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Abstract
While current CNN-based low-light image enhancement (LIE) ap-
proaches have achieved significant progress, they often fail to
generate better perceptual quality which requires restoring bet-
ter details and more natural colors. To address these problems, we
set a new path, called PercepLIE, by presenting the VQGAN with
Multi-luminance Detail Compensation (MDC) and Global Color
Adjustment (GCA). Specifically, observed that latent light features
of the low-light images are quite different from those captured in
normal light, we utilize VQGAN to explore the latent light repre-
sentation of normal-light images to help the estimation of the low-
light and normal-light mapping. Furthermore, we employ Gamma
correction with varying Gamma values on the gradient to create
multi-luminance details, forming the basis for our MDC module
to facilitate better detail estimation. To optimize the colors of low-
light input images, we introduce a simple yet effective GCA module
that is based on spatially-varying representation between the esti-
mated normal-light images in this module and low-light inputs. By
combining the VQGAN with MDC and GCA within a stage-wise
training mechanism, our method generates images with finer de-
tails and natural colors and achieves favorable performance on both
synthetic and real-world datasets in terms of perceptual quality
metrics including NIQE, PI, and LPIPS. The source codes will be
made available at https://github.com/supersupercong/PercepLIE.

CCS Concepts
• Computing methodologies → Computational photography.
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1 Introduction
Low-light image enhancement (LIE) aims to recover a normal-light
image from the observed low-light one. LIE attracts lots of atten-
tion due to its significant applications in computer vision, video
surveillance, and multimedia. Early works on LIE are based on sta-
tistical observations, e.g., histogram equalization [3, 48, 75], gamma
correction [13, 50], and Retinex model [7, 35]. However, statistical
observations do not sufficiently model the inherent proprieties of
clear natural images and may lead to unnatural results.

Recent LIE approaches [9, 36, 43, 63, 66, 82] mainly rely on deep
convolutional neural networks (CNNs) [11, 12, 31], by designing
various networks with end-to-end training to directly obtain the
restored results from the low-light input images. Although these
CNN-based approaches achieve decent performance compared to
conventional methods based on statistical observations, there re-
main critical challenges that need to be addressed.

Challenges. First, the latent light representation of the low-light
images is quite different from those captured in normal light, as
shown in Figure 1. Directly applying a deep model to low-light
images will not effectively explore useful features for image en-
hancement. Thus, it is necessary to resort to the deep light rep-
resentation extracted from normal light to guide the deep model
for better restoration. Second, since recovering details is essential
for image restoration, most existing methods [9, 15, 39, 63, 67, 82]
are not effective for image details estimation. Although some ap-
proaches [47, 85] try to use structures to guide the estimation pro-
cess of clear images, the adopted structures are usually decimated
when applying convolution operations recurrently, thus may be not
effective for better detail estimation. Third, LIE aims to generate
images with not only fine structural details but also natural colors
and better perceptual quality. Existing approaches do not effectively
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(a) Codebook of low light (b) Codebook of normal light

Figure 1: Latent light representation (i.e., the codebook)
learned by VQGAN based on low-light images and normal-
light images, respectively. We empirically find that the latent
light representation of low-light images is quite different
from those of images captured in normal light. Hence, en-
forcing normal-light codebook priors to guide the deep mod-
els will help better enhance.

model various illumination distributions of low light, which usually
leads to results with unnatural colors and lower perceptual quality.
Thus, it is imperative to develop methods that can recover images
with better structural details while having natural colors and higher
perceptual quality.

Solutions. To solve the above challenges, we in this paper pro-
pose the PercepLIE, which is a VQGAN-based model with Multi-
luminance Detail Compensation (MDC) and Global Color Adjust-
ment (GCA) for perceptual LIE. As noted that the latent features
of the low-light images are quite different from those captured in
normal light, as shown in Figure 1. VQGAN [5] is used to explore
the latent light representations of normal-light images via learning
the normal-light codebook priors to guide the deep models to en-
hance images by reducing the estimation error of the low-light and
normal-light mapping (Section 4.1). To generate the results with
finer details, we apply Gamma correction with different gamma
values to generate multi-luminance details based on image gradi-
ent, as shown in Figure 2, and develop an effective MDC scheme to
compensate for the details for better detail estimation (Section 4.2).
However, due to the influence of different illumination conditions,
the restored images usually contain unnatural colors. We thus de-
velop a simple yet effective GCA approach, which is built on the
spatially-varying representation between the estimated images and
low-light ones, to adjust the restored results toward more natu-
ral colors (Section 4.3). By training the VQGAN with MDC and
GCA stage by stage, our PercepLIE can generate high-quality and
realistic-looking images.

Evaluation Criteria. The objective of LIE is to recover natural-
looking and perceptually pleasing results from low-light inputs.
However, we note that widely used distortion metrics such as
Peak-Signal-to-Noise-Ratio (PSNR) [14] and Structural SIMilarity
(SSIM) [64] are inadequate for measuring these properties [1, 32].
Notice that perceptual quality metrics such as Natural Image Qual-
ity Evaluator (NIQE) [44] and Perceptual Indexes (PI) [41] can
estimate the perceptual quality and naturalness of the restoration
result [9, 79]. Additionally, the Learned Perceptual Image Patch
Similarity (LPIPS) [78] has been shown to closely match human

(a) Image (b) 𝛾 = 0.5 (c) 𝛾 = 3

(d) Grad. of (a) (e) Grad. with (b) (f) Grad. with (c)

Figure 2: Multi-luminance Details. We empirically find that
the original gradient (d) preserves the details of the original
image. Gamma correction (𝑦 = 𝑥𝛾 ) with smaller 𝛾 (<1) can
produce the main structure while larger 𝛾 (>1) is able to find
more details. The luminance gradient forms the multiple
details that will be useful for better detail compensation in
image restoration.

perception, making it an appropriate choice to evaluate the percep-
tual similarity between two images. Therefore, to assess restoration
quality, we employ NIQE, PI, and LPIPS as the evaluation metrics
in this study.

Our contributions are summarized as follows:
• We propose a VQGAN-based LIE model to generate high-
quality images by exploring the latent light representations
of normal-light images to facilitate the estimation of the
mapping between the low-light and normal-light images.

• We propose a multi-luminance detail compensation module
(MDC) by estimating multi-luminance details to adaptively
compensate for details of the generated images for high-
quality image enhancement.

• We propose a global color adjustment module (GCA) by
introducing the spatially-varying representation between
the estimated normal-light images in this module and low-
light ones to adjust the results toward more natural colors.

• We formulate the VQGAN with MDC and GCA in a new for-
mulation for perceptual LIE, and show our method achieves
favorable performance on both synthetic and real-world
datasets in terms of various perceptual quality metrics.

2 Related Work
2.1 Low-Light Image Enhancement
Early research on LIE mainly utilizes histogram equalization [3, 48,
75], sparse representation model [6], and Retinex theory [73]. Bene-
fiting from the powerful learningmapping ability of CNNs for visual
problems [4, 16–21, 23–29, 53, 54, 56–59, 68–70, 74, 84], recent re-
search on LIE mainly focuses on designing varieties of deep neural
networks. Inspired by Retinex theory [46], some Retinex-based net-
works are developed [39, 66, 82]. To recover finer structures of en-
hanced images, a series of works have been proposed [47, 55, 71, 85].
By formulating the LIE task as a deep curve estimation problem [9]
or illumination adjustment problem [43], some unsupervised al-
gorithms are proposed [9, 25, 36, 43]. Despite these efforts, these
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Figure 3: Paradigm of our PercepLIE. The PercepLIE is based on the VQGAN with multi-luminance detail compensation (MDC)
and global color adjustment (GCA). The VQGAN explores the latent light representation of normal-light images to help better
estimation of the low-light and normal-light mapping (Section 4.1). The MDC estimates multi-luminance details for better
compensating details (Section 4.2). The GCA controls the generation results by building the spatially-varying representation
between the estimated images in GCA and low-light ones to control the results for better colors and naturalness (Section 4.3).

approaches may not generate results with better perceptual quali-
ties and natural colors since they either do not explore the latent
normal-light priors or cannot adjust the results toward natural
colors.

2.2 VQGAN and Its Applications to Restoration
Esser et al. [5] propose to train the vector-quantized codebook [51]
with the adversarial objective to achieve higher perceptual quality.
Inspired by its ability in generating high-quality images, some
recent works exploit VQGAN for image restoration [2, 8, 52, 65, 83].
To our knowledge, there has been no effort to exploit VQGAN for
LIE. To better explore LIE, we first find that the latent feature space
of low-light images is quite different from those of images captured
in normal light. Hence, the VQGAN can be utilized to learn the
codebook to guide the deep model. With the VQFAN, we propose
multi-luminance detail compensation to compensate for details and
global color adjustment to dynamically adjust the results for better
natural colors according to different low-light observations.

3 Motivation
To better motivate our method, we first revisit the learning-based
formulation for LIE in Section 3.1, then introduce our new path to
problem formulation for perceptual LIE in Section 3.2.

3.1 Learning-based Formulation Revisited
We first revisit the learning-based problem formulation of LIE. Most
existing approaches [22, 72] directly map the low-light images L to

enhance ones Ĥ via a deep model N :

Ĥ = N(L) (1)

We note that (1) directly maps low-light inputs to estimated
normal-light ones without considering the details and colors of
generated results, which may lead to more unnatural results and
worse perceptual quality as high-quality image restoration requires
recovering results with both finer details and natural colors. How-
ever, the details are usually decimated when applying convolution
operations recurrently and the colors of restored results may not be
promising when handling various low-light scenarios with different
illuminations. Hence, the formulation in (1) without considering
both details and colors may not be able to recover more natural
results.

3.2 A New Path to Problem Formulation
To solve these challenges in Section 3.1, we explore a new path to
perceptual LIE by taking image content, details, and colors into
consideration within a new formulation:

Ĥ = Ncontent (L) + Ndetail (L) + Ncolor (L) (2)

where Ncontent is used to restore image content of normal-light;
Ndetail is used to compensate for details; Ncolor is used to adjust
the colors of the enhanced results.

To achieve the above goals, we propose the PercepLIE, which
consists of 1) VQGAN for exploring latent light representation,
which is used to better help generate image content (Section 4.1); 2)



MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Cong Wang, Chengjin Yu, Jie Mu, and Wei Wang

a multi-luminance detail compensation module, which can better
compensate for details (Section 4.2); 3) a global color adjustment
module, which can help better adjust the colors (Section 4.3). Fig-
ure 3 illustrates the framework of our PercepLIE.

4 PercepLIE
As introduced in Section 1, our method mainly contains a VQGAN
for exploring the latent light representation of normal-light im-
ages via learning the normal-light codebook, a multi-luminance
detail compensation module to compensate details, and a globally
controllable adjustment module to control the generated results
with natural colors and perceptual quality. Figure 3 illustrates our
method.

4.1 Latent Light Representations
We note that the latent light representations, i.e., codebook, of the
low-light images are quite different from those captured in normal
light, as shown in Figure 1. Hence, enforcing this characteristic
to guide the deep models to enhance images will be helpful for
LIE. To that end, we employ the VQGAN [5] to learn the Vector-
Quantized (VQ) codebook. The VQGAN consists of an encoder
E, a decoder D, and a codebook Z = {𝑧𝑘 }𝑁𝑘=1 with 𝑁 discrete
codes. Given a normal-light image H ∈ R𝐻×𝑊 ×3, we first use an
encoder E to extract feature 𝑧 = E(H) ∈ Rℎ×𝑤×𝑛𝑧 from H, where
𝑛𝑧 is the feature dimension. We then obtain the vector-quantized
representation 𝑧q by applying an element-wise quantization q(·)
of each spatial code 𝑧𝑖 𝑗 ∈ R𝑛𝑧 to its closest codebook entry 𝑧𝑘 :

𝑧q = q(𝑧) :=
(
arg min

𝑧𝑘 ∈Z
| |𝑧𝑖 𝑗 − 𝑧𝑘 | |

)
∈ Rℎ×𝑤×𝑛𝑧 . (3)

The decoder 𝐷 uses the quantized representation 𝑧q to reconstruct
image Ĥ:

Ĥ = D(𝑧q) = D(q(E(H))) . (4)
We train the VQGAN and codebook in an end-to-end manner

and use the following loss function to constrain the VQGAN and
codebook:

L(E,D,Z) = Lvq + 𝜆perLper + 𝜆advLadv, (5)

where 𝜆per and 𝜆adv are weight parameter. Lvq, Lper, and Ladv are
defined as:

Lvq = | |H − Ĥ| |1 + ||sg[E(H)] −𝑧q | |22 + 𝛽 | |sg[𝑧q] −E(H) | |22, (6a)

Lper = | |Φ(Ĥ) − Φ(H) | |22, (6b)

Ladv = EH [log D(H)] + EĤ [1 − log D(Ĥ)] . (6c)

Here | |H − Ĥ| |1 is the reconstruction loss. sg[·] denotes stop gradi-
ent operation. Φ(·) denotes the feature extractor of VGG19 [49]. 𝛽 is
a weight parameter, which is empirically set to be 0.25 in all experi-
ments. The codebook is updated by | |sg[E(H)] −𝑧q | |22 + 𝛽 | |sg[𝑧q] −
E(H) | |22, which is the commitment loss [51].

With the learned codebook of normal light which better repre-
sents the latent light feature, we can use it to guide the learning of
the model in the next stages as we observe that the codebook of
low light is different from those of normal light (Figure 1). Hence,
enforcing normal-light codebook priors to guide the deep models
will help better enhancement.

4.2 Multi-luminance Detail Compensation
We note that applying the Gamma correction with different Gamma
𝛾 on image gradients leads to multi-luminance results. These multi-
luminance results contain different image details, as shown in Fig-
ure 2. The details from the multi-luminance outputs by the Gamma
correction are complementary, which can provide finer details to
guide the deep models for better detail estimation.

To this end, we propose a Multi-luminance Detail Compensation
(MDC) (see Figure 3) under the guidance of the multi-luminance
outputs by the Gamma correction to better estimate details. Specif-
ically, given a low-light input L ∈ R𝐻×𝑊 ×3, MDC first receives
the features from the encoder of VQGAN. Then the MDC utilizes
the shuffle Transformer fusion, as shown in Figure 3(a), to aggre-
gate features of different levels in the encoder of VQGAN. And
then, the aggregated features are input to the MDC decoder (MDC-
Dec). To better exploit and explore useful features in the encoder of
VQGAN, we propose a Deformable Transformer Interaction with
Encoder (DTP-Enc) module to improve the feature representation
of the MDC decoder. Finally, MDC outputs estimated multiple lu-
minance details S ∈ R𝐻×𝑊 ×3 and corresponding weight maps
M ∈ R𝐻×𝑊 ×1:

{M0.5, S0.5;M1, S1;M3, S3} = MDC(FE), (7)

where F𝐸 denotes the features from the encoder in the VQGAN.
As ground truth maps are not available, we do not impose any
constraint on the weight maps. We use the learned details with
corresponding weight maps to adaptively compensate the output
of VQGAN Ĥvqgan by:

Ĥ = Ĥvqgan + M0.5 · S0.5 +M1 · S1 +M3 · S3︸                                 ︷︷                                 ︸
multi-luminance detail compensation

.
(8)

At this stage, parameters in the encoder of the VQGAN and the
MDC are optimized by:

L(E,MDC) = Lrec + 𝜆detLdet + 𝜆codeLcode + 𝜆perLper + 𝜆advLadv,
(9)

where Ldet = | |Ŝ0.5 − S0.5 | |1 + ||Ŝ1 − S1 | |1 + ||Ŝ3 − S3 | |1. Ŝ𝛾 and S𝛾
denote the estimated details and corresponding multi-luminance
gradient by applying Gamma correction with 𝛾 on the gradient.
The reconstructed loss L𝑟𝑒𝑐 is based on 1 − SSIM(Ĥ,H) as it is
effective as evidenced by [55]. Lcode = | |𝑧q − 𝑧q | |22, where 𝑧q is
the normal-light codebook features while 𝑧q is the reconstructed
features.

Shuffle Transformer Modulator. The Shuffle Transformer Mod-
ulator (STM) aims to modulate features with different levels in the
encoder of VQGAN. STM first exploits shuffle down [80] opera-
tion to re-scale different sizes to the smallest spatial size of the
encoder of the VQGAN. Then, the shuffled features are concate-
nated and learned via 1 × 1 convolution followed by a Transformer.
By inserting Transformer, STM is capable of modeling the global
representation of the encoder of VQGAN to provide more useful
features for the decoder of MDC (MDC-Dec) and GCA (GCA-Dec)
for better enhancement. Figure 3(a) shows the STM.

Deformable Transformer Perceptor with Encoder. The De-
formable Transformer Perceptor with Encoder (DTP-Enc) as shown
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in Figure 3(b) explores the global content by inserting Transform-
ers to effectively produce better offset, which is further perceived
with the encoder features in VQGAN by deformable convolution to
help improve the feature representation ability of the decoder of
MDC/GCA. The DTP-Enc is conducted in each layer of different
scales between the encoder andMDC-Dec/GCA-Dec (For simplicity,
Figure 3 only draws the module at one scale).

4.3 Global Color Adjustment
To ensure the generated results with natural colors and better per-
ceptual quality, we develop a simple yet effective Global Color
Adjustment module (GCA), which is motivated by both low-light
and normal-light images contain useful luminance and informa-
tion that can help improve the colorfulness of results. Hence, we
propose to build on spatially-varying representations between the
estimated images in the GCA and low-light input ones to control the
generated images for better perceptual quality and natural colors.

The GCA has a similar structure to MDC except for the input
of the GCA decoder (GCA-Dec) and final outputs. For the input of
GCA-Dec, with well-learned restored features after training MDC,
we propose to deformable indicator by representative light to ex-
ploit the features 𝑧q to better guide the learning of the decoder
of GCA. The GCA outputs exploitable adjustment image YGCA ∈
R𝐻×𝑊 ×3 and corresponding weight mapMGCA ∈ R𝐻×𝑊 ×1:

{MGCA,YGCA} = GCA(FE, 𝑧q) . (10)

The learned YGCA andMGCA are linearly added to the results in
(8) to facilitate adjusting the generated results:
Ĥ= Ĥvqgan + M0.5 · S0.5 +M1 · S1 +M3 · S3︸                              ︷︷                              ︸

multi-luminance detail compensation

+𝛼MGCAYGCA + (1−𝛼 )MGCAL︸                                  ︷︷                                  ︸
global color adjustment

,

(11)
where Ĥvqgan can be served as the results of Ncontent (L) in (2);
M0.5 · S0.5+M1 ·S1+M3 ·S3 can be served as the results ofNdetail (L)
in (2); 𝛼MGCAYGCA + (1−𝛼)MGCAL can be served as the results
of Ncolor (L) in (2). 𝛼 ∈ [0, 1] is the global spatially-varying color
adjustment factor to adjust the colors of enhanced results.

At this stage, parameters in the decoder of the VQGAN and the
GCA are optimized by:

L(D,GCA) = Lrec + 𝜆gcaLgca + 𝜆perLper + 𝜆advLadv, (12)

where Lgca = 1 − SSIM(YGCA,H).
Deformable Indicator by Representative Light. We propose
the Deformable Indicator with Representative Light (DIRL) to guide
the learning of GCA as the codebook has been optimized and the
encoder can produce more representative features of normal light
from low-light inputs after the stage of training the encoder and
MDC. Thus the encoder features matched with the codebook via
(3) can better represent the latent light of normal light, which will
help the GCA learn better. The DIRL is shown in Figure 3(c).
Triple Feature Transformation Module. To better exploit useful
features in decoders of MDC and GCA to improve the feature repre-
sentation of the decoder in VQGAN for better image restoration, we
develop the Triple Feature Transformation Module (TriFTM). The
TriFTM is motivated by [62] and can effectively fuse useful features
from MDC (FMDC) and GCA (FGCA) to the decoder of VQGAN, as
shown in Figure 3(d). Notice that the TriFTM is only used in the

Algorithm 1 Training Process of Our PercepLIE

// Stage 1: Training VQGAN for LLR (Section 4.1)
Prepare: Normal-light images H.

While iter ≤ itervqganmax do:
Encode normal-light images to latent Codebook via (3)
Decode the learned Codebook to images via (4)
OptimizeEncoder, Decoder, and Codebook via (5)
iter = iter +1

End while
// Stage 2: Tuning VQGAN Encoder with MDC (Section 4.2)
Prepare: Low-light images L, normal-light images H, and learned
Codebook and Decoder in Stage1.

While iter ≤ iterMDC
max do:

Generate multiple details and corresponding maps via (7)
Compensate for details via (8)
Optimize Encoder andMDC via (9)
iter = iter + 1

End while
// Stage 3: Tuning VQGAN Decoder with GCA (Section 4.3)
Prepare: Low-light images L, normal-light images H, and learned
Codebook in Stage 1, and learned Encoder andMDC in Stage 2.

While iter ≤ iterGCAmax do:
Generate exploitable adjustment images and correspond

map via (10)
Optimize GCA and Decoder via (11)
iter = iter + 1

End while

stage of training GCA, while the stages of training VQGAN and
MDC use ResBlocks [11] in the decoder of VQGAN.

5 Experiments
In this section, we compare our PercepLIE with 17 state-of-the-art
(SOTA) approaches. Extensive analysis is also conducted to verify
the effectiveness of our PercepLIE.

5.1 Datasets
Synthetic datasets. LOL dataset [66] is a widely used synthetic
dataset with 485/15 training/testing samples. We use it to evaluate
the enhancement performance on the synthetic scenes. Following
[63], we also use VE-LOL dataset [38] to examine the models’ gener-
alization on unseen scenes by using the model trained on LOL. VE-
LOL contains two sub-datasets: VE-LOL-real and VE-LOL-synthetic,
which respectively contain 400/100 and 900/100 training/testing
samples. Such large data (a total of 1,500 pairs of images) is enough
to verify the models’ generalization.
Real-world datasets.DICM [33], LIME [10],MEF [42], andNPE [61]
are widely used real-world datasets. We use them to evaluate the
effectiveness of the proposed method.

5.2 Training Details
Stage 1 for VQGAN (Section 4.1): We train the VQGAN with
2,000K iterations, i.e., itervqganmax =2,000K, on LOL normal-light sam-
ples [66], where data augment (e.g., flip, randomly crop, and rotate)
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Table 1: Comparisons with SOTAs on synthetic datasets. The main metrics NIQE, PI, and LPIPS, evaluating naturalness and
perceptual quality, are presented. PSNR and SSIM are also provided for reference. The best results are marked in red. ↑ (↓) means
higher (lower) is better. Adj. denotes whether the method is adjustable or not. Cross-dataset verification means the model
trained on LOL is used to verify models’ generalization in unknown scenes. All the metrics are ensured to be re-computed
using the same codes for fair comparisons.

(a) Comparisons with SOTA methods on the LOL [66].

Methods Venues Adj. NIQE ↓ PI ↓ LPIPS ↓ SSIM ↑ PSNR ↑
RetinexNet [66] BMVC’18 % 8.932 4.975 0.465 0.548 18.64
KinD [82] MM’19 % 4.871 3.496 0.208 0.839 18.67
DeepUPE [60] CVPR’19 % 7.523 4.508 0.367 0.531 13.16
MIRNet [77] ECCV’20 % 4.864 3.867 0.233 0.837 22.28
FIDE [71] CVPR’20 % 4.712 3.654 0.181 0.855 21.53
ZeroDCE [9] CVPR’20 % 7.946 4.475 0.384 0.613 17.40
KinD++ [81] IJCV’21 % 4.754 3.913 0.197 0.820 18.27
Enlighten [22] TIP’21 % 4.952 3.912 0.310 0.721 19.57
ZeroDCE++ [34] TPAMI’21 % 7.842 4.475 0.384 0.611 15.72
RUAS [39] CVPR’21 % 6.257 4.481 0.256 0.671 17.05
SwinIR [37] ICCVW’21 % 4.631 4.082 0.150 0.831 19.42
SCL [36] AAAI’22 % 7.632 4.563 0.331 0.606 13.24
UNIE [25] ECCV’22 % 4.598 4.298 0.139 0.827 22.92
SCI [43] CVPR’22 % 7.872 4.544 0.333 0.621 15.40
SNR [72] CVPR’22 % 5.177 4.283 0.150 0.896 27.09
Restormer [76] CVPR’22 % 4.658 4.109 0.139 0.883 24.93
LLFlow [63] AAAI’22 % 5.583 4.418 0.114 0.925 27.96
PercepLIE - " 4.496 3.382 0.080 0.895 25.09

(b) Cross-dataset verification on the VE-LOL [38].

Methods Venues Adj. NIQE ↓ PI ↓ LPIPS ↓ SSIM ↑ PSNR ↑
RetinexNet [66] BMVC’18 % 9.774 6.012 0.756 0.425 13.58
KinD [82] MM’19 % 5.285 4.131 0.438 0.674 17.98
DeepUPE [60] CVPR’19 % 9.572 5.859 0.597 0.483 14.50
MIRNet [77] ECCV’20 % 5.554 4.017 0.509 0.611 18.16
FIDE [71] CVPR’20 % 6.154 4.293 0.467 0.653 17.80
ZeroDCE [9] CVPR’20 % 9.251 5.565 0.611 0.537 16.61
KinD++ [81] IJCV’21 % 5.142 4.431 0.435 0.670 16.86
Enlighten [22] TIP’21 % 6.668 4.590 0.567 0.574 17.04
ZeroDCE++ [34] TPAMI’21 % 9.071 5.496 0.612 0.542 17.13
RUAS [39] CVPR’21 % 6.143 5.982 0.608 0.472 13.25
SwinIR [37] ICCVW’21 % 6.409 4.564 0.511 0.613 16.54
SCL [36] AAAI’22 % 9.163 5.609 0.613 0.516 14.86
UNIE [25] ECCV’22 % 5.162 4.001 0.437 0.692 18.40
SCI [43] CVPR’22 % 9.227 5.698 0.624 0.494 15.34
SNR [72] CVPR’22 % 5.097 4.235 0.454 0.686 21.54
Restormer [76] CVPR’22 % 5.882 4.738 0.458 0.665 20.35
LLFlow [63] AAAI’22 % 6.358 4.462 0.459 0.658 19.76
PercepLIE - " 4.854 3.942 0.422 0.671 21.67

(a) Input (b) GT (c) SCL [36] (d) SNR [72] (e) SCI [43] (f) UNIE [25] (g) LLFlow [63] (h) PercepLIE

Figure 4: Visual comparisons with recent SOTAs on LOL [66] and VE-LOL [38] datasets. From top to bottom: LOL, VE-LOL-real,
and VE-LOL-synthetic. Our PercepLIE is able to generate much clearer images with finer details while existing methods either
hand down noises or lose details or generate under- or over-results. Best viewed on high-resolution display with zoom-in.

is used. The number of codebooks, i.e., 𝑁 , is 1024, and the dimen-
sion of the codebook, i.e., 𝑛𝑧 , is 512. The learning rate is 1 × 10−4.
𝜆per and 𝜆adv are set as 1 and 0.1. The batch size is 8.
Stage 2 for MDC (Section 4.2): At the training MDC stage, the
model is trained for 120K iterations, i.e., iterMDC

max =120K, on the LOL
dataset. 𝜆det and 𝜆code are set as 0.1 and 1, respectively. The 𝛾 in
Gamma correction is set as 0.5, 1, and 3 to derive details with dif-
ferent luminance. The batch size is 4.
Stage 3 for GCA (Section 4.3): At the training GDA stage, the
model is also trained for 120K iterations, iterGCAmax =120K, on the LOL
dataset. 𝜆gca is set as 0.1. The batch size is 2. The 𝛼 is set as 0.8

when training. For inference, unless otherwise stated, 𝛼 = 0.8 is the
default. Section 5.6 analyzes the effectiveness and flexibility of 𝛼 .

We use Swin Transformer block [40] with depth 2 as our Trans-
former block. The patch size is 256×256 for all the experiments. All
the experiments are optimized via ADAM [30] and trained on two
NVIDIA 3090 GPUs based on PyTorch [45]. Algorithm 1 describes
the training process of our PercepLIE.

5.3 Results on Synthetic Datasets
Table 1 summarises the comparison results with SOTA methods on
LOL [66] and cross-dataset verification results on the VE-LOL [38].
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Table 2: Comparisons with recent SOTAs on real-world datasets in terms of NIQE and PI. PercepLIE (𝛼) means setting 𝛼 in (11)
at inference. As our PercepLIE is adjustable, adjusting 𝛼 can generate results with different perceptual qualities. Note that
the model with 𝛼 = 0 performs the best, which indicates that low-light images can provide useful content to improve results
toward better colors and perceptual quality, further suggesting the superiority of our PercepLIE.

Methods SwinIR [37] Zero-DCE++ [34] RUAS [39] Restormer [76] SCL [36] SNR [72] SCI [43] UNIE [25] LLFlow [63] PercepLIE (0) PercepLIE (0.8) PercepLIE (1)
NIQE ↓ 4.46 4.49 6.27 4.58 4.23 4.64 4.15 4.85 4.23 4.11 4.24 4.31
PI ↓ 3.56 3.36 4.76 4.40 3.21 3.84 3.17 4.09 3.26 3.07 3.18 3.26

(a) Input (b) RUAS [39] (c) SCL [36] (d) SNR [72] (e) SCI [43] (f) UNIE [25] (g) LLFlow [63] (h) PercepLIE

Figure 5: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is capable of generating clearer results
with finer details . Best viewed on high-resolution display with zoom-in.

Both Table 1(a) and Table 1(b) show that our PercepLIE achieves
the best NIQE, PI, and LPIPS, the metrics of measuring natural-
ness and perceptual quality, indicating the proposed algorithm is a
better LIE model and has the best generalization with better natu-
ralness and perceptual quality to unknown scenes. Visual results
in Figure 4 show that our PercepLIE is capable of restoring results
with better naturalness and preserving finer details while existing
approaches always either hand down extensive noise or produce
under-enhanced results or lose image details.

5.4 Results on Real-World Datasets
Table 2 reports the comparison results on real-world datasets in
terms of average NIQE and PI. Notice although the default method
with 𝛼 = 0.8 is not the best but is adjustable, we can adjust 𝛼 to
generate satisfactory results. We note that the PercepLIE with 𝛼 = 0
reaches the best, which indicates that low-light images can provide
useful content to improve results toward better naturalness and
perceptual quality, further suggesting the superiority and flexibility
of the PercepLIE. In Figure 5, these visual examples illustrate that
our PercepLIE always produces more natural and realistic quality
with finer structures while existing algorithms always generate
kinds of unsatisfactory results.

5.5 Ablation Study
Effectiveness of MDC and GCA. As MDC and GCA modules are
our proposed main contributions, it is of great interest to analyze
their effect. Table 3 reveals that the model without both MDC and
GCA (Table 3(a)) produces worse results and the model without

Table 3: Effect on Multi-luminance Detail Compensation
(MDC) and Global Color Adjustment (GCA).

Experiment NIQE ↓ PI ↓ LPIPS ↓ SSIM ↑ PSNR ↑
(a) w/oMDC & w/o GCA 4.886 4.161 0.137 0.849 23.07
(b) w/oMDC & w/ GCA 4.807 4.059 0.114 0.856 23.54
(c) w/o 𝛾 = 0.5 in MDC & w/ GCA 4.663 3.881 0.108 0.887 24.61
(d) w/o 𝛾 = 1 inMDC & w/ GCA 4.713 3.857 0.094 0.882 24.14
(e) w/o 𝛾 = 3 inMDC & w/ GCA 4.686 3.608 0.102 0.874 24.42
(f) w/MDC & w/o GCA 4.432 3.417 0.093 0.884 24.71
(g) w/ MDC & w/ GCA (Ours) 4.496 3.382 0.080 0.895 25.09

(a) Input (b) w/o MDC (c) w/ MDC (d) GT

Figure 6: With MDC, our model recovers results with finer
details (c). Best viewed with zoom-in.

either MDC (Table 3(b)) or GCA (Table 3(f)) is not more effective
than full model (Table 3(g)). It is also notable that each luminance
detail in MDC can boost the enhancement quality. These results
illustrate that both MDC and GCA are important for the LIE task. In
Figure 6, our full model is able to recover more natural results with
finer details, while the model without MDC tends to lose structure.
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Figure 7: Adjustable results on real-world scenarios. By adjusting the global spatially-varying color adjustment factor 𝛼 , our
PercepLIE is able to generate results with more natural colors and better perceptual quality according to different low-light
inputs with different illuminations. Best viewed on high-resolution display with zoom-in.

Table 4: Effect on DTP-Enc, DIRL, and TriFTM.

Experiment NIQE ↓ PI ↓ LPIPS ↓ SSIM ↑ PSNR ↑
(a) Disabling DTP-Enc 4.901 3.543 0.142 0.851 22.98
(b) Disabling DIRL 4.613 3.317 0.097 0.883 24.73
(c) Disabling TriFTM 4.772 3.754 0.094 0.881 23.98
(d) Full model (Ours) 4.496 3.382 0.080 0.895 25.09

Effectiveness of deformable Transformer preceptor with en-
coder (DTP-Enc). DTP-Enc is used to help the decoder of MDC
and DCA learn more useful features from the encoder of VQGAN
for better enhancement. Table 4 shows that our DTF-Enc performs
better when we disable the module (Table 4(a) vs. (d)).
Effectiveness of deformable indicator by representative light
(DIRL). The DIRL aids the GCA at Stage 3 by utilizing the codebook
from normal-light images to furnish superior light information.
The encoder effectively restores normal-light features from low-
light inputs after completing the training phase with the encoder
and MDC. Subsequently, the restored features matched with the
codebook via (3) can more appropriately represent latent features
of normal light, resulting in better learning for the GCA. Table 4
illustrates that our DIRL is effective for better image enhancement
(Table 4(b) vs. (d)).
Effectiveness of triple feature transformationmodule (TriFTM).
In Stage 3, the TriFTM is employed to ameliorate the decoder’s
representation capability in VQGAN. This is accomplished by ac-
quiring relevant features from MDC-Dec and GCA-Dec decoders
which will help improve the overall effectiveness of the decoder in
the VQGAN. Table 4 shows that disabling the TriFTM decreases
the enhancement performance (Table 4(c) vs. (d)).

5.6 Adjustability
As our PercepLIE uses the global spatially-varying color adjust-
ment factor 𝛼 in GCA to adjust the restoration results for better
perceptional quality and natural colors, it is necessary to examine
its effectiveness and flexibility. Figure 8 shows the NIQE and PI
results with different 𝛼 . Note that it is difficult to find an 𝛼 that
works best for NIQE, PI, and LPIPS simultaneously. We argue that
our PercepLIE is flexible as we can dynamically adjust 𝛼 to gener-
ate visually-pleasing results according to different low-light inputs.
Figure 7 shows two real-world examples, where we adjust the 𝛼

(a) NIQE ↓ vs. SSIM ↑ (b) PI ↓ vs. LPIPS ↓
Figure 8: Adjustability on the LOL [66]. We adjust 𝛼 to gener-
ate results with different perceptual qualities.

to generate results with different colors and perceptual quality. By
adjusting 𝛼 , the PercepLIE is able to produce better results with
better colors and naturalness according to different low-light in-
puts with different illumination. In Figure 7, higher 𝛼 for the first
example results in better performance, while lower 𝛼 generates
superior results for the second example. The two examples clearly
suggest that our PercepLIE is flexible and superior when handling
different low-light inputs with different illuminations.

6 Conclusion
We have presented a new path to perceptual LIE, called PercepLIE,
by introducing the VQGAN with multi-luminance detail compen-
sation (MDC) and global color adjustment (GCA). The VQGAN is
used to explore the latent light representations of normal-light im-
ages to guide the deep models for better image enhancement. The
MDC generates diverse details to facilitate accurate structural detail
estimation, while the GCA is employed to ensure natural colors
and better perceptual quality in the generated images. Experiments
demonstrate that our PercepLIE outperforms existing techniques
on synthetic and real-world datasets based on various perceptual
quality metrics, including NIQE, PI, and LPIPS.
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