1 to update
p0 and get p1.

2. Use p1 to decompress B2 with the inbuilt algorithm of the framework, then use B2 to update
p1 and get p2.
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3. Use p2 to decompress B3 with the inbuilt algorithm of the framework.

Figure 4: An illustration of OSOA decoding with arithmetic coding (AC) for Toy Example 3. C.pop
denotes the decoding operation of the AC codec.

Toy Example 4 We have six batches to compress, i.e., B1, B2, B3, B4, B5 and B6 and a DGM
based lossless compression framework with a FILO entropy coder. Moreover, we have a pretrained
model p0 for the DGM in the above framework. Here we divide the six batches into two chunks with
consecutive three batches per chunk.

The encoding include six steps as follows and illustrated in Fig. 5.

1. Use p0 to evaluate the pmf needed to compress B1 with the inbuilt algorithm of the frame-
work and add the pmf and batch to cache, then use B1 to update p0 and get p1.

2. Use p1 to evaluate the pmf needed to compress B2 with the inbuilt algorithm of the frame-
work and add the pmf and batch to cache, then use B2 to update p1 and get p2.

3. Use p2 to evaluate the pmf needed to compress B3 with the inbuilt algorithm of the frame-
work and add the pmf and batch to cache, then use B3 to update p2 and get p3. Start an
independent process to consecutively compress B3, B2 and B1 with the information in the
cache. Clear the cache for the first three batches.

4. Use p3 to evaluate the pmf needed to compress B4 with the inbuilt algorithm of the frame-
work and add the pmf and batch to cache, then use B4 to update p3 and get p4.

5. Use p4 to evaluate the pmf needed to compress B5 with the inbuilt algorithm of the frame-
work and add the pmf and batch to cache, then use B5 to update p4 and get p5.

6. Use p5 to evaluate the pmf needed to compress B6 with the inbuilt algorithm of the frame-
work and add the pmf and batch to cache. Start an independent process to consecutively
compress B6, B5 and B4 with the information in the cache. Clear the cache for the last
three batches.

Note that since we do not have more batches, we do not need to use B6 to update p5.

Figure 5: An illustration of OSOA encoding with bits back asymmetric numerical system (bb-ANS)
for Toy Example 4. C.push denotes the encoding operation of the ANS codec.

The decoding include six steps as follows and illustrated in Fig. 6.

1. Use p0 to decompress B1 with the inbuilt algorithm of the framework, then use B1 to update
p0 and get p1.
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2. Use p1 to decompress B2 with the inbuilt algorithm of the framework, then use B2 to update
p1 and get p2.

3. Use p2 to decompress B3 with the inbuilt algorithm of the framework, then use B3 to update
p2 and get p3.

4. Use p3 to decompress B4 with the inbuilt algorithm of the framework, then use B4 to update
p3 and get p4.

5. Use p4 to decompress B5 with the inbuilt algorithm of the framework, then use B5 to update
p4 and get p5.

6. Use p5 to decompress B6 with the inbuilt algorithm of the framework.

Note that since we do not have more batches, we do not need to use B6 to update p5.

Figure 6: An illustration of OSOA decoding with bits back asymmetric numerical system (bb-ANS)
for Toy Example 4. C.pop denotes the decoding operation of the ANS codec.

Vanilla OSOA In vanilla OSOA, the steps of using Bi to update pi−1 to pi will be using a gradient
based optimiser to update pi−1 to pi with the gradient evaluated on Bi, in both OSOA Encoding and
OSOA Decoding.

B Appendix to Section 4

B.1 Samples

Please find Fig 7 for visually larger images of those shown in Fig 3 in the main file.

B.2 Existing assets

Existing assets used in this work include existing data and existing software.

Data Existing datasets used in this work, CIFAR10, ImageNet32 and YFCC100m, are public datasets
freely used for research purpose. Both CIFAR10 and ImageNet32 are of the MIT license and
YFCC100m is of Creative Commons licenses. SET32/64/128 are sampled and subsampled from
images in YFCC100m as expained in Sec. 4.1. Since CIFAR10, ImageNet32 and SET32 are of very
low resolution, images from these datasets can be regarded with almost no personally identifiable
information. SET64 and SET128 are of higher resolutions than 32× 32 and may include personal
identifiable information, but we are not showing direct samples from them nor samples from models
trained on them. Further, we discuss the importance of information protection with DGMs based
lossless compression algorithms in Sec. 4.3 with samples of low resolution.

Software The open source software for deep learning and data preprocessing are included and cited
in Sec. 4.1. Here we add more details on the code for deep generative models and associated lossless
compression. The code for the RVAE model adopted in HiLLoC and the IAF RVAE model shown in
this work are adapted from the official code release of the work [4] and the official code release of the
work [8] both with the MIT license. The codec used with HiLLoC is the package Craystack released
with [8] with the MIT license. The model and the codec used with IDF++ is released with IDF [2] in
which slight modifications are performs to change IDF to IDF++. The codes are with MIT license.
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(a) ReTrain (b) PreTrain

(c) OSOA 1 update/batch (d) FineTune v3

(e) OSOA 100 updates/batch

Figure 7: 36 images sampled from (a) ReTrain: HiLLoC trained on SET32 from scratch, (b) PreTrain:
CIFAR10 pretrained HiLLoC, (d) FineTune v3: fine-tuning CIFAR10 pretrained HiLLoC for 20
epochs on SET32, (c) and (e) OSOA 1 and 100 updates/batch: the final checkpoint of vanilla OSOA
with 1 and 100 update steps per batch from CIFAR10 pretrained HiLLoC, respectively.
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B.3 Experiments resources

The infrastructure for experiments of HiLLoC is Intel(R) Xeon(R) CPU @ 2.60GHz×16 CPU with
an Nvidia V100 32GB GPU. The CPU used in IDF++ is the same as that in HiLLoC while the GPU
is Nvidia P100 16GB GPU.

B.4 Training details

HiLLoC pretraining For the RVAE model (HiLLoC), we adopt the same architecture as the one
used in the HiLLoC paper, as specified in Sec. 4.1. We use the amount of free bits 0.1, learning rate
0.002 and batch size 16 for pretraining on CIFAR10 and ImageNet32. For the IAF RVAE model, we
adopt the same configuration as RVAE with additionally enabling IAF for the approximate posterior.
We use the amount of free bits 0.1, learning rate 0.002 and batch size 32 for pretraining on CIFAR10
and ImageNet32. HiLLoC has 40998823 trainable float32 parameters and IAF RAVE has 49864615
trainable float32 parameters. All of the pretrained models are pretrained for more than 60 hours.

HiLLoC OSOA For OSOA in HiLLoC and IAF RVAE, we use the random seed 14865 and learning
rate at 0.0002 for all experiments unless otherwise specified. Since there are 217 images in total for
SET32/64/128, the vanilla OSOA without early stopping is conducted for 512, 2048 and 8192 steps
respectively for SET32/64/128.

IDF++ pretraining For the IDF++ model, we adopt the same architecture as that in IDF++ paper.
For pretraining, we use almost the same hyper-parameter used in IDF [2]. IDF++ has about 56.8M
trainable parameters.

IDF++ OSOA For OSOA in IDF++, we use the random seed 5 and learning rate at 0.0003 for all
experiments unless otherwise specified.

B.5 Performance by changing the hyperparameters

Error bars with different random seeds To evaluate the sensitivity of vanilla OSOA with respective
to random seeds, we randomly choose 10 different random seeds for CIFAR10 pretrained HiLLoC
and 6 random seeds for CIFAR10 pretrained IDF++ on SET32, and show the violin plots in Fig. 8.
One can see that OSOA admits performances with plausible consistency of different random seeds.

Figure 8: Violin plots of OSOA with different random seeds shown with CIFAR10 pretrained HiLLoC
(left) and CIFAR10 pretrained IDF++ (right).

OSOA with different learning rates Learning rate is one of the most important factors for fine-
tuning and a proper learning rate is usually more desirable. Here we line-searched the interval
[0.0001, 0.012] for OSOA with HiLLoC and [0.0001, 0.001] with IDF++, and showcase the learning
rate smile curve in Fig. 9. The random seed for HiLLoC is fixed at 14865 and the random seed for
IDF++ is fixed at 5. We find for HiLLoC, while the pre-training learning rate is 0.002, a slightly
larger learning rate 0.003 can achieve better OSOA performance. For IDF++, a smaller learning rate
is preferred, while larger ones lead to the failure of training, which highlights the importance of a
proper learning rate choice. Moreover, one can see in Fig. 9 that even with the learning rate difference
at the order of magnitude of 0.001, a difference of bpd at the magnitude of 0.1 can be witnessed.
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Figure 9: The learning rate smile: bpd of OSOA with HiLLoC (left) and IDF++ (right) of different
learning rates on SET32. "NaN" denotes the failure of training with larger learning rates.

B.6 Real bpd values

Note that the theoretical bpd values reported in this paper are evaluated based on the discretised
distributions of models for coding. Depending on the design and implementation of the codec, the
real bpd value will be slightly higher than the theoretical one, e.g., an extra cost of less than 32
bits [8] for bits-back ANS, which is negligible for large size datasets [8, 9]. Since the comparison
between OSOA and baselines are for the same model and same codec, theoretical bpd results are
sufficient for comparison. The codec for HiLLoC is Craystack [8], which is a prototype purpose
python implemented codec developed in the work [8] and for IDF++ is the self-implemented AC
coder. The real bpd values of HiLLoC and IDF++ on SET32 are shown in Tab 3. One can see that
the differences between the theoretical bpd values and the real bpd values for OSOA and FineTune
baselines are at the order of magnitude of 0.01 for HiLLoC and the order of magnitude of 0.001
for IDF++. Further, the conclusion of the comparison between the space efficiency of OSOA and
FineTune baselines holds.

Table 3: Real bpd values

SET PRETRAIN OSOA FINETUNE V1 FINETUNE V2 FINETUNE V3

HILLOC (CIFAR10) 32 4.025 3.565 3.421 (0.144) 3.364 (0.201) 3.257 (0.308)

IDF++ (CIFAR10) 32 3.614 3.227 3.092 (0.135) 3.047 (0.180) 2.837 (0.390)
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