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Appendix

The organization of the proofs is as follows. Frist, we show that the `1-type penalty has as special
feature, allowing one to avoid estimating explicitly the estimation error. Second, a new element in the
proof is proved in empirical process theory, in which we use the strong convexity of the expected
functional objective under the Bernstein condition to enter directly into local conditions. Third, we
use the intrinsic correlation between different RKHSs to derive a key inequality, which is related to
the left side one of our basic inequality. Based on the above three steps, we can establish a basic
polynomial-type inequality, which immediately yields our general learning rates for SVM.

Proofs

Given a function space G, recall that the empirical Rademacher average on G is defined by

R̂(G) = sup
g∈G

∣∣∣ 1
n

n∑
i=1

σig(zi)
∣∣∣, ∀ g ∈ G,

where {σi} are i.i.d. Rademacher variables. The population-level Rademacher complexity of G is
given by R(G) = Eσ,z[R̂(G)]. The contractive property of R(G) is very useful in our theoretical
analysis. That is, if ϕ : R→ R is Lipschitz with constant Lϕ and satisfies ϕ(0) = 0, then

R(ϕ ◦ G) ≤ 2LϕR(G).

In addition, we state the close relationship between ‖ · ‖n and ‖ · ‖2 for functions in Hm’s. The
following Lemma 1 follows immediately from Theorem 4 and Proposition 5 in [2].
Lemma 1. Suppose that A ≥ 1 and logM ≥ 2 log log n. Then there exists a universal constant
C0 > 0 such that with probability at least 1−M−A, for all fm ∈ Hm,

‖fm‖2 ≤ C0

(
‖fm‖n + ε(Km)‖fm‖Km

)
and ‖fm‖n ≤ C0

(
‖fm‖2 + ε(Km)‖f‖Km

)
.

Lemma 2. (Concentration Theorem [1]) Let Z1, ..., Zn be independent random variables with values
in some space Z and let H be a class of real-valued functions on Z , satisfying for some positive
constants ηn and τn,

‖h‖ ≤ ηn, and
1

n

n∑
i=1

var(h(Zi)) ≤ τ2
n, ∀h ∈ H.
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Define Z := suph∈H

∣∣∣ 1
n

∑n
i=1

(
h(Zi)− Eh(Zi)

)∣∣∣. Then for t > 0

P
(
Z ≥ E(Z) + t

√
2(τ2

n + 2ηnE(Z)) +
2ηnt

2

3

)
≤ exp[−nt2].

For any given ∆−, ∆+ > 0, we define the subset ofHM

F∆ := {f ∈ HM :

M∑
m=1

ε(Km)‖fm − f∗m‖2 ≤ ∆−,

M∑
m=1

ε2(Km)‖fm − f∗m‖Km ≤ ∆+}.

The following Proposition 1 on concentration inequalities holds for general lipschitz-type losses,
including the hinge loss. Let En(f) = 1

n

∑n
i=1 φ(Yif(Xi)) be the empirical risk of f with respect to

the population-level quantity E(f).
Proposition 1. Let F∆ be a measurable function subset defined as above. Suppose that condition C
holds for each univariateHm. For some A ≥ 1, with probability at least 1− 2M−A, the following
bound holds uniformly on ∆− ≤ eM and ∆+ ≤ eM ,∣∣En(f)− En(f∗)−

(
E(f)− E(f∗)

)∣∣ ≤ C1(∆− + ∆+ + e−M ), ∀ f ∈ F∆.

The proof of Proposition 1 is similar to that in [3] for high dimensional quantile regression, and it is
given in Appendix B for completeness.

Proof of Theorem 1.

Given a subset S ⊆ [M ], we write IS(f ;λ, γ) =
∑
m∈S λm

√
‖fm‖2n + γm‖fm‖2Km . Clearly

IS(f ;λ, γ) is a mixed norm of f for any λm > 0 and γm > 0. By the definition of f̂ in (??) and the
sparsity assumption on f∗, we have

En(f̂) + IM (f̂ ;λ, γ) ≤ En(f∗) + IS(f∗;λ, γ). (1)

Recall that IM (f ;λ, γ) = IS(f ;λ, γ) + ISc(f ;λ, γ) for any f , and ISc(f ;λ, γ) = ISc(f −f∗;λ, γ)
by the sparsity assumption on f∗. Then it follows from (1) and the triangle inequality that

En(f̂) + ISc(f̂ − f∗;λ, γ) ≤ En(f∗) + IS(f̂ − f∗;λ, γ).

Adding IS(f̂ − f∗;λ, γ) to both sides of the last inequality, we obtain

En(f̂) + IM (f̂ − f∗;λ, γ) ≤ En(f∗) + 2IS(f̂ − f∗;λ, γ).

Simple algebra yields that

E(f̂) + IM (f̂ − f∗;λ, γ) ≤ E(f∗) +
∣∣En(f̂)− En(f∗)−

(
E(f̂)− E(f∗)

)∣∣
+2IS(f̂ − f∗;λ, γ). (2)

We now bound the quantities IM (f̂ − f∗;λ, γ) and IS(f̂n− f∗;λ, γ) by their population-level terms,
respectively. Note that with probability at least 1−M−A, we have

IM (f̂ − f∗;λ, γ) ≥ 1√
2

M∑
m=1

λm
(
‖f̂m − f∗j ‖2/C0 + (

√
γm − ε(Km))‖f̂m − f∗m‖Km

)
≥ 1√

2C0

M∑
m=1

λm
(
‖f̂m − f∗m‖2 + C0/2

√
γm‖f̂m − f∗m‖Km

)
≥ 1√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km , (3)

where the first inequality follows from Lemma 1 and the subadditivity of
√
·, and the second inequity

is based on assumption
√
γm ≥ 2ε(Km)/C0 for any m ∈ [M ], and the third inequality follows

from the subadditivity of
√
· as well. By the similar arguments as above, with probability at least

1−M−A, we also have that

IS(f̂ − f∗;λ, γ) ≤
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km . (4)
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Therefore, substituting (3) and (4) into (2) yields that with probability at least 1− 2M−A,

E(f̂) +
1√
2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km ≤ E(f∗) + 2
√

2C0 ×

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km +
∣∣En(f̂)− En(f∗)−

(
E(f̂)− E(f∗)

)∣∣. (5)

It remains to bound the empirical process
∣∣En(f̂)−En(f∗)−

(
E(f̂)−E(f∗)

)∣∣, for which Proposition
1 is employed.

Since ‖fm‖∞ ≤ ‖fm‖Km ≤ 1 for any f = (f1, ..., fM ) ∈ BM , and 2Mε(Km) ≤ eM for any
m ∈ [M ], the following bounds are satisfied

M∑
m=1

ε(Km)‖f̂m − f∗m‖2 ≤ eM ,
M∑
m=1

ε2(Km)‖f̂m − f∗m‖Km ≤ eM ,

and thus Proposition 1 can be applied directly. Precisely, we obtain from Proposition 1 and (5) that,
with probability at least 1− 4M−A,

E(f̂) +
1√
2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km

≤ E(f∗) + 2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km

+
√

2C1

M∑
m=1

ε(Km)
√
‖f̂m − f∗m‖22 + ε2(Km)‖f̂m − f∗m‖2Km + C1e

−M . (6)

With the choice of λm ≥ 4C0C1ε(Km) and γm ≥ 4ε2(Km)/C2
0 for any m ∈ [M ], the above

inequality immediately implies that

E(f̂)− E(f∗) +
1

2
√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km

≤ 2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km + C1e
−M . (7)

We first consider the case when

(i) : 2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km ≥ C1e
−M .

It follows from (7) that

E(f̂)− E(f∗) +
1

2
√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Kj

≤ 4
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km . (8)

Since E(f̂)− E(f∗) ≥ 0 by definition, (8) implies that

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km

≤ 16C2
0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km ,
(9)
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with probability at least 1− 4M−A, provided that λm ≥ 4C0C1ε(Km) and γm ≥ 4ε2(Km)/C2
0 for

any m ∈ [M ]. That is, f̂n belongs to F16C2
0

S with high probability under the case (i). Meanwhile,
from (8) we also conclude that, with probability at least 1− 4M−A,

E(f̂n)− E(f∗) ≤ 4
√

2C0

∑
m∈S

λm‖f̂m − f∗m‖2 + 16
∑
m∈S

λm
√
γm

≤ 4
√

2C0

( ∑
m∈S

λ2
m

)1/2( ∑
m∈S
‖f̂m − f∗m‖22

)1/2
+ 16

∑
m∈S

λm
√
γm, , (10)

for any f̂ ∈ F16C2
0

S , where the second inequality follows from the Cauchy-Schwartz inequality. Under
the identifiable assumption (Condition A) and the correlation assumption (Condition D), it follows
from (10) that

E(f̂)− E(f∗) ≤ 4
√

2C0/Γ(S, ρX)
( ∑
m∈S

λ2
m

)1/2∥∥ M∑
m=1

(f̂m − f∗m)
∥∥

2
+ 16

∑
m∈S

λm
√
γm

≤ 4
√

2c0C0/Γ(S, ρX)
( ∑
m∈S

λ2
m

)1/2(E(f̂n)− E(f∗)
)1/(2κ)

+ 16
∑
m∈S

λm
√
γm, (11)

where the first inequality follows from Condition D, and the second inequity follows immediately
from Condition A. Direct calculation of (11) yields that

E(f̂)− E(f∗) ≤ max
{(4
√

2c0C0

Γ(S, ρX)

) 2κ
2κ−1

( ∑
m∈S

λ2
m

) κ
2κ−1

, 32
∑
m∈S

λm
√
γm

}
. (12)

Thus we complete the proof of Theorem 1 under case (i).

It remains to consider the case when (i) does not hold. That is,

2
√

2C0

∑
m∈S

λm

√
‖f̂m − f∗m‖22 + 2/C2

0γm‖f̂m − f∗m‖2Km < C1e
−M .

It immediately follows from (7) that

E(f̂)− E(f∗) +
1

2
√

2C0

M∑
m=1

λm

√
‖f̂m − f∗m‖22 + C2

0/4γm‖f̂m − f∗m‖2Km ≤ 2C1e
−M . (13)

It is clear that our desired result still holds, since logM ≥ 2 log log n by assumption. Therefore, by
combining (12) with (13), we complete the proof of Theorem 1.

Appendix B: Proof of Proposition 1.

To apply Theorem 2, denote H = {h(z)|h(z) = φ(yf(x)) − φ(yf∗(x)), f ∈ F∆}, where φ(u)
is the hinge loss defined as above. We can write [E(f)− E(f∗)]− [En(f)− En(f∗)] = E[h(z)]−
1
n

∑n
i=1 h(zi), h ∈ H . Then, by Bousquet’s concentration inequality, with probability at least

1− e−t,

Z ≤ E(Z) +

√
2t(τ2

n + 2ηnEZ)

n
+

2ηnt

3n
. (14)

The remaining proof is to give tight upper bounds of ηn, τn and E(Z) respectively. First, the
sub-additivity of

√
· implies that√

2t(τ2
n + 2ηnEZ)

n
≤
√

2t

n
τ2
n + 2

√
ηn
n
E(Z) ≤

√
2t

n
τ2
n + EZ +

ηn
n
,

where we used the basic inequality
√
uv ≤ (u+ v)/2 for any u, v ≥ 0. Meanwhile, since |Y | ≤ 1,

the contraction property of φ implies E(h2(Z)) ≤ ‖f − f∗‖22 for any f ∈ F∆. That is, τ2
n ≤

supf∈F∆
‖f − f∗‖22. This together with (14) leads to

Z ≤ 2E(Z) +

√
2t

n
sup
f∈F∆

‖f − f∗‖2 +
(1 + t)ηn

n
. (15)
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Moreover, by the contraction property of φ and Condition C, we have

‖h‖∞ ≤ ‖f − f∗‖∞ ≤
M∑
m=1

‖fm − f∗m‖∞ ≤ c2
M∑
m=1

(
‖fm − f∗m‖2 + ‖fm − f∗m‖Km

)
,∀f ∈ F∆,

where we used the Young inequality uτv1−τ ≤ u + v for any u, v ≥ 0 and 0 < τ ≤ 1. Note that

ε(Km) ≥
√

A logM
n for all m, this follows that

M∑
m=1

‖fm − f∗m‖2 ≤
√

n

A logM
∆−, (16)

for any f ∈ F∆. A similar argument leads to
∑M
m=1 ‖fm − f∗m‖Km ≤

n
A logM∆+. So we combine

these derived inequalities to obtain

ηn ≤

√
c22n

A logM
∆− +

c2n

A logM
∆+. (17)

Thus, plugging the upper bounds of ηn (17) and supf∈F∆
‖f − f∗‖2 (16) into (15), with probability

at least 1− e−t, we have

Z ≤ 2E(Z) +

√
2c22t

A logM
∆− +

c2n

A logM

(1 + t)

n
∆+. (18)

To bound E(Z), we use a symmetrization technique, and thus E(Z) ≤ 2E[R̂(H)] ≤ 2E[R̂(F∆ −
f∗)], where the second inequality follows from the contraction property of Redemacher process.
Moreover, applying Talagrand’s concentration inequality [1] again for R̂(F∆ − f∗), we get that

E[R̂(F∆ − f∗)] ≤ 2R̂(F∆ − f∗) +

√
2c22t

A logM
∆− +

c2n

A logM

(1 + t)

n
∆+,

with probability at least 1− e−t. According to the existing result on weight empirical process in [2]
(see Equation (8) below), on some event E of probability at least 1−M−A, for all m ∈ [M ] we have

1

n

∣∣∣ n∑
i=1

σi(fm − f∗m)(xi)
∣∣∣ ≤ C̃[ε(Km)‖fm − f∗m‖2 + ε2(Km)‖fm − f∗m‖Km

]
. (19)

Hence, with probability at least 1− 2e−t −M−A, we have

Z ≤ 8R̂(F∆ − f∗) + 9

√
2c22t

A logM
∆− +

9c2n

A logM

(1 + t)

n
∆+

≤ 8

M∑
j=1

R̂(Hj − f∗j ) + 9

√
2c22t

A logM
∆− +

9c2n

A logM

(1 + t)

n
∆+

≤ 8C̃
(
∆− + ∆+

)
+ 9

√
2c22t

A logM
∆− +

9c2n

A logM

(1 + t)

n
∆+,

which holds on the event E ∩ F (∆−,∆+, t), where P(F (∆−,∆+, t)) ≥ 1− 2e−t. With the choice
of t = A logM/c22 + 4 logM , we obtain a bound that uniformly over

e−M ≤ ∆− ≤ eM and e−M ≤ ∆+ ≤ eM . (20)

For this purpose, we consider M2-different discrete pairs ∆m
− = ∆m

+ := 2−m, m ∈ [M ]. Then on
the event

⋂
k,m F (∆m

− ,∆
k
+, t), we have Z ≤ c(∆m

− + ∆k
+) for all m, k ∈ [M ]. Moreover,

P
( ⋂
k,m

F (∆m
− ,∆

k
+, t)

)
≥ 1− 2M2e−c2 logM−4 logM ≥ 1− 2M−2−c2 ,
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which tends to 1 as M goes to infinity. Besides, using monotonicity of the functions ∆m
− and ∆k

+
involved in the inequalities, the result can be extended to the whole range of ∆− and ∆+ satisfying
(20).

If ∆− ≤ e−M or ∆+ ≤ e−M , it is trivial to derive the desired result with the same probability. This
completes the proof of Proposition 1. �
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