441

442
443

444

445
446

447

448

449
450
451
452
453
454
455

457
458
459

461
462
463
464

466
467

Approach Density Estimation Action Sampling Density

Decision Transformers (DTs) log po(at|ot, Gt) po(atlot, Gt)

Reward Weighted Regression (RWR) exp(n~'G;)log pg(at|o;) po(atlor)

Reward Conditioned Policies (RCPs) log pg(a¢|ot, Gi)pe(Gilot) po(at|or, Gi)pe(Gilot) exp(KGy — ())
Reweighted Behavior Cloning (RBC) log pg(G¢|o, at)pe(ar]or) po(Gilor, ar)pg(a|o) exp(kGy — (k)
Implicit RL via SL (IRvS) log po(at, Gilor) po(ag, Giloy) exp(kGy — n(kK))
Model-Based RCPs (MB-RCP) log pg(0t41|at, o, Gi)pe(atlot, Gi)pe(Gilot) po(atlot, Gi)pe(Gilot) exp(KGr — n(k))
RCP with Future Rollout (CtRL-Sim) log pg (St+1:7|at, St, Ge)po(at|st, Ge)po(Gilst) pe(atlst, Ge)pe(Gi|se) exp(kGe — n(k))

Table 3: Offline policy modelling approaches in prior work. We can see that methods differ in the
decomposition of the joint distribution over actions and returns, with some approaches utilizing state
prediction as a regularizer. We note that this table is adopted from prior work [18, 17].

A Offline RL Approaches

Table 3 presents the different ways explored in the literature for learning policies in offline RL, and
how these methods can sample return-maximizing actions at test time.

B Action Sampling Algorithm

Algorithm 2 describes the proposed action sampling procedure for controllable behaviour generation
with factorized exponential tilting.

Algorithm 2 The action sampling algorithm used by CtRL-Sim to allow for factorized tilting of the
exhibited behaviour.

1: Input: {x*, ... x°} > The specified inverse temperature for each return-to-go component.
2: forc=1to C do

3: G ~ po(G¢lst, sq) exp(k°GE)

4: end for

5: ay ~ mo(aglse, sq, GiL, ... GIC)

6: return a;

C Nocturne Physics Simulator and Offline RL Dataset

C.1 Physics-based Nocturne Simulator

CtRL-Sim extends the Nocturne simulation environment [13]. Nocturne is a lightweight 2D driving
simulator that is built on real-world driving trajectory data from the Waymo Open Motion Dataset
[14]. A scene in Nocturne is represented by a set of dynamic objects — such as vehicles, pedestrians,
and cyclists — and the map context, which includes lane boundaries, lane markings, traffic signs, and
crosswalks. Each dynamic object is prescribed a goal state, which is defined as the final waypoint in
the ground-truth trajectory from the Waymo Open Motion Dataset. If there exist missing timesteps
in the ground-truth trajectory, we re-define the goal as the waypoint immediately preceding the first
missing timestep. By default, the dynamic objects track its 9 second trajectory from the Waymo
Open Motion Dataset at 10 Hz. The Nocturne Simulator is originally designed for the development
of RL driving policies, where the first 10 simulation steps (1s) of context is provided and the RL
agent must reach the prescribed goal within the next 80 simulation steps (8s).

We extend Nocturne by integrating a physics engine based on the Box2D library for enabling real-
istic vehicle dynamics and vehicle collisions. We model the vehicle’s dynamics using basic physics
principles, where forces applied to the vehicle are translated into acceleration, influencing its speed
and direction, and with frictional forces applied to simulate realistic sliding and adherence behav-
iors. This extension additionally ensures that an agent’s acceleration, braking, and turn radius are
bound by plausible limits and that vehicles can physically collide with each other. Such improve-
ments open the possibility of more accurately simulating complex conditions, such as emergency
braking maneuvers, slippery roads, and multi-vehicle collisions.

13

468

469
470
471
472
473
474
475

476
477
478
479
480
481
482

484
485

486
487

488
489

490

491

492

494
495
496
497

498
499
500

501
502
503
504
505

C.2 Offline RL Dataset Collection

The actions are defined by the acceleration and steering angle and the reward function is decom-
posed into three components: a goal position reward, a vehicle to vehicle collision reward, and a
vehicle to road edge collision reward. We confirm that the trajectory rollouts obtained by feeding
Waymo scenes through the simulator attain a reasonable reconstruction of the ground-truth Waymo
trajectories (see Table 1). Following Nocturne [13], we omit bicyclist and pedestrian trajectories
from the Waymo Open Motion Dataset and we omit scenes containing traffic lights. This yields a
training, validation, and test set containing 134150, 9678, and 2492 scenes.

For each agent, to obtain the action a; at timestep ¢, we compute the acceleration and steering value
using an inverse bicycle model computed from the agent’s current state in the simulator §; and the
ground-truth next state from the trajectory driving log s;41. We clip accleration values between -10
and 10 and steering values between -0.7 and 0.7 radians. We then execute a; with our proposed
forward physics dynamics model to obtain the agent’s updated state 5,11, and we repeat until the
agent has completed the full rollout. Table 1 confirms that this approach to offline RL trajectory data
collection yields a reasonable reconstruction of the ground-truth driving trajectories.

We compute rewards at each timestep, where our reward function is factored into three rewards com-
ponents: a goal position reward, vehicle-vehicle collision reward, and vehicle-road-edge collision
reward. The goal position reward is defined by:

Rg(8t7 SG) = lgoal achieved(sta S(;),

where goal achieved(-) is 1 if the agent ever reaches within 1 metre of the ground-truth goal, and 0
otherwise. The vehicle-vehicle collision reward is defined by:

Ry(st,S¢ — {5¢}) = —10 X Lichicle-vehicte coltision (5¢5 St — {5¢})
min(dist-nearest-vehicle(s, Sy — {s:}), 15)
15 ’
where dist-nearest-vehicle(-) computes the distance between the agent of interest and its nearest
agent in the scene. Finally, the vehicle-road-edge collision reward is defined by:

min(dist-nearest-road-edge(s;, m), 5)
5 9
where dist-nearest-road-edge(-) computes the distance between the agent and the nearest road edge.

R, (St, m) =-—10x]lvehicle—road—edge collision(sta m)

D Evaluation Metrics

The goal success rate is the proportion of evaluated agents across the evaluated test scenes that
get within 1 metre of the ground-truth goal position at any point during the trajectory rollout. The
final and average displacement errors are calculated for all evaluated agents across the test scenes
and averaged. For a specific scene s, the collision rate and offroad rate of s are the proportion of
evaluated agents in s that collide with another agent or road edge, respectively. These rates are then
averaged across all tested scenes to define the overall collision and offroad rates.

We compute the Jensen Shannon Distance (JSD) between the distributions of features computed
from the real and simulated rollouts. The Jensen Shannon Distance between two normalized his-
tograms p and q is computed as:

2 9
where m is the pointwise mean of p and ¢ and Dy is the KL-divergence. Unlike prior works that
compute the Jensen Shannon Divergence [6, 7], we compute its square root — the Jensen Shannon
Distance — so that values are not too close to 0. We compute the JSD over the following feature
distributions: linear speed, angular speed, acceleration, and nearest distance. Since the acceleration
values are discrete, for the acceleration JSD, we define one histogram bin for each valid acceleration

\/DKL(pIIm) + Dxu(ql|m)

14

506
507
508
509

510

511

512

513
514
515
516
517
518
519

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

JSD (x10~2)

Method Lin. Speed Ang. Speed Accel. Nearest Dist. Meta-JSD
Replay-Physics* 0.1 11.5 17.4 1.2 7.6

Actions-Only [9] 4.1+£0.7 168+ 0.3 156+0.5 5.1+£0.5 104 +£0.3
Imitation Learning 1.0 £ 0.1 134+03 169+04 2.14+0.2 83+0.1
DT (Max Return) [15] 27+0.1 134+£02 154+0.5 22+0.3 8.4 +0.1
CTG++ [11] 32+£09 119+09 124+04 22+03 7.4 £0.2
CtRL-Sim (No State Prediction) 1.2 £ 0.1 13.7£02 159+0.7 20+£0.2 82+0.2
CtRL-Sim (Base) 1.1 £0.2 13.8+£02 15.6+0.5 20+0.3 8.1+0.2
CtRL-Sim (Positive Tilting) 14+£0.1 136 £02 14.8+0.5 1.8 £ 0.2 79 £0.1
DT" (GT Initial Return) 1.1+£02 134+02 168+0.6 2.1+0.2 84 +0.1

CtRL-Sim" (GT Initial Return) 1.1 £02 13.8£03 153+0.6 22+£0.2 8.1+0.2

Table 4: Breakdown of Meta-JSD in Table 1. For each metric, the best unprivileged method is
bolded and second-best is underlined. * denotes a privileged method requiring the ground-truth
future trajectory.

value, yielding 21 evenly spaced bins between -10 and 10. For the linear speed histogram, we use
200 uniformly spaced bins between 0 and 30. For the angular speed JSD, we use 200 uniformly
spaced bins between -50 and 50. For the nearest distance JSD, we use 200 uniformly spaced bins
between 0 and 40.

E Individual JSD Results

In Table 4, we report the per-feature JSD results for Table 1.

F CtRL-Sim Training and Inference Details

Training: The CtRL-Sim behaviour simulation model is trained using randomly subsampled se-
quences of length of H x N x 3, where H = 32 and N = 24. For the actions, we discretize the
acceleration and steering into 20 and 50 uniformly quantized bins, respectively, yielding 1000 action
tokens. For the return-to-gos, we discretize each return-to-go component Gy’ into 350 uniformly
quantized bins. All agents and the map context are encoded in global frame as in [28, 9] where
we center and rotate the scene on a random agent during training. The map context is represented
as a set of road segments m := {rl}lL:l, where each road segment is defined by a sequence of
points r; := (p;,.. .plp), where L is the number of road segments and P is the number of points
per road segment. We apply a per-point MLP to the points of each road segment r;. To produce
road segment-level embeddings, we then apply attention-based pooling [45] on the embeddings of
the points within each road segment, yielding L road segment embeddings of size d. We select the
L = 200 closest lane segments within 100 metres of the centered agent as the map context, and
select up to N = 24 closest agents within 60 metres of the centered agent as social context for the
model. For each lane segment, we subsample P = 100 points. We use a hidden dimension size
d = 256, where we use I = 2 Transformer encoder blocks and D = 4 Transformer decoder blocks,
and we set o = ﬁ in the loss function. We supervise our model only on the trajectories of moving
agents. We found it useful to employ goal dropout whereby the embeddings for 10% of agent goals
are randomly set to O to prevent the model from overrelying on the goal information. We found goal
dropout useful for learning an informative map representation. The state, return, and action embed-
dings for the missing timesteps are set to 0. To ensure that the model is permutation equivariant to
the agent ordering [28, 27], we modify the standard temporally causal mask by additionally enforc-
ing that each agent can only attend to its own action and return-to-go tokens at the present timestep
while allowing access to all agents’ state tokens at the present timestep and all agents’ tokens in the
past timesteps. The CtRL-Sim model is trained using a linear decaying learning rate schedule from
Se-4 for 200k steps using the AdamW optimizer and a batch size of 64. At inference, we sample

15

538
539

541
542
543
544

546
547
548
549
550
551
552
553

554

555
556
557

558

559
560
561
562

563

564
565
566
567

568

569
570
571
572
573
574

575

576
577
578
579
580
581
582
583
584

actions with a temperature of 1.5. The CtRL-Sim architecture comprises 8.3 million parameters that
we train in 20 hours with 4 NVIDIA A100 GPUs.

Inference: CtRL-Sim supports scenes with an arbitrary number of agents. As CtRL-Sim is trained
with up to N = 24 agents, when the number of CtRL-Sim-controlled agents at inference time
exceeds NV = 24, we iteratively select 24-agent subsets at each timestep for processing until all
agents have been processed. We first randomly select a CtRL-Sim-controlled agent, we normalize
the scene to this agent and select the 23 closest context agents to the CtRL-Sim-controlled agent to
comprise the first set of 24 agents. We then iteratively continue centering on a CtRL-Sim-controlled
agent that has not been processed in the previous sets of 24 agents and select its 23 closest agents
for context until all CtRL-Sim-controlled agents have been included in a 24-agent subset. If an
agent belongs to multiple 24-agent subsets, we use the model’s first prediction of that agent. At
inference time, the context length is set to training context length H = 32. At each timestep, we
select H = 32 most recent timesteps as context and we found it useful to always center and rotate
the scene on the centered agent at the oldest timestep in the context. For the first 10 timesteps (1s) of
the simulated rollout, the states and actions are fixed to the ground-truth states and actions from the
offline RL dataset, whereas the return-to-go is predicted at every timestep of the simulated rollout.

G Baseline Details

In this section, we describe the design decision of each baseline employed in our work. We note
that for all models below, we scaled them in order for all models to have approximately the same
number of learnable parameters as CtRL-Sim’s architecture.

Actions Only

The actions-only baseline is encoder-decoder architecture implemented in exactly the same way
as CtRL-Sim with a few ablations. These include removal of states and returns from the decoder
sequence, and no state rollout predictions. This model was inspired by [9] but differs in that the
model also has access to the agents’ goals.

Imitation Learning

The imitation learning baseline is also based on the CtRL-Sim multi-agent behaviour simulation
architecture but lacks factorized return information. It is a step better than the actions-only base-
line since it considers the states in the decoder sequence, and this is corroborated by its improved
performance on multi-agent simulation results of Table 1.

DT

The Decision Transformer baseline is based on the seminal work [15]. We adopt an identical archi-
tecture to CtRL-Sim’s with some minor difference based on the algorithm. One such decision is the
lack of a return prediction based on states, and instead returns are chosen at inference time based
on domain knowledge. Returns are the first token fed to the decoder, followed by states in order to
predict actions. We make the strong argument that this is suboptimal for controllability (results in
Figure 4) and does not provide intuitive mechanism for selecting the return values to target.

CTG++

The CTG++ baseline is a diffusion model reimplementation of the recent work by [11]. We at-
tempted to follow the architecture as closely as possible with a few minor differences. One such
difference is that we diffuse over both states and actions, rather than diffusing over only actions and
using an unicycle dynamics model to derive the states. We chose this approach because the underly-
ing dynamics of the physics-enhanced Nocturne simulator is not necessarily governed by a unicycle
dynamics model, and thus using a unicycle dynamics model would induce small errors in the derived
states during training. We further note that we cannot replace the unicycle dynamics model with the
Nocturne physics dynamics model as this forward model is not differentiable. We also condition
on the present timestep and goal, to ensure fair comparison with CtRL-Sim. We note that at scene

16

585
586
587
588

590
591
592

593

594
595
596
597
598
599
600
601
602

603
604
605
606
607

608
609
610
611
612
613
614
615
616
617

619
620

621

622
623

ADE FDE Goal Success JSD Collision Off Road Per Scene

Method (m)}] (m)] Rate (%) T (x1072)) (%) | (%) | Gen. Time (s) |
CTG++' 1.72 3.97 41.7 7.7 6.4 17.4 44.0
CTG++ (128 hidden dim) 1.83 4.32 37.8 7.6 7.0 17.7 25.0
CTG++ (100 diffusion steps) 1.87 3.98 43.0 8.6 7.9 16.8 140.0

Table 5: Ablations of CTG++ on Multi-agent simulation results over 1000 test scenes. We report
the results across all metrics of different configurations of the CTG++ baseline [11]. T indicates the
original model results, with 256 hidden dimension and 50 diffusion steps at inference time.

generation time, we diffuse over actions and states at a rate of 2 Hz which is consistent with the
original CTG++ model. In addition, although we train with 100 diffusion steps, we run evaluations
with 50 diffusion steps. As showing in Table 5, the difference in performance is insignificant. As
we do not have information on the size of the network used in the original manuscript, we explored
different hidden dimension sizes of the transformer architecture of the diffusion model, also shown
in Table 5. A final difference is the future relative encoding. While CTG++ use the ground-truth to
compute the relative encoding during training and a constant velocity model at test time, we opted
to use the final historical timestep’s relative encoding. We found this approach to be more stable.

H CAT Simulated Data Collection and CtRL-Sim Finetuning

The Waymo Open Motion dataset largely contains nominal driving scenes. To enhance control over
the generation of safety-critical scenarios, we finetune CtRL-Sim on a simulated dataset of safety-
critical scenarios generated by CAT [21]. CAT is a state-of-the-art collision generation method that
involves fixing the agent’s future trajectory to a trajectory predicted by a DenseTNT trajectory pre-
dictor. CAT searches for a trajectory that has high likelihood of colliding with the log-replay future
trajectory of the ego vehicle, while having high probability under the behaviour prior (DenseTNT).
For more details, we refer readers to [21]. We note that a limitation of CAT is that the agent is non-
reactive to the ego as the agent’s trajectory is fixed at the beginning of the simulation. Moreover,
unlike CtRL-Sim, CAT does not have control over the degree to which the agent is adversarial.

To collect the simulated safety-critical dataset, we run CAT on a subset of the interactive validation
split of the Waymo Open Motion Dataset, which involves two interacting agents. Following CAT,
we select one of the two interacting agents to be the ego (whose trajectory is fixed to the log-replay
trajectory) and the other interacting agent to be the CAT adversary. In total, we collect 3577 CAT
scenarios for finetuning, of which around 60% contain ego-adversary collisions.

To encourage CtRL-Sim to learn how to generate

safety-critical scenarios without forgetting how to Method Times Preferred
generate good driving behaviour, we adopt a con- CtRL-Sim 15
tinual pre-training strategy for finetuning [46] where CAT 8
we randomly sample 3577 real training scenarios Tie 2

from the offline RL dataset in each training epoch,
or a 50% replay ratio. We rewarm the learning rate Table 6: The tally of votes for the pilot
to the maximum learning rate of 5e-4 over 500 steps study. We show the‘breakdown of the votes
and follow a linear decay learning rate schedule to 0 for the conducted pilot study. Strong pref-
over 20 epochs. We expect that the finetuned CtRL- erence in terms of plap sibility is _shown for
Sim model will be more capable of generating long- scenarios generated using CtRL-Sim.

tail scenarios as it is more exposed to such scenarios

during finetuning. Finetuning takes roughly 30 minutes on 1 NVIDIA A100-Large GPU.

I Adversarial Scenario Generation User Study

We first conduct a pilot study with 5 participants to evaluate which method (CtRL-Sim vs. CAT)
generates more plausible adversarial behaviours. Each participant was tasked with evaluating the

17

624
625
626
627

628
629
630
631
632
633
634
635
636
637
638

640
641
642
643
644

645

646
647

Survey

What collision scenario do you find more plausible given the behaviour of the agent?
*
Replay Replay
[0 Adversary [Adversary
[Planner [Planner
_ B - —
\ BO — -
° o
1 2

Figure 6: User Study Example Scenario. We show an example of a pair of scenarios along with
the question users are asked to answer.

same set of 25 pairs of scenarios that were randomly selected from a pool of 259 scenarios, where
one scenario employed a CtRL-Sim adversarial agent and the other was a CAT adversarial agent. In
both instances, the planner was a positively tilted CtRL-Sim planner. Table 6 shows the tally of the
votes, where we observed strong preference for adversarial scenarios generated using CtRL-Sim.

We conduct a larger study including a total of 22 partic-

ipants. We did not record any identifying information of Method Times Preferred
the participants, and participants were invited on a vol- CtRL-Sim 97
untary basis. Users were presented with the user inter- CAT 926
face shown in Figure 6, where we randomize the order Tie 66

between both videos. Each participant responded to a to-

tal of 30 pairs of scenarios, which took an average 12
minutes to complete. These pairs were randomly selected
from the same pool of 259 scenarios as the pilot study. Ta-

Table 7: The tally of votes for the
larger study. We show the breakdown
of the votes for the conducted larger
study. We observe that the results of this

ble 7 shows the tally of this larger study. As we can see,
the results of this larger study are inconclusive compared
to the pilot study. We hypothesize that the framing of the
question may have been ambiguous for a larger audience,
and that the pairs of videos may have included less interesting scenarios (e.g, adversary rear-ending
planner), resulting in many comparisons that were very difficult to judge, thus adding noise to the
survey results. We plan to further study the question of plausibility in a future user study with better
scenario selection.

study are less conclusive than the pilot
study.

J Additional Qualitative Results

Figure 7 shows more qualitative examples demonstrating the effects of positive exponential tilting
on each of the three reward components. In the left panels, CtRL-Sim with no tilting produces a

18

649
650
651
652
653
654
655
656

658
659

660

661
662
663
664
665

Vehicle-Vehicle Tilting Vehicle-Edge Tilting Goal Tilting

No Tilting
QO
|

Positive Tilting

Figure 7: Qualitative results of the effects of positive tilting. We show the evolution of three

traffic scenes with the top panels applying no exponential tilting to the CtRL-Sim-controlled agent

(shown in teal) and the bottom panels applying positive tilting to the same CtRL-Sim-controlled

agent. Bounding boxes outlined in red contain a traffic violation. All other agents are set to log-

replay through physics, with the agent interacting with the CtRL-Sim-controlled agent denoted in
. Goals are denoted by small circles.

vehicle-vehicle collision between two interacting agents at a left-turn. With positive vehicle-vehicle
tilting, the CtRL-Sim-controlled agent moves more to the right-hand side of the lane to avoid the
collision. In the middle panels, CtRL-Sim with no tilting produces a vehicle-edge collision as the bus
pulls into the curb. With positive vehicle-edge tilting, the CtRL-Sim-controlled agent pulls into the
curb at a safer distance from the curb. In the right panels, CtRL-Sim with no tilting reaches the goal.
With positive goal tilting, the CtRL-Sim-controlled agent reaches the goal much faster and nearly
avoids collision with the turning vehicle. In Figure 8, we show two more examples of adversarial
collision scenarios generated with negative vehicle-vehicle tilting. We refer the interested reader to
the supplementary video for more examples.

K Multi-Agent Simulation Results with Higher Temperature Sampling

In Table 8, we report results from the same experiments as Table 1 except with a higher action
sampling temperature, set to 1.5.

L Fine-tuning CtRL-Sim on CtRL-Sim Scenarios

Instead of finetuning on CAT scenarios, we explore finetuning CtRL-Sim on adversarial scenar-
ios generated by CtRL-Sim. We first collect a simulated dataset of scenes either containing a
vehicle-vehicle collision or an offroad infraction. Specifically, we generate rollouts of a single
agent with the negatively tilted base CtRL-Sim model where the other agents are set to log re-
play through physics, and we save the scenario only if the generated rollout yields a vehicle-vehicle

19

666
667
668
669
670
671
672
673
674

Vehicle-Vehicle Tilting

(o))

£

=

=

2 = Sermes o]
.2 = L m—]

b = = 1 = =] = (=]

(]

o

o

%e

s — e

Negative Tilting
|
[1 |
un|

Figure 8: Qualitative results of vehicle-vehicle tilting. We show the evolution of two traffic scenes
with the top panels applying positive exponential tilting to the CtRL-Sim-controlled agent (shown
in teal) and the bottom panels applying negative tilting to the same CtRL-Sim-controlled agent.
Bounding boxes outlined in red contain a traffic violation. All other agents are set to log-replay
through physics, with the agent interacting with the CtRL-Sim-controlled agent denoted in
Goals are denoted by small circles.

Reconstruction Distributional Realism Common Sense

Method FDE (m) ADE (m) Goal Suc. Rate (%) Meta JSD(x10~2) Collision (%) Off Road (%)
Replay-Physics* 0.97 0.47 87.3 7.6 2.8 10.7
Actions-Only [9] 11.70 £ 1.12 478 £0.42 344+13 143+03 228 4+0.7 297+ 1.7
Imitation Learning 2424017 147 4+0.07 73.8 +1.2 123 +0.5 73 +0.6 13.1+£04
DT (Max Return) [15] 325+0.17 1.67+0.05 60.5+ 1.2 123+04 6.1 +0.7 11.6 £ 0.3
CtRL-Sim (No State Prediction) 2.57 £0.16 1.52 4+ 0.07 662+ 1.0 123+03 7.6 +£0.7 13.1+03
CtRL-Sim (Base) 249 +0.10 1.50 +0.04 679412 1224+0.2 7.6+0.3 13.1+05
CtRL-Sim (Positive Tilting) 2.38 +£0.08 1.44 +0.03 672+ 1.0 121+ 0.1 6.7+04 1234+03
DT* (GT Initial Return) 1.94+0.07 128+0.02 737+15 122+03 6.6 +04 126 +04
CtRL-Sim* (GT Initial Return) 1.97+0.08 1.30+0.03 71.1+£09 122+ 0.1 72405 13.14+03

Table 8: Multi-agent simulation results over 1000 test scenes with action temperature = 1.5
over 3 seeds. This table presents the results from the same experiments as Table 1, but with an
action sampling temperature of 1.5 instead of 1.0. This allows for a comparison of the impact of the
temperature hyperparameter. Overall, an action sampling temperature of 1.0 yields better results.

collision or vehicle-road-edge collision. For tilting, we uniformly sample Kyeh-ven ~ U(—25,0) and
Kgoal ~ U(—25,0) when generating vehicle-vehicle collision scenarios, and we uniformly sample
Kyeh-edge ~ U(—25,0) and Kgoa ~ U(—25,0) when generating vehicle-road-edge collision scenar-
ios. By additionally negatively tilting the goal, this grants the model more flexibility when generat-
ing traffic violations as the agents are not trying to reach its prescribed goal. We collect 5000 sce-
narios of each type of traffic violation derived from the training set, which comprises the simulated
dataset of safety-critical scenarios. To encourage CtRL-Sim to learn how to generate safety-critical
scenarios without forgetting how to generate good driving behaviour, we adopt the same finetuning
strategy as in Appendix H, except we randomly sample 90000 real training scenarios from the of-

20

675
676
677
678

DT max return DT max return
0.30 1 DT min return DT min return
Base model 025 Base model » 0897
© 0.25 0 Finetuned ° - Finetuned ©
5 2 o
< & 0.20 @ 0.75
S 0.20 ° 8
s 8 S
2 £ @ 070 i
= | £ @ 0.70
§ 015 © 0154 g DT max return
(&} DT min return
0.101 0.65 1 Base model
0.10 &~ Finetuned
-25 -10-5 0 5 10 25 -25 -10-5 0 5 10 25 -25 -10-5 0 5 10 25
Tilting (Vehicle-Vehicle) Tilting (Vehicle-Edge) Tilting (Goal)
Figure 9: Effects of exponential tilting. Comparison of CtRL-Sim base model () and a

CtRL-Sim model fine-tuned on adversarial CtRL-Sim scenarios (purple). As opposed to Figure 4,
this fine-tuned model does not involve using CAT to select the adversarial scenarios. Rewards range
from -25 to 25 for vehicle-vehicle collision (left), vehicle-edge collision (middle), and goal reaching
(right). Results show smooth controllability, with fine-tuning enhancing this effect. Mean and std
are reported over 5 seeds.

fline RL dataset in each training epoch, or a 90% replay ratio. We find it useful to use a larger replay
ratio when finetuning on CtRL-Sim scenarios. The controllability results over 5 seeds are shown in
Figure 9, demonstrating similar control over adversarial behaviours as the CAT-finetuned CtRL-Sim

model.

21

