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ABSTRACT
In this document, we provide the detailed architecture of our net-
work in Sec. 1. In Sec 2, we provide more visual comparisons of our
PercepLIE and state-of-the-art (SOTA) ones. Sec. 3 presents some
examples of estimated multiple luminance details and their weight
maps in the Multi-luminance Detail Compensation (MDC) and the
exploitable adjustment image and the corresponding weight map
in the Global Color Adjustment (GCA).
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1 NETWORK ARCHITECTURE
The architectures of the encoder and decoder in VQGAN at Stage 1
are detailed in Tabs. 1, 2, respectively. Tab. 3 details the architecture
of the codebook. Following [1], the codebook has 1024 codes and
each code is a vector with 512 dimensions. The architectures of
the MDC decoder (MDC-Dec) and GCA decoder (GCA-Dec) are
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detailed in Tabs. 4, 5, respectively. The triple feature transformation
module (TriFTM) is only used in Stage 3 for fusing the features
in the decoder of VQGAN, MDC-Dec, and GCA-Dec, which is not
shown in Tab. 2.

2 MORE COMPARISON RESULTS ON
REAL-WORLD DATASETS

Figures 1-8 show more real-world comparison results. These addi-
tional examples demonstrate that our PercepLIE is able to generate
more natural and clearer results with finer structures.

3 ESTIMATED RESULTS IN MDC AND GCA
In the paper, we utilize the MDC and GCA to estimate multiple
luminance details and the exploitable adjustment image and corre-
sponding weight maps. In Figures 9-10, we show some estimated
results in MDC and GCA. These results demonstrate that our MDC
is able to generate better multiple luminance details and the GCA is
able to produce better exploitable adjustment images, thus leading
to our better enhancement results.
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Table 1: Encoder.

Layer Encoder1 Downsample Encoder2 Downsample Encoder3 Downsample Encoder4 Encoder5

Shape 𝐻 ×𝑊 × 64 𝐻
2 × 𝑊

2 × 128 𝐻
2 × 𝑊

2 × 128 𝐻
4 × 𝑊

4 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
8 × 𝑊

8 × 256 𝐻
8 × 𝑊

8 × 256 𝐻
8 × 𝑊

8 × 512

Blocks 3 ResBlocks - 2 ResBlocks - 2 ResBlocks - 2 ResBlocks 1 Conv

Kernel sizes 3 × 3 - 3 × 3 - 3 × 3 - 3 × 3 3 × 3

Stride 1 - 1 - 1 - 1 1

Table 2: Decoder.

Layer Decoder1 Decoder2 Upsample Decoder3 Upsample Decoder4 Upsample Decoder5 Decoder6

Shape 𝐻
8 × 𝑊

8 × 512 𝐻
8 × 𝑊

8 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
2 × 𝑊

2 × 256 𝐻
2 × 𝑊

2 × 128 𝐻 ×𝑊 × 128 𝐻 ×𝑊 × 64 𝐻 ×𝑊 × 3

Blocks 1 Conv 2 ResBlocks - 2 ResBlocks - 2 ResBlocks - 3 ResBlocks 1 Conv

Kernel sizes 3 × 3 3 × 3 - 3 × 3 - 3 × 3 - 3 × 3 3 × 3

Stride 1 1 - 1 - 1 - 1 1

Table 3: Codebook. The codebook has 1024 discrete codes and each code is a vector with 512 dimensions.

Layer Codebook

Shape 1024 × 512

Blocks nn.Embedding (in PyTorch)

Table 4: Decoder of MDC. The MDC outputs estimated three luminance details S ∈ R𝐻×𝑊 ×3 and corresponding weight maps
M ∈ R𝐻×𝑊 ×1.

Layer Decoder1 Decoder2 Upsample Decoder3 Upsample Decoder4 Upsample Decoder5 Decoder6

Shape 𝐻
8 × 𝑊

8 × 512 𝐻
8 × 𝑊

8 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
2 × 𝑊

2 × 256 𝐻
2 × 𝑊

2 × 128 𝐻 ×𝑊 × 128 𝐻 ×𝑊 × 64

𝐻 ×𝑊 × 3

𝐻 ×𝑊 × 1

𝐻 ×𝑊 × 3

𝐻 ×𝑊 × 1

𝐻 ×𝑊 × 3

𝐻 ×𝑊 × 1

Blocks 1 Conv 2 ResBlocks - 2 ResBlocks - 2 ResBlocks - 3 ResBlocks

1 Conv

1 Conv

1 Conv

1 Conv

1 Conv

1 Conv

Kernel sizes 3 × 3 3 × 3 - 3 × 3 - 3 × 3 - 3 × 3 3 × 3

Stride 1 1 - 1 - 1 - 1 1

Table 5: Decoder of GCA. The GCA outputs exploitable adjustment image YGCA ∈ R𝐻×𝑊 ×3 and corresponding weight map
MGCA ∈ R𝐻×𝑊 ×1.

Layer Decoder1 Decoder2 Upsample Decoder3 Upsample Decoder4 Upsample Decoder5 Decoder6

Shape 𝐻
8 × 𝑊

8 × 512 𝐻
8 × 𝑊

8 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
4 × 𝑊

4 × 256 𝐻
2 × 𝑊

2 × 256 𝐻
2 × 𝑊

2 × 128 𝐻 ×𝑊 × 128 𝐻 ×𝑊 × 64
𝐻 ×𝑊 × 3

𝐻 ×𝑊 × 1

Blocks 1 Conv 2 ResBlocks - 2 ResBlocks - 2 ResBlocks - 3 ResBlocks
1 Conv

1 Conv

Kernel sizes 3 × 3 3 × 3 - 3 × 3 - 3 × 3 - 3 × 3 3 × 3

Stride 1 1 - 1 - 1 - 1 1
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE
Figure 1: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is capable of producing a clearer and
cleaner result.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 2: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is able to produce a clearer result.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 3: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is able to generate a more natural result
with better colors and details.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 4: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is able to generate a more natural result
with better colors and details.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 5: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is able to generate a more natural result
with better colors and details.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 6: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is able to generate a more natural result
with better colors and details.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 7: Visual comparisons with recent SOTAs on real-world datasets. Our PercepLIE is able to generate a more natural result
with better colors and details.
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(a) Input (b) CVPR’21 RUAS [4]

(c) AAAI’22 SCL [3] (d) CVPR’22 SNR [7]

(e) CVPR’22 SCI [5] (f) ECCV’22 UNIE [2]

(g) AAAI’22 LLFlow [6] (h) PercepLIE

Figure 8: Visual comparisons with recent SOTAs on real-world datasets. The 𝛼 is set as 1. Our PercepLIE is able to generate a
more natural result with better colors and details.
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(a) Input (b) PercepLIE

(c) S0.5 (d)M0.5

(e) S1 (f) M1

(g) S3 (h)M3

(i) YGCA (j)MGCA

Figure 9: S ∈ R𝐻×𝑊 ×3 denotes the estimated multiple luminance details and corresponding weight maps M ∈ R𝐻×𝑊 ×1 in MDC.
The YGCA ∈ R𝐻×𝑊 ×3 andMGCA ∈ R𝐻×𝑊 ×1 denote the exploitable adjustment image and corresponding weight map in GCA.
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(a) Input (b) PercepLIE

(c) S0.5 (d)M0.5

(e) S1 (f) M1

(g) S3 (h)M3

(i) YGCA (j)MGCA

Figure 10: S ∈ R𝐻×𝑊 ×3 denotes the estimated multiple luminance details and corresponding weight mapsM ∈ R𝐻×𝑊 ×1 in MDC.
The YGCA ∈ R𝐻×𝑊 ×3 andMGCA ∈ R𝐻×𝑊 ×1 denote the exploitable adjustment image and corresponding weight map in GCA.
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