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1 Proof of Theorem 1

Theorem 1. Given sufficiently large D random vectors and c > 1, the filtering mechanism described
in the paper has the following properties:

• If ∥x− q∥ ≤ r, then Pr [x is not filtered] ≥ q1 = 1/2 ;
• If ∥y − q∥ ≥ cr, then Pr [y is not filtered] ≤ q2 = 1√

2πγ
exp(−γ2/2) < q1 where

γ = cr(1−1/c2)√
4−c2r2

·
√
2 lnD .

Proof. We first show the two properties for the case ∥x− q∥ = r, ∥y − q∥ = cr by analyzing the
tail of Gaussian random variables X = x⊤r1 ∼ N(µ1, σ

2
1) and Y = y⊤r1 ∼ N(µ2, σ

2
2), where

µ1 = x⊤q
√
2 lnD = (1− r2/2)

√
2 lnD,σ2

1 = 1−
(
1− r2/2

)2
,

µ2 = y⊤q
√
2 lnD = (1− c2r2/2)

√
2 lnD,σ2

2 = 1−
(
1− c2r2/2

)2
.

We use the classic tail bound of normal random variables. If Z ∼ N(0, 1), then for any a > 0,

Pr [Z ≥ a] ≤ 1

a
√
2π

e−a2/2 .

We define ∆µ = µ1 − µ2 > 0 and set the threshold t = µ1 = (1 − r2/2)
√
2 lnD. Since

X ∼ N(µ1, σ
2
1) and t = µ1, Pr [X ≥ t] = 1/2 = q1. Applying the tail bound on Y ∼ N(µ2, σ

2
2),

Pr [Y ≥ t] = Pr
[
Y − µ2

σ2
≥ ∆µ

σ2

]
≤ 1√

2π(∆µ)/σ2

exp

(
− (∆µ)2

2σ2
2

)
=

1√
2πγ

exp(−γ2/2) = q2 ,

where γ = ∆µ/σ2. Since ∆µ = c2r2

2 (1 − 1
c2 )

√
2 lnD and σ2

2 = c2r2
(
1− c2r2

4

)
, we have

γ = cr(1−1/c2)√
4−c2r2

·
√
2 lnD.

Since ∆µ/σ2 is monotonic with respect to c, further points has a higher probability of being discarded.
Therefore, the second property holds for any far away point y, i.e. ∥y − q∥ ≥ cr. The first property
holds for any close point x, i.e. ∥x− q∥ ≤ r, since their projection value onto r1 follows a Gaussian
distribution with mean µ ≥ µ1.

2 Falconn++ vs. theoretical LSF frameworks

Figure 1 shows the recall-speed comparison between Falconn++ and recent theoretical LSF frame-
works [2, 3]. All 3 data sets use L = 100, α = {0.1, 0.5}, iProbes = 1, and the centering trick. We
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do not apply the limit scaling trick to ensure that both Falconn++ and the theoretical LSF approaches
share the same number of points in a table. We use D = {128, 256, 256} for NYTimes, Glove200,
and Glove300. With 2 LSH functions, each table of both approaches has the same 4D2 buckets.

Given α, Falconn++ simply keeps αB points in a bucket of size B whose absolute dot products
to the corresponding vector ri are the largest. To ensure that the table has αn points, theoretical
LSF computes the global threshold tu such that it keeps x in the bucket corresponding to ri with
probability α/4D2. Since x⊤ri ∼ N(0, 1), we use the inverseCDF(.) of a normal distribution
to compute tu such that Pr

[
x⊤ri ≥ tu

]2
= α/4D2. Given this setting, the theoretical LSF with

pre-computed tu has a similar number of indexed points as Falconn++.

Figure 1 shows superior performance of Falconn++ compared to the theoretical LSF with α =
{0.1, 0.5} on 3 data sets. Note that NYTimes has the center vector c = 0, hence does not need center-
ing. Figure 1(b) and (c) show that Falconn++ with centering trick can even improve the performance
on Glove200 and Glove300, whereas theoretical LSF significantly decreases the performance with
centering trick. This is because the LSF mechanism of Falconn++ can work on the general inner
product (after centering the data points) while the theoretical LSF mechanism works on a unit sphere.
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Figure 1: The recall-speed comparison between Falconn++ and theoretical LSF frameworks.

3 A heuristic to select parameter values for Falconn++

This section will present a heuristic to select parameters of Falconn++, including number of random
vectors D, number of tables L, scale factor α, and number of indexing probing iProbes.

Since Falconn++ uses 2 LSH functions, the number of buckets is 4D2. We apply the limit scaling
trick to keep max(k, αB/iProbes) points in any bucket. Since we expect to see approximately k
near neighbors in a bucket, this trick prevents scaling small buckets that might contain top-k nearest
neighbors. When applying iProbes, we expect the number of points in a table, i.e. n · iProbes,
will be distributed equally into 4D2 buckets. Hence, each bucket has n · iProbes/4D2 points in
expectation.

We note that we would not want to use large iProbes since the bucket will tend to keep the points
closest to the random vector ri, and therefore degrades the performance. Falconn++ with a large
iProbes works similarly to the theoretical LSF framework [2, 3] which keeps the point x in the
bucket corresponding to ri such that x⊤ri ≥ tu for a given threshold tu. LSF frameworks need to use
a large tu so that a bucket will contain a small number of points to ensure the querying performance.
Figure 1 shows Falconn++ with a local threshold t adaptive to the data in each bucket, outperforms
the theoretical LSF frameworks that use a global tu for all buckets.

The heuristic idea is that we select iProbes and D such that the bucket size has roughly k points
in expectation by setting k ≈ n · iProbes/4D2. For instance, on Glove200: n = 1M , D =
256, k = 20, each table has 4D2 = 218 buckets. The setting iProbes = 3, D = 256 leads to
1M · 3/218 = 24 = 16 < k = 20 points in a bucket in expectation.

Falconn++ needs a sufficiently large D to maintain the LSF property. Since we deal with high
dimensional data set with large d, D ≈ 2⌈log2 d⌉ is sufficient. Falconn++ with larger values of D and
iProbes requires larger memory footprint but achieves higher recall-speed tradeoffs, as can be seen
in Figure 2.

On NYTimes with n = 300K, we set L = 500, D = {128, 256}, iProbes = {10, 40}. On
Glove200 with n = 1M , we set L = 350, D = {256, 512}, iProbes = {3, 10}. On Glove300 with
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Figure 2: The recall-speed comparison between Falconn++ and HNSW with various D.

n = 2M , we set L = 900, D = {256, 512}, iProbes = {1, 4}. On all 3 data sets, the first setting
of D and iProbes lead to similar memory footprints of HNSW. The second setting increases the
indexing space to approximately 4 times since we double D.

Regarding α, given the scaling limit trick, we set α = 0.01 to reduce large buckets without affect-
ing the performance. We observe that α = {0.01, . . . , 0.1} gives the best performance without
dramatically changing the indexing size.

4 Comparison between Falconn++ and HnswLib on different top-k values on
Glove200

Figure 3 shows the recall-speed tradeoffs between Falconn++ and HNSW on several values of
k = {1, 5, 10, . . . , 100} on Glove200 with L = 350, D = 256, iProbes = 3, α = 0.01. Since we
apply the limit scaling trick to keep max(k, αB/iProbes) points in any bucket, Falconn++ does
not work well on small k = {1, 5, 10}, compared to HNSW in Figure 3(a). This is due to the fact
that many high quality candidates in a bucket are filtered away with α = 0.01. However, Falconn++
can beat HNSW for larger k, i.e. at recall ratio of 0.95 for k ≥ 60 and at recall ratio of 0.96 for
20 ≤ k ≤ 50 in Figure 3(b) and (c).
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Figure 3: The recall-speed comparison between Falconn++ and Hnsw on different k with the scaling
limit max(k, αB/iProbes).

To deal with small k, we set the limit scaling to max(κ, αB/iProbes) where κ = 20 to maintain
enough high quality candidates in a bucket without affecting indexing time and space (see in Table 1
for k = {1, 5, 10}). Figure 4 shows that Falconn++ with the setting of max(20, αB/iProbes) is
competitive with HNSW at recall ratio of 0.93 for k = 1, and recall ratio of 0.96 for k = {5, 10}
given the same indexing size.

5 Comparison between Falconn++ and other state-of-the-art ANNS solvers

This section will give a comprehensive comparison between Falconn++ with other state-of-the-art
ANNS solvers, including ScaNN [4], Faiss [5], and coCEOs [7] on high search recall regimes on
three real-world data sets, including NYTimes, Glove200, and Glove300. The detailed data sets are

3



0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Recall

(a) k=1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Q
P

S

Falconn++

Hnsw

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

Recall

(b) k=5

0

500

1000

1500

2000

2500

3000

Q
P

S

Falconn++

Hnsw

0.95 0.96 0.97 0.98 0.99 1

Recall

(c) k=10

0

500

1000

1500

2000

2500

3000

Q
P

S

Falconn++

Hnsw

Figure 4: The recall-speed comparison between Falconn++ and Hnsw on different k with the scaling
limit max(20, αB/iProbes).

on Table 3. For ScaNN, we use the latest version 1.2.6 released on 29 April, 2022. 1 For FAISS,
we use the latest version Faiss-CPU 1.7.2 released on 11 January, 2022. 2 For coCEOs, we use the
latest released source code. 3 We note that ScaNN does not support multi-threading while Falconn++,
FAISS and coCEOs do though their thread-scaling is not perfect.

Parameter settings of Falconn++. Since Falconn++ uses 2 concatenating cross-polytope LSH
functions and D random projections, there are 4D2 number of buckets in a hash table. Since we
focus on k = 20, we set D = 2b where b ≈ ⌈log2 (n/k)⌉/2 to expect that each bucket has roughly k
points. Hence, we use D = {128, 256, 256} for NYTimes, Glove300, and Glove200, respectively.
This setting corresponds to {216, 218, 218} buckets in a hash table on three data sets. Note that the
setting of D is proportional to the size of the data sets. The hash function is evaluated in O (D logD)
time, so it does not dominate the query time. Furthermore, these values of D are large enough to
ensure the asymptotic CEOs property.

We note that Falconn++ with the heuristics of centering the data and limit scaling make the bucket
size smaller and more balancing. We observe that different small values of α does not change the size
of Falconn++ index. Hence, to maximize the performance of Falconn++, we set α = 0.01. For the

1https://github.com/google-research/google-research/tree/master/scann
2https://github.com/facebookresearch/faiss
3https://github.com/NinhPham/MIPS

Table 1: Hnsw takes 13.7 mins to build 5.4GB indexing space. Falconn++ takes 1.1 mins and
needs different memory footprints dependent on k. For k ≤ 10, we use max(20, αB/iProbes). For
k ≥ 20, we use max(k, αB/iProbes).

k 1 5 10 20 30 40 50 60 – 100

Falconn++ 5.3GB 5.3GB 5.3GB 5.3GB 5.8GB 6.0GB 6.1GB 6.2GB

Table 2: Indexing space and time comparison between Falconn++ and HNSW on 3 data sets.

Algorithms NYTimes Glove300 Glove200

Space Time Space Time Space Time

Hnsw 2.5 GB 7.8 mins 10.9 GB 26.7 mins 5.4 GB 13.7 mins
Falconn++ 2.7 GB 0.6 mins 10.8 GB 5.4 mins 5.3 GB 1.1 mins

Table 3: Data sets.
NYTimes Glove300 Glove200

n 290,000 2,196,017 1,183,514
d 256 300 200
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Figure 5: The recall-speed comparison between Falconn++, HNSW, and ScaNN on 3 data sets.

sake of comparison, we first select optimal parameter settings for HNSW [6] to achieve high search
recall ratios given a reasonable query time. Based on the size of HNSW’s index, we tune the number
of hash tables L for Falconn++ to ensure that Falconn++ shares a similar indexing size with HNSW
but builds significantly faster, as can be seen in Table 2. In particular, we use L = 500, iProbes = 10
for NYTimes, L = 900, iProbes = 1 for Glove300, and L = 350, iProbes = 3 for Glove200.
Since the characteristics of the data sets are different, it uses different values of iProbes.

Parameter settings of HNSW. We first fix ef_index = 200 and increase M from 32 to 1024 to
get the best recall-speed tradeoff. Then, we choose M = {1024, 512, 512} for NYTimes, Glove300,
and Glove200, respectively. We observe that changing ef_index while building the index does not
improve the recall-speed tradeoff. We vary ef_query = {100, . . . , 2000} to get the recall ratios and
running time.

Parameter settings of ScaNN. We used the suggested parameter provided in ScaNN’s
GitHub. We use all points to train ScaNN model with num_leaves = 1000
and score_ah(2, anisotropic_quantization_threshold = 0.2). For querying, we use
pre_reorder_num_neighbors = 500 and vary leaves_to_search ∈ {50, . . . , 1000} to get the
recall ratios and running time.

Parameter settings of FAISS. We compare with Faisee.IndexIVFPQ and set the sub-quantizers
m = d, nlist = 1000, and 8 bits for each centroid. We again use all points to train FAISS. We observe
that m < d or increasing nlist returns lower recall-speed tradeoffs. We vary probe ∈ {50, . . . , 1000}
to get the recall ratios and running time.

Parameter settings of coCEOs. We use D = 1024 and SamplingSize = n, s0 = 20, and vary
the number of candidates from 10,000 to 100,000 to get the recall ratios and running time.

Comparison of recall-speed tradeoffs. Figure 5 shows that Falconn++, though lacking many
important optimized routines, achieves higher recall-speed tradeoffs when recall > 0.97 compared
to both HNSW and ScaNN on all three data sets. We emphasize that the speed of ScaNN and HNSW
comes from several optimized routines, including pre-fetching instructions, SIMD in-register lookup
tables [1] for faster distance computation, and optimized multi-threading primitives. Compared to
HNSW and ScaNN, both FalconnLib and Falconn++ simply use the Eigen library to support SIMD
vectorization for computing inner products.

Figure 6 and 7 shows that Falconn++ achieves higher recall-speed tradeoffs than both FAISS and
coCEOs over a wide range of recall ratios. Since coCEOs is designed for maximum inner product
search, its performance is inferior to other ANNS solvers for angular distance.
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Figure 6: The recall-speed comparison between Falconn++ and FAISS on 3 data sets.
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