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1 Proof of Theorem 1

Theorem 1. Given sufficiently large D random vectors and c > 1, the filtering mechanism described
in the paper has the following properties:

o If||x — qd|| < r, then Pr[x is not filtered] > q1 = 1/2;
* If|ly — dl| > cr, then Pr [y is not filtered) < g5 = \/2177 exp(—v?/2) < q1 where

7= % ValD.

Proof. We first show the two properties for the case ||x — q|| = r, ||y — q|| = cr by analyzing the
tail of Gaussian random variables X = x'r; ~ N(u1,02) and Y =y "'ry ~ N(ua,03), where

p=x'qV2InD = (1-7%/2)V2InD,0? =1 — (1- 1"2/2)2 ,
pe =y qVv2lnD = (1-c*r?/2)V2InD, 05 =1 — (1 — 02r2/2)2 .
We use the classic tail bound of normal random variables. If Z ~ N(0, 1), then for any a > 0,

—a?/2

Pr(Z >a] < e

av 2w

We define Ay = p1 — pg > 0 and set the threshold ¢t = p; = (1 — 72/2)v/2In D. Since
X ~ N(ui,0%)andt = py, Pr[X >t] = 1/2 = ¢;. Applying the tail bound on Y ~ N (pa,03),

Y — o Au] 1 ( (Au)2> 1 2
Pr(Y >t =P >l < — - = —A2/2) = gy,
r[Y >t r[ 52 Z o) S Varamies P T2 oy exp(—7°/2) = ¢

where v = Apu/oy. Since Ay = C227"2(1 — %)V2InD and 03 = *r? (1 - sz), we have
2
y= ). /omD.

Since Ay /o9 is monotonic with respect to ¢, further points has a higher probability of being discarded.
Therefore, the second property holds for any far away point y, i.e. ||y — q|| > cr. The first property
holds for any close point x, i.e. ||x — q|| < r, since their projection value onto r; follows a Gaussian
distribution with mean p > py. O

2 Falconn++ vs. theoretical LSF frameworks

Figure[T|shows the recall-speed comparison between Falconn++ and recent theoretical LSF frame-
works [2}[3]]. All 3 data sets use L = 100, « = {0.1, 0.5}, i Probes = 1, and the centering trick. We
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do not apply the limit scaling trick to ensure that both Falconn++ and the theoretical LSF approaches
share the same number of points in a table. We use D = {128, 256,256} for NYTimes, Glove200,
and Glove300. With 2 LSH functions, each table of both approaches has the same 4D? buckets.

Given «, Falconn++ simply keeps aB points in a bucket of size B whose absolute dot products
to the corresponding vector r; are the largest. To ensure that the table has an points, theoretical
LSF computes the global threshold ¢,, such that it keeps x in the bucket corresponding to r; with
probability a/4D?. Since x"r; ~ N(0, 1), we use the inverseCDF(.) of a normal distribution

to compute ¢,, such that Pr [x"r; > ¢, >« /4D?. Given this setting, the theoretical LSF with
pre-computed t,, has a similar number of indexed points as Falconn++.

Figure |1| shows superior performance of Falconn++ compared to the theoretical LSF with a =
{0.1,0.5} on 3 data sets. Note that NYTimes has the center vector ¢ = 0, hence does not need center-
ing. Figure[T(b) and (c) show that Falconn++ with centering trick can even improve the performance
on Glove200 and Glove300, whereas theoretical LSF significantly decreases the performance with
centering trick. This is because the LSF mechanism of Falconn++ can work on the general inner
product (after centering the data points) while the theoretical LSF mechanism works on a unit sphere.
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Figure 1: The recall-speed comparison between Falconn++ and theoretical LSF frameworks.

3 A heuristic to select parameter values for Falconn++

This section will present a heuristic to select parameters of Falconn++, including number of random
vectors D, number of tables L, scale factor o, and number of indexing probing i Probes.

Since Falconn++ uses 2 LSH functions, the number of buckets is 4D?. We apply the limit scaling
trick to keep max(k, aB/iProbes) points in any bucket. Since we expect to see approximately k
near neighbors in a bucket, this trick prevents scaling small buckets that might contain top-k nearest
neighbors. When applying ¢ Probes, we expect the number of points in a table, i.e. n - 1Probes,
will be distributed equally into 4D? buckets. Hence, each bucket has n - i Probes/4D? points in
expectation.

We note that we would not want to use large i Probes since the bucket will tend to keep the points
closest to the random vector r;, and therefore degrades the performance. Falconn++ with a large
iProbes works similarly to the theoretical LSF framework [2| [3] which keeps the point x in the
bucket corresponding to r; such that x " r; > t,, for a given threshold ¢,,. LSF frameworks need to use
a large t,, so that a bucket will contain a small number of points to ensure the querying performance.
Figure [T|shows Falconn++ with a local threshold ¢ adaptive to the data in each bucket, outperforms
the theoretical LSF frameworks that use a global t,, for all buckets.

The heuristic idea is that we select ¢ Probes and D such that the bucket size has roughly £ points
in expectation by setting k ~ n - iProbes/4D?. For instance, on Glove200: n = 1M, D =
256, k = 20, each table has 4D? = 2!8 buckets. The setting iProbes = 3, D = 256 leads to
1M -3/2'8 = 2% = 16 < k = 20 points in a bucket in expectation.

Falconn++ needs a sufficiently large D to maintain the LSF property. Since we deal with high
dimensional data set with large d, D ~ 2/1°%2 91 is sufficient. Falconn++ with larger values of D and
i Probes requires larger memory footprint but achieves higher recall-speed tradeoffs, as can be seen
in Figure 2]

On NYTimes with n = 300K, we set L = 500, D = {128,256}, iProbes = {10,40}. On
Glove200 with n = 1M, we set L = 350, D = {256,512}, iProbes = {3,10}. On Glove300 with
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Figure 2: The recall-speed comparison between Falconn++ and HNSW with various D.

n = 2M, we set L = 900, D = {256,512}, iProbes = {1,4}. On all 3 data sets, the first setting
of D and ¢Probes lead to similar memory footprints of HNSW. The second setting increases the
indexing space to approximately 4 times since we double D.

Regarding «, given the scaling limit trick, we set o = 0.01 to reduce large buckets without affect-
ing the performance. We observe that & = {0.01,...,0.1} gives the best performance without
dramatically changing the indexing size.

4 Comparison between Falconn++ and HnswLib on different top-% values on
Glove200

Figure [3] shows the recall-speed tradeoffs between Falconn++ and HNSW on several values of
k ={1,5,10,...,100} on Glove200 with L = 350, D = 256, iProbes = 3, = 0.01. Since we
apply the limit scaling trick to keep max(k, aB/iProbes) points in any bucket, Falconn++ does
not work well on small k¥ = {1,5,10}, compared to HNSW in Figure a). This is due to the fact
that many high quality candidates in a bucket are filtered away with o = 0.01. However, Falconn++
can beat HNSW for larger k, i.e. at recall ratio of 0.95 for £ > 60 and at recall ratio of 0.96 for
20 < k < 50 in Figure[3[b) and (c).
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Figure 3: The recall-speed comparison between Falconn++ and Hnsw on different k£ with the scaling
limit max(k, aB/iProbes).

To deal with small k, we set the limit scaling to max(k, a«B/iProbes) where £k = 20 to maintain
enough high quality candidates in a bucket without affecting indexing time and space (see in Table|T]
for k = {1,5,10}). Figure 4] shows that Falconn++ with the setting of max(20, a.B/iProbes) is
competitive with HNSW at recall ratio of 0.93 for k¥ = 1, and recall ratio of 0.96 for k = {5,10}
given the same indexing size.

S Comparison between Falconn++ and other state-of-the-art ANNS solvers

This section will give a comprehensive comparison between Falconn++ with other state-of-the-art
ANNS solvers, including ScaNN [4], Faiss [5], and coCEOs [7] on high search recall regimes on
three real-world data sets, including NYTimes, Glove200, and Glove300. The detailed data sets are
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Figure 4: The recall-speed comparison between Falconn++ and Hnsw on different k with the scaling
limit max(20, aB/iProbes).

on Table |3} For ScaNN, we use the latest version 1.2.6 released on 29 April, 2022.[1_-] For FAISS,
we use the latest version Faiss-CPU 1.7.2 released on 11 January, 2022. E] For coCEOQOs, we use the
latest released source code. E] We note that ScaNN does not support multi-threading while Falconn++,
FAISS and coCEOs do though their thread-scaling is not perfect.

Parameter settings of Falconn++. Since Falconn++ uses 2 concatenating cross-polytope LSH
functions and D random projections, there are 4D? number of buckets in a hash table. Since we
focus on k = 20, we set D = 2% where b & [log, (n/k)]/2 to expect that each bucket has roughly &
points. Hence, we use D = {128,256, 256} for NYTimes, Glove300, and Glove200, respectively.
This setting corresponds to {216,218 218} buckets in a hash table on three data sets. Note that the
setting of D is proportional to the size of the data sets. The hash function is evaluated in O (D log D)
time, so it does not dominate the query time. Furthermore, these values of D are large enough to
ensure the asymptotic CEOs property.

We note that Falconn++ with the heuristics of centering the data and limit scaling make the bucket
size smaller and more balancing. We observe that different small values of o does not change the size
of Falconn++ index. Hence, to maximize the performance of Falconn++, we set & = 0.01. For the

Uhttps://github.com/google-research/google-research/tree/master/scann
Zhttps://github.com/facebookresearch/faiss
3https://github.com/NinhPham/MIPS

Table 1: Hnsw takes 13.7 mins to build 5.4GB indexing space. Falconn++ takes 1.1 mins and
needs different memory footprints dependent on k. For k& < 10, we use maxz (20, «B/iProbes). For
k > 20, we use max(k, aB/iProbes).

k 1 5 10 20 30 40 50 60 — 100
Falconn++ 5.3GB 53GB 53GB 53GB 58GB 6.0GB 6.1GB 6.2GB

Table 2: Indexing space and time comparison between Falconn++ and HNSW on 3 data sets.
NYTimes Glove300 Glove200
Space Time Space Time Space Time

Hnsw 25GB 7.8mins 109GB 26.7mins 5.4 GB 13.7 mins
Falconn++ 2.7GB 0.6mins 10.8GB 54 mins 53GB 1.1 mins

Algorithms

Table 3: Data sets.
NYTimes Glove300 Glove200

290,000 2,196,017 1,183,514
256 300 200

U3




2500 —_ 600 FaICOnn++ 1600 o Falconn++
T —— Hnsw 1400 = ——Hnsw
2000 - ——ScaNN ——ScaNN
1) 1) © 1200
$ 8w « BF 3 « BF
i 1500 o 5 5 1000
% ?’ﬂ 2‘ 300 % 800
2 1000 2 2 L
© ——Falconn++ D 200 o %@E
p) i p) R
S ——Hnsw .0 G
# *°7l——ScaNN # 100 *
) BF < 200 <
g97 0.975 0.98 0.985 0.99 0.995 1 897 0.975 0.98 0.985 0.99 0.995 1 0097 0.975 0.98 0.985 0.99 0.995 1
Recall Recall Recall
(a) NYTimes (b) Glove300 (c) Glove200

Figure 5: The recall-speed comparison between Falconn++, HNSW, and ScaNN on 3 data sets.

sake of comparison, we first select optimal parameter settings for HNSW [6] to achieve high search
recall ratios given a reasonable query time. Based on the size of HNSW’s index, we tune the number
of hash tables L for Falconn++ to ensure that Falconn++ shares a similar indexing size with HNSW
but builds significantly faster, as can be seen in Table[2] In particular, we use L = 500, iProbes = 10
for NYTimes, L = 900, :Probes = 1 for Glove300, and L = 350, iProbes = 3 for Glove200.
Since the characteristics of the data sets are different, it uses different values of i Probes.

Parameter settings of HNSW. We first fix ef_index = 200 and increase M from 32 to 1024 to
get the best recall-speed tradeoff. Then, we choose M = {1024, 512,512} for NYTimes, Glove300,
and Glove200, respectively. We observe that changing e f_index while building the index does not
improve the recall-speed tradeoff. We vary ef_query = {100, ...,2000} to get the recall ratios and
running time.

Parameter settings of ScaNN. We used the suggested parameter provided in ScaNN’s

GitHub. We wuse all points to train ScaNN model with num_leaves = 1000
and score_ah(2, anisotropic_quantization_threshold = 0.2). For querying, we use
pre_reorder_num_neighbors = 500 and vary leaves_to_search € {50,...,1000} to get the

recall ratios and running time.

Parameter settings of FAISS. We compare with Faisee.IndexIVFPQ and set the sub-quantizers
m = d, nlist = 1000, and 8 bits for each centroid. We again use all points to train FAISS. We observe
that m < d or increasing nlist returns lower recall-speed tradeoffs. We vary probe € {50, ...,1000}
to get the recall ratios and running time.

Parameter settings of coCEOs. We use D = 1024 and SamplingSize = n, s = 20, and vary
the number of candidates from 10,000 to 100,000 to get the recall ratios and running time.

Comparison of recall-speed tradeoffs. Figure [5|shows that Falconn++, though lacking many
important optimized routines, achieves higher recall-speed tradeoffs when recall > 0.97 compared
to both HNSW and ScaNN on all three data sets. We emphasize that the speed of ScaNN and HNSW
comes from several optimized routines, including pre-fetching instructions, SIMD in-register lookup
tables [[1] for faster distance computation, and optimized multi-threading primitives. Compared to
HNSW and ScaNN, both FalconnLib and Falconn++ simply use the Eigen library to support SIMD
vectorization for computing inner products.

Figure [6] and [7] shows that Falconn++ achieves higher recall-speed tradeoffs than both FAISS and
coCEOs over a wide range of recall ratios. Since coCEOs is designed for maximum inner product
search, its performance is inferior to other ANNS solvers for angular distance.
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