
Approach Density Estimation Action Sampling Density

Decision Transformers (DTs) log pθ(at|ot, Gt) pθ(at|ot, Gt)
Reward Weighted Regression (RWR) exp(η−1Gt) log pθ(at|ot) pθ(at|ot)
Reward Conditioned Policies (RCPs) log pθ(at|ot, Gt)pθ(Gt|ot) pθ(at|ot, Gt)pθ(Gt|ot) exp(κGt − η(κ))
Reweighted Behavior Cloning (RBC) log pθ(Gt|ot, at)pθ(at|ot) pθ(Gt|ot, at)pθ(at|ot) exp(κGt − η(κ))
Implicit RL via SL (IRvS) log pθ(at, Gt|ot) pθ(at, Gt|ot) exp(κGt − η(κ))
Model-Based RCPs (MB-RCP) log pθ(ot+1|at, ot, Gt)pθ(at|ot, Gt)pθ(Gt|ot) pθ(at|ot, Gt)pθ(Gt|ot) exp(κGt − η(κ))

RCP with Future Rollout (CtRL-Sim ) log pθ(st+1:T |at, st, Gt)pθ(at|st, Gt)pθ(Gt|st) pθ(at|st, Gt)pθ(Gt|st) exp(κGt − η(κ))

Table 3: Offline policy modelling approaches in prior work. We can see that methods differ in the
decomposition of the joint distribution over actions and returns, with some approaches utilizing state
prediction as a regularizer. We note that this table is adopted from prior work [18, 17].

A Offline RL Approaches441

Table 3 presents the different ways explored in the literature for learning policies in offline RL, and442

how these methods can sample return-maximizing actions at test time.443

B Action Sampling Algorithm444

Algorithm 2 describes the proposed action sampling procedure for controllable behaviour generation445

with factorized exponential tilting.446

Algorithm 2 The action sampling algorithm used by CtRL-Sim to allow for factorized tilting of the
exhibited behaviour.

1: Input: {κ1, . . . , κC} ▷ The specified inverse temperature for each return-to-go component.
2: for c = 1 to C do
3: G′c

t ∼ pθ(G
c
t |st, sG) exp(κcGc

t)
4: end for
5: at ∼ πθ(at|st, sG, G′1

t , . . . G
′C
t )

6: return at

C Nocturne Physics Simulator and Offline RL Dataset447

C.1 Physics-based Nocturne Simulator448

CtRL-Sim extends the Nocturne simulation environment [13]. Nocturne is a lightweight 2D driving449

simulator that is built on real-world driving trajectory data from the Waymo Open Motion Dataset450

[14]. A scene in Nocturne is represented by a set of dynamic objects – such as vehicles, pedestrians,451

and cyclists – and the map context, which includes lane boundaries, lane markings, traffic signs, and452

crosswalks. Each dynamic object is prescribed a goal state, which is defined as the final waypoint in453

the ground-truth trajectory from the Waymo Open Motion Dataset. If there exist missing timesteps454

in the ground-truth trajectory, we re-define the goal as the waypoint immediately preceding the first455

missing timestep. By default, the dynamic objects track its 9 second trajectory from the Waymo456

Open Motion Dataset at 10 Hz. The Nocturne Simulator is originally designed for the development457

of RL driving policies, where the first 10 simulation steps (1s) of context is provided and the RL458

agent must reach the prescribed goal within the next 80 simulation steps (8s).459

We extend Nocturne by integrating a physics engine based on the Box2D library for enabling real-460

istic vehicle dynamics and vehicle collisions. We model the vehicle’s dynamics using basic physics461

principles, where forces applied to the vehicle are translated into acceleration, influencing its speed462

and direction, and with frictional forces applied to simulate realistic sliding and adherence behav-463

iors. This extension additionally ensures that an agent’s acceleration, braking, and turn radius are464

bound by plausible limits and that vehicles can physically collide with each other. Such improve-465

ments open the possibility of more accurately simulating complex conditions, such as emergency466

braking maneuvers, slippery roads, and multi-vehicle collisions.467
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C.2 Offline RL Dataset Collection468

The actions are defined by the acceleration and steering angle and the reward function is decom-469

posed into three components: a goal position reward, a vehicle to vehicle collision reward, and a470

vehicle to road edge collision reward. We confirm that the trajectory rollouts obtained by feeding471

Waymo scenes through the simulator attain a reasonable reconstruction of the ground-truth Waymo472

trajectories (see Table 1). Following Nocturne [13], we omit bicyclist and pedestrian trajectories473

from the Waymo Open Motion Dataset and we omit scenes containing traffic lights. This yields a474

training, validation, and test set containing 134150, 9678, and 2492 scenes.475

For each agent, to obtain the action at at timestep t, we compute the acceleration and steering value476

using an inverse bicycle model computed from the agent’s current state in the simulator ŝt and the477

ground-truth next state from the trajectory driving log st+1. We clip accleration values between -10478

and 10 and steering values between -0.7 and 0.7 radians. We then execute at with our proposed479

forward physics dynamics model to obtain the agent’s updated state ŝt+1, and we repeat until the480

agent has completed the full rollout. Table 1 confirms that this approach to offline RL trajectory data481

collection yields a reasonable reconstruction of the ground-truth driving trajectories.482

We compute rewards at each timestep, where our reward function is factored into three rewards com-483

ponents: a goal position reward, vehicle-vehicle collision reward, and vehicle-road-edge collision484

reward. The goal position reward is defined by:485

Rg(st, sG) = 1goal achieved(st, sG),

where goal achieved(·) is 1 if the agent ever reaches within 1 metre of the ground-truth goal, and 0486

otherwise. The vehicle-vehicle collision reward is defined by:487

Rv(st,St − {st}) = −10× 1vehicle-vehicle collision(st,St − {st})

+
min(dist-nearest-vehicle(st,St − {st}), 15)

15
,

where dist-nearest-vehicle(·) computes the distance between the agent of interest and its nearest488

agent in the scene. Finally, the vehicle-road-edge collision reward is defined by:489

Re(st,m) = −10× 1vehicle-road-edge collision(st,m) +
min(dist-nearest-road-edge(st,m), 5)

5
,

where dist-nearest-road-edge(·) computes the distance between the agent and the nearest road edge.490

D Evaluation Metrics491

The goal success rate is the proportion of evaluated agents across the evaluated test scenes that492

get within 1 metre of the ground-truth goal position at any point during the trajectory rollout. The493

final and average displacement errors are calculated for all evaluated agents across the test scenes494

and averaged. For a specific scene s, the collision rate and offroad rate of s are the proportion of495

evaluated agents in s that collide with another agent or road edge, respectively. These rates are then496

averaged across all tested scenes to define the overall collision and offroad rates.497

We compute the Jensen Shannon Distance (JSD) between the distributions of features computed498

from the real and simulated rollouts. The Jensen Shannon Distance between two normalized his-499

tograms p and q is computed as:500 √
DKL(p||m) +DKL(q||m)

2
,

where m is the pointwise mean of p and q and DKL is the KL-divergence. Unlike prior works that501

compute the Jensen Shannon Divergence [6, 7], we compute its square root – the Jensen Shannon502

Distance – so that values are not too close to 0. We compute the JSD over the following feature503

distributions: linear speed, angular speed, acceleration, and nearest distance. Since the acceleration504

values are discrete, for the acceleration JSD, we define one histogram bin for each valid acceleration505
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JSD (×10−2)
Method Lin. Speed Ang. Speed Accel. Nearest Dist. Meta-JSD

Replay-Physics∗ 0.1 11.5 17.4 1.2 7.6

Actions-Only [9] 4.1 ± 0.7 16.8 ± 0.3 15.6 ± 0.5 5.1 ± 0.5 10.4 ± 0.3
Imitation Learning 1.0 ± 0.1 13.4 ± 0.3 16.9 ± 0.4 2.1 ± 0.2 8.3 ± 0.1
DT (Max Return) [15] 2.7 ± 0.1 13.4 ± 0.2 15.4 ± 0.5 2.2 ± 0.3 8.4 ± 0.1
CTG++ [11] 3.2 ± 0.9 11.9 ± 0.9 12.4 ± 0.4 2.2 ± 0.3 7.4 ± 0.2
CtRL-Sim (No State Prediction) 1.2 ± 0.1 13.7 ± 0.2 15.9 ± 0.7 2.0 ± 0.2 8.2 ± 0.2
CtRL-Sim (Base) 1.1 ± 0.2 13.8 ± 0.2 15.6 ± 0.5 2.0 ± 0.3 8.1 ± 0.2
CtRL-Sim (Positive Tilting) 1.4 ± 0.1 13.6 ± 0.2 14.8 ± 0.5 1.8 ± 0.2 7.9 ± 0.1

DT∗ (GT Initial Return) 1.1 ± 0.2 13.4 ± 0.2 16.8 ± 0.6 2.1 ± 0.2 8.4 ± 0.1
CtRL-Sim∗ (GT Initial Return) 1.1 ± 0.2 13.8 ± 0.3 15.3 ± 0.6 2.2 ± 0.2 8.1 ± 0.2

Table 4: Breakdown of Meta-JSD in Table 1. For each metric, the best unprivileged method is
bolded and second-best is underlined. ∗ denotes a privileged method requiring the ground-truth
future trajectory.

value, yielding 21 evenly spaced bins between -10 and 10. For the linear speed histogram, we use506

200 uniformly spaced bins between 0 and 30. For the angular speed JSD, we use 200 uniformly507

spaced bins between -50 and 50. For the nearest distance JSD, we use 200 uniformly spaced bins508

between 0 and 40.509

E Individual JSD Results510

In Table 4, we report the per-feature JSD results for Table 1.511

F CtRL-Sim Training and Inference Details512

Training: The CtRL-Sim behaviour simulation model is trained using randomly subsampled se-513

quences of length of H × N × 3, where H = 32 and N = 24. For the actions, we discretize the514

acceleration and steering into 20 and 50 uniformly quantized bins, respectively, yielding 1000 action515

tokens. For the return-to-gos, we discretize each return-to-go component Gc,i
t into 350 uniformly516

quantized bins. All agents and the map context are encoded in global frame as in [28, 9] where517

we center and rotate the scene on a random agent during training. The map context is represented518

as a set of road segments m := {rl}Ll=1, where each road segment is defined by a sequence of519

points rl := (p1l , . . . p
P
l ), where L is the number of road segments and P is the number of points520

per road segment. We apply a per-point MLP to the points of each road segment rl. To produce521

road segment-level embeddings, we then apply attention-based pooling [45] on the embeddings of522

the points within each road segment, yielding L road segment embeddings of size d. We select the523

L = 200 closest lane segments within 100 metres of the centered agent as the map context, and524

select up to N = 24 closest agents within 60 metres of the centered agent as social context for the525

model. For each lane segment, we subsample P = 100 points. We use a hidden dimension size526

d = 256, where we use E = 2 Transformer encoder blocks and D = 4 Transformer decoder blocks,527

and we set α = 1
100 in the loss function. We supervise our model only on the trajectories of moving528

agents. We found it useful to employ goal dropout whereby the embeddings for 10% of agent goals529

are randomly set to 0 to prevent the model from overrelying on the goal information. We found goal530

dropout useful for learning an informative map representation. The state, return, and action embed-531

dings for the missing timesteps are set to 0. To ensure that the model is permutation equivariant to532

the agent ordering [28, 27], we modify the standard temporally causal mask by additionally enforc-533

ing that each agent can only attend to its own action and return-to-go tokens at the present timestep534

while allowing access to all agents’ state tokens at the present timestep and all agents’ tokens in the535

past timesteps. The CtRL-Sim model is trained using a linear decaying learning rate schedule from536

5e-4 for 200k steps using the AdamW optimizer and a batch size of 64. At inference, we sample537

15



actions with a temperature of 1.5. The CtRL-Sim architecture comprises 8.3 million parameters that538

we train in 20 hours with 4 NVIDIA A100 GPUs.539

Inference: CtRL-Sim supports scenes with an arbitrary number of agents. As CtRL-Sim is trained540

with up to N = 24 agents, when the number of CtRL-Sim-controlled agents at inference time541

exceeds N = 24, we iteratively select 24-agent subsets at each timestep for processing until all542

agents have been processed. We first randomly select a CtRL-Sim-controlled agent, we normalize543

the scene to this agent and select the 23 closest context agents to the CtRL-Sim-controlled agent to544

comprise the first set of 24 agents. We then iteratively continue centering on a CtRL-Sim-controlled545

agent that has not been processed in the previous sets of 24 agents and select its 23 closest agents546

for context until all CtRL-Sim-controlled agents have been included in a 24-agent subset. If an547

agent belongs to multiple 24-agent subsets, we use the model’s first prediction of that agent. At548

inference time, the context length is set to training context length H = 32. At each timestep, we549

select H = 32 most recent timesteps as context and we found it useful to always center and rotate550

the scene on the centered agent at the oldest timestep in the context. For the first 10 timesteps (1s) of551

the simulated rollout, the states and actions are fixed to the ground-truth states and actions from the552

offline RL dataset, whereas the return-to-go is predicted at every timestep of the simulated rollout.553

G Baseline Details554

In this section, we describe the design decision of each baseline employed in our work. We note555

that for all models below, we scaled them in order for all models to have approximately the same556

number of learnable parameters as CtRL-Sim’s architecture.557

Actions Only558

The actions-only baseline is encoder-decoder architecture implemented in exactly the same way559

as CtRL-Sim with a few ablations. These include removal of states and returns from the decoder560

sequence, and no state rollout predictions. This model was inspired by [9] but differs in that the561

model also has access to the agents’ goals.562

Imitation Learning563

The imitation learning baseline is also based on the CtRL-Sim multi-agent behaviour simulation564

architecture but lacks factorized return information. It is a step better than the actions-only base-565

line since it considers the states in the decoder sequence, and this is corroborated by its improved566

performance on multi-agent simulation results of Table 1.567

DT568

The Decision Transformer baseline is based on the seminal work [15]. We adopt an identical archi-569

tecture to CtRL-Sim’s with some minor difference based on the algorithm. One such decision is the570

lack of a return prediction based on states, and instead returns are chosen at inference time based571

on domain knowledge. Returns are the first token fed to the decoder, followed by states in order to572

predict actions. We make the strong argument that this is suboptimal for controllability (results in573

Figure 4) and does not provide intuitive mechanism for selecting the return values to target.574

CTG++575

The CTG++ baseline is a diffusion model reimplementation of the recent work by [11]. We at-576

tempted to follow the architecture as closely as possible with a few minor differences. One such577

difference is that we diffuse over both states and actions, rather than diffusing over only actions and578

using an unicycle dynamics model to derive the states. We chose this approach because the underly-579

ing dynamics of the physics-enhanced Nocturne simulator is not necessarily governed by a unicycle580

dynamics model, and thus using a unicycle dynamics model would induce small errors in the derived581

states during training. We further note that we cannot replace the unicycle dynamics model with the582

Nocturne physics dynamics model as this forward model is not differentiable. We also condition583

on the present timestep and goal, to ensure fair comparison with CtRL-Sim. We note that at scene584
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ADE FDE Goal Success JSD Collision Off Road Per Scene
Method (m) ↓ (m) ↓ Rate (%) ↑ (×10−2) ↓ (%) ↓ (%) ↓ Gen. Time (s) ↓
CTG++† 1.72 3.97 41.7 7.7 6.4 17.4 44.0
CTG++ (128 hidden dim) 1.83 4.32 37.8 7.6 7.0 17.7 25.0
CTG++ (100 diffusion steps) 1.87 3.98 43.0 8.6 7.9 16.8 140.0

Table 5: Ablations of CTG++ on Multi-agent simulation results over 1000 test scenes. We report
the results across all metrics of different configurations of the CTG++ baseline [11]. † indicates the
original model results, with 256 hidden dimension and 50 diffusion steps at inference time.

generation time, we diffuse over actions and states at a rate of 2 Hz which is consistent with the585

original CTG++ model. In addition, although we train with 100 diffusion steps, we run evaluations586

with 50 diffusion steps. As showing in Table 5, the difference in performance is insignificant. As587

we do not have information on the size of the network used in the original manuscript, we explored588

different hidden dimension sizes of the transformer architecture of the diffusion model, also shown589

in Table 5. A final difference is the future relative encoding. While CTG++ use the ground-truth to590

compute the relative encoding during training and a constant velocity model at test time, we opted591

to use the final historical timestep’s relative encoding. We found this approach to be more stable.592

H CAT Simulated Data Collection and CtRL-Sim Finetuning593

The Waymo Open Motion dataset largely contains nominal driving scenes. To enhance control over594

the generation of safety-critical scenarios, we finetune CtRL-Sim on a simulated dataset of safety-595

critical scenarios generated by CAT [21]. CAT is a state-of-the-art collision generation method that596

involves fixing the agent’s future trajectory to a trajectory predicted by a DenseTNT trajectory pre-597

dictor. CAT searches for a trajectory that has high likelihood of colliding with the log-replay future598

trajectory of the ego vehicle, while having high probability under the behaviour prior (DenseTNT).599

For more details, we refer readers to [21]. We note that a limitation of CAT is that the agent is non-600

reactive to the ego as the agent’s trajectory is fixed at the beginning of the simulation. Moreover,601

unlike CtRL-Sim, CAT does not have control over the degree to which the agent is adversarial.602

To collect the simulated safety-critical dataset, we run CAT on a subset of the interactive validation603

split of the Waymo Open Motion Dataset, which involves two interacting agents. Following CAT,604

we select one of the two interacting agents to be the ego (whose trajectory is fixed to the log-replay605

trajectory) and the other interacting agent to be the CAT adversary. In total, we collect 3577 CAT606

scenarios for finetuning, of which around 60% contain ego-adversary collisions.607

Method Times Preferred
CtRL-Sim 15
CAT 8
Tie 2

Table 6: The tally of votes for the pilot
study. We show the breakdown of the votes
for the conducted pilot study. Strong pref-
erence in terms of plausibility is shown for
scenarios generated using CtRL-Sim.

To encourage CtRL-Sim to learn how to generate608

safety-critical scenarios without forgetting how to609

generate good driving behaviour, we adopt a con-610

tinual pre-training strategy for finetuning [46] where611

we randomly sample 3577 real training scenarios612

from the offline RL dataset in each training epoch,613

or a 50% replay ratio. We rewarm the learning rate614

to the maximum learning rate of 5e-4 over 500 steps615

and follow a linear decay learning rate schedule to 0616

over 20 epochs. We expect that the finetuned CtRL-617

Sim model will be more capable of generating long-618

tail scenarios as it is more exposed to such scenarios619

during finetuning. Finetuning takes roughly 30 minutes on 1 NVIDIA A100-Large GPU.620

I Adversarial Scenario Generation User Study621

We first conduct a pilot study with 5 participants to evaluate which method (CtRL-Sim vs. CAT)622

generates more plausible adversarial behaviours. Each participant was tasked with evaluating the623
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Figure 6: User Study Example Scenario. We show an example of a pair of scenarios along with
the question users are asked to answer.

same set of 25 pairs of scenarios that were randomly selected from a pool of 259 scenarios, where624

one scenario employed a CtRL-Sim adversarial agent and the other was a CAT adversarial agent. In625

both instances, the planner was a positively tilted CtRL-Sim planner. Table 6 shows the tally of the626

votes, where we observed strong preference for adversarial scenarios generated using CtRL-Sim.627

Method Times Preferred
CtRL-Sim 97
CAT 96
Tie 66

Table 7: The tally of votes for the
larger study. We show the breakdown
of the votes for the conducted larger
study. We observe that the results of this
study are less conclusive than the pilot
study.

We conduct a larger study including a total of 22 partic-628

ipants. We did not record any identifying information of629

the participants, and participants were invited on a vol-630

untary basis. Users were presented with the user inter-631

face shown in Figure 6, where we randomize the order632

between both videos. Each participant responded to a to-633

tal of 30 pairs of scenarios, which took an average 12634

minutes to complete. These pairs were randomly selected635

from the same pool of 259 scenarios as the pilot study. Ta-636

ble 7 shows the tally of this larger study. As we can see,637

the results of this larger study are inconclusive compared638

to the pilot study. We hypothesize that the framing of the639

question may have been ambiguous for a larger audience,640

and that the pairs of videos may have included less interesting scenarios (e.g, adversary rear-ending641

planner), resulting in many comparisons that were very difficult to judge, thus adding noise to the642

survey results. We plan to further study the question of plausibility in a future user study with better643

scenario selection.644

J Additional Qualitative Results645

Figure 7 shows more qualitative examples demonstrating the effects of positive exponential tilting646

on each of the three reward components. In the left panels, CtRL-Sim with no tilting produces a647
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Figure 7: Qualitative results of the effects of positive tilting. We show the evolution of three
traffic scenes with the top panels applying no exponential tilting to the CtRL-Sim-controlled agent
(shown in teal) and the bottom panels applying positive tilting to the same CtRL-Sim-controlled
agent. Bounding boxes outlined in red contain a traffic violation. All other agents are set to log-
replay through physics, with the agent interacting with the CtRL-Sim-controlled agent denoted in
pink. Goals are denoted by small circles.

vehicle-vehicle collision between two interacting agents at a left-turn. With positive vehicle-vehicle648

tilting, the CtRL-Sim-controlled agent moves more to the right-hand side of the lane to avoid the649

collision. In the middle panels, CtRL-Sim with no tilting produces a vehicle-edge collision as the bus650

pulls into the curb. With positive vehicle-edge tilting, the CtRL-Sim-controlled agent pulls into the651

curb at a safer distance from the curb. In the right panels, CtRL-Sim with no tilting reaches the goal.652

With positive goal tilting, the CtRL-Sim-controlled agent reaches the goal much faster and nearly653

avoids collision with the turning vehicle. In Figure 8, we show two more examples of adversarial654

collision scenarios generated with negative vehicle-vehicle tilting. We refer the interested reader to655

the supplementary video for more examples.656

K Multi-Agent Simulation Results with Higher Temperature Sampling657

In Table 8, we report results from the same experiments as Table 1 except with a higher action658

sampling temperature, set to 1.5.659

L Fine-tuning CtRL-Sim on CtRL-Sim Scenarios660

Instead of finetuning on CAT scenarios, we explore finetuning CtRL-Sim on adversarial scenar-661

ios generated by CtRL-Sim. We first collect a simulated dataset of scenes either containing a662

vehicle-vehicle collision or an offroad infraction. Specifically, we generate rollouts of a single663

agent with the negatively tilted base CtRL-Sim model where the other agents are set to log re-664

play through physics, and we save the scenario only if the generated rollout yields a vehicle-vehicle665
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Figure 8: Qualitative results of vehicle-vehicle tilting. We show the evolution of two traffic scenes
with the top panels applying positive exponential tilting to the CtRL-Sim-controlled agent (shown
in teal) and the bottom panels applying negative tilting to the same CtRL-Sim-controlled agent.
Bounding boxes outlined in red contain a traffic violation. All other agents are set to log-replay
through physics, with the agent interacting with the CtRL-Sim-controlled agent denoted in pink.
Goals are denoted by small circles.

Reconstruction Distributional Realism Common Sense
Method FDE (m) ADE (m) Goal Suc. Rate (%) Meta JSD(×10−2) Collision (%) Off Road (%)

Replay-Physics∗ 0.97 0.47 87.3 7.6 2.8 10.7

Actions-Only [9] 11.70 ± 1.12 4.78 ± 0.42 34.4 ± 1.3 14.3 ± 0.3 22.8 ± 0.7 29.7 ± 1.7
Imitation Learning 2.42 ± 0.17 1.47 ± 0.07 73.8 ± 1.2 12.3 ± 0.5 7.3 ± 0.6 13.1 ± 0.4
DT (Max Return) [15] 3.25 ± 0.17 1.67 ± 0.05 60.5 ± 1.2 12.3 ± 0.4 6.1 ± 0.7 11.6 ± 0.3
CtRL-Sim (No State Prediction) 2.57 ± 0.16 1.52 ± 0.07 66.2 ± 1.0 12.3 ± 0.3 7.6 ± 0.7 13.1 ± 0.3
CtRL-Sim (Base) 2.49 ± 0.10 1.50 ± 0.04 67.9 ± 1.2 12.2 ± 0.2 7.6 ± 0.3 13.1 ± 0.5
CtRL-Sim (Positive Tilting) 2.38 ± 0.08 1.44 ± 0.03 67.2 ± 1.0 12.1 ± 0.1 6.7 ± 0.4 12.3 ± 0.3

DT∗ (GT Initial Return) 1.94 ± 0.07 1.28 ± 0.02 73.7 ± 1.5 12.2 ± 0.3 6.6 ± 0.4 12.6 ± 0.4
CtRL-Sim∗ (GT Initial Return) 1.97 ± 0.08 1.30 ± 0.03 71.1 ± 0.9 12.2 ± 0.1 7.2 ± 0.5 13.1 ± 0.3

Table 8: Multi-agent simulation results over 1000 test scenes with action temperature = 1.5
over 3 seeds. This table presents the results from the same experiments as Table 1, but with an
action sampling temperature of 1.5 instead of 1.0. This allows for a comparison of the impact of the
temperature hyperparameter. Overall, an action sampling temperature of 1.0 yields better results.

collision or vehicle-road-edge collision. For tilting, we uniformly sample κveh-veh ∼ U(−25, 0) and666

κgoal ∼ U(−25, 0) when generating vehicle-vehicle collision scenarios, and we uniformly sample667

κveh-edge ∼ U(−25, 0) and κgoal ∼ U(−25, 0) when generating vehicle-road-edge collision scenar-668

ios. By additionally negatively tilting the goal, this grants the model more flexibility when generat-669

ing traffic violations as the agents are not trying to reach its prescribed goal. We collect 5000 sce-670

narios of each type of traffic violation derived from the training set, which comprises the simulated671

dataset of safety-critical scenarios. To encourage CtRL-Sim to learn how to generate safety-critical672

scenarios without forgetting how to generate good driving behaviour, we adopt the same finetuning673

strategy as in Appendix H, except we randomly sample 90000 real training scenarios from the of-674
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Figure 9: Effects of exponential tilting. Comparison of CtRL-Sim base model (magenta) and a
CtRL-Sim model fine-tuned on adversarial CtRL-Sim scenarios (purple). As opposed to Figure 4,
this fine-tuned model does not involve using CAT to select the adversarial scenarios. Rewards range
from -25 to 25 for vehicle-vehicle collision (left), vehicle-edge collision (middle), and goal reaching
(right). Results show smooth controllability, with fine-tuning enhancing this effect. Mean and std
are reported over 5 seeds.

fline RL dataset in each training epoch, or a 90% replay ratio. We find it useful to use a larger replay675

ratio when finetuning on CtRL-Sim scenarios. The controllability results over 5 seeds are shown in676

Figure 9, demonstrating similar control over adversarial behaviours as the CAT-finetuned CtRL-Sim677

model.678
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