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Supplemental material1

A Detailed Dataset Description2

This section details the annotation schema used in Hephaestus Minicubes. Building upon the expert3

labels from the original Hephaestus dataset [Bountos et al., 2022], annotations were adapted to a4

spatiotemporal format compatible with the datacube structure. A comprehensive view of the dataset5

variables can be seen in Tab. 1 and examples of different annotation types are shown in A.1. In the6

following paragraphs we will detail the key variables of Hephaestus Minicubes.7

Activity. Activity-related segmentation masks lie at the core of the dataset’s annotation schema8

detailing the presence of deformation, its geophysical source and its intensity.9

A high-level Deformation Mask, delineates Volcanic and Earthquake induced deformation pat-10

terns.11

The Activity Type Mask captures more detailed geophysical context, distinguishing among several12

common deformation source models: Mogi [Kiyoo, 1958], Dyke [Okada, 1985, Sigmundsson et al.,13

2010], Sill [Fialko et al., 2001], and Spheroid [Yang et al., 1988], as well as deformation attributed14

to Earthquake events or labeled as Unidentified when no clear model can be observed.15

The Intensity Level Mask categorizes the strength of deformation signals based on the number of16

visible fringes in the interferogram: Low (1 fringe), Medium (2–3 fringes), and High (more than17

3 fringes). For earthquake-related events, the intensity is marked as None, reflecting their distinct18

deformation characteristics.19

Additionally, we include a Phase categorical variable that captures the state of the volcano i.e. Rest20

(no sign of volcanic activity), Unrest (indicating uplift), or Rebound (indicating subsidence). Again,21

for Earthquake events, we set the phase to None.22

Noise. A separate set of annotation variables aim to capture specific signal characteristics and23

noise patterns. These include: glacier fringes, when observed fringes result from glacier melting24

(1 if present, 0 otherwise); orbital fringes, for phase ramps caused by satellite orbital errors; and25

atmospheric fringes, which take four values: type 0 (no atmospheric impact), type 1 (vertical26
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Table 1: Overview of Hephaestus Minicubes Dataset Variables
Variable Description

InSAR Products
Phase Difference Difference in SAR signal phase, indicating surface displacement.
Coherence The reliability of the interferometric phase measurement.

Topography
DEM Digital Elevation Model: a representation of Earth’s surface topography.

Atmospheric Variables
Total Column Water Vapour Water vapour from surface to the top of the atmosphere.
Surface Pressure Atmospheric pressure at Earth’s surface.
Vertical Integral of Temperature Mass-weighted temperature integral from surface to top of the atmo-

sphere.

Annotations
Deformation Mask High level mask for deformation presence {Non-Deformation,

Volcanic, Earthquake}.
Activity Type Mask Mask identifying the activity type: {Sill, Dyke, Mogi, Spheroid,

Earthquake, Unidentified}.
Intensity Level Mask Mask identifying the intensity level of the activity {None, Low,

Medium, High}.
Phase Phase of the activity: {Rest, Unrest, Rebound, None }.
Atmospheric Fringes Identifies types of atmospheric noise.
Glacier Fringes Identifies deformation patterns from glacier melting.
Orbital Fringes Identifies phase ramps due to orbital errors.
Corrupted Flag for corrupted data.
No Info Identifies low-coherence interferograms, where meaningful interpreta-

tion is not possible.
Low Coherence Identifies samples that are characterized from interferometric signal

decorrelation.
Is Crowd Identifies whether multiple deformation masks exist.
Caption Expert text description of the interferogram and annotation rationale.
Confidence Value indicating the annotator’s confidence [0–1].

Metadata
Unique Id Unique identifier for each sample.
Valid Date Pair Boolean flag for primary/secondary dates with existing InSAR products.

stratification correlated with topography due to changes in the troposphere’s refractive index), type27

2 (turbulent mixing and vapors caused by liquid or solid particles in the atmosphere), and type 3 (a28

combination of type 1 and type 2). The low coherence variable is set to 1 when interferometric29

signal decorrelation dominates the image. No info is used when coherence is so low throughout the30

interferogram that meaningful interpretation is not possible.31

InSAR Processing Errors. Automated InSAR generation pipelines may, occasionally, result in32

faulty products. To identify corrupted InSAR, and facilitate automatic detection of such instances in33

future applications, we include a set of annotation variables denoting technical faults. The first is the34

binary variable corrupted, which identifies interferograms that are entirely problematic and unusable.35

The second is processing error, which distinguishes between specific InSAR processing errors: type36

1 refers to debursting errors during the synchronization of bursts from one or more sub-swaths; type37

2 indicates Sentinel-1 sub-swath merging errors, which appear as visible discontinuities, while type38

0 denotes interferograms free of such processing issues.39

Meta-Information. The confidence score is a continuous value in the range [0, 1] that reflects40

the annotator’s confidence regarding the deformation classification. The is crowd variable is set to 041

when at most one local fringe pattern is present and 1 when two or more such patterns appear within42

the same interferogram. Furthermore, the caption field contains a text description providing expert43

commentary, interpretation rationale, or relevant contextual notes for the InSAR phase difference44

product. Finally the unique id serves as a unique identifier for each sample, and the valid date pair45

flag indicates whether the combination of primary and secondary dates corresponds to an existing46

InSAR product, intended for use in the multi-dimensional array functionality.47

Annotation Process. The annotation process was carried out by a team of InSAR experts through48

photo-interpretation on the available wrapped interferograms. Each image was optically inspected49

over the locations of volcanoes, as well as the surrounding areas, in order to evaluate the quality50

of the interferograms and indicate the impact of atmospheric delays and potential artifacts. Each51
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positive annotation was cross-validated via external sources (publications, reliable news sources) as52

well as the COMET Volcano Deformation Portal 1, to support the evaluation of whether the observed53

displacement was due to true volcanic activity or atmospheric delay effects. For further details54

regarding the annotation process readers are referred to the original Hephaestus dataset [Bountos55

et al., 2022].56

A.1 Visualizing Annotation Diversity57

In this section we present selected examples of different annotation variables, illustrating the diversity58

and richness of the annotation variables in Hephaestus Minicubes.59

Text Captions. In Fig. 1, we showcase InSAR imagery with various apparent deformation patterns60

and atmospheric phenomena, together with the expert textual captions, highlighting the complexity61

and variability captured in the dataset. Each caption provides a thorough description of the location62

and type of all underlying phenomena, as well as a reference to interpretation challenges if present.63

(a) (b) (c)

(a) "Vertical stratification can be detected on the high altitude areas. Turbulent mixing effect can also be detected on the right, central and
top-left side. Two deformation patterns can be detected on the right side. A dyke-type of high intensity on the leftmost and sill-type of medium
intensity on the rightmost. "
(b) "Turbulent mixing effect or wave-like patterns caused by liquid and solid particles of the atmosphere can be detected around the area. No
deformation activity can be detected. Orbital fringes detected. Difficulties in extracting information."
(c) "Noise can be detected on the bottom-right area. Turbulent mixing effect can be detected on the wider left and central side of the region.
Vertical stratification can also be detected on the central-top side of the region. An earthquake deformation pattern can be detected on the
top-central side of the region."

Figure 1: Textual annotations highlighting volcanic and atmospheric phenomena in InSAR imagery
from the Hephaestus Minicubes dataset.

Activity and Intensity Masks. In Fig. 2, we present different time-series of InSAR products64

overlaid with expert-provided activity type and intensity level masks. These examples illustrate the65

temporal evolution of deformation signals and how distinct geophysical phenomena are annotated66

both categorically and in terms of intensity, emphasizing the structured labeling within Hephaestus67

Minicubes. The InSAR products are shown in grayscale for visual clarity.68

B Extended Experimental Details69

In this section we provide additional details on the experimental configurations used in the provided70

benchmark.71

Time-series Construction. We construct the time-series by first grouping samples based on their72

primary SAR acquisition date. The distribution of the length of the resulting time-series can be seen in73

Fig. 3. Based on this, we fix the time-series length to 3, to ensure input consistency. For primary SAR74

acquisitions that produce time-series with length greater than 3, we extract all possible sub-sequences75

of the predefined length. Conversely, if they contain fewer than 3, we randomly duplicate available76

interferograms to reach the required time-series length.77

1https://comet.nerc.ac.uk/comet-volcano-portal/
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(a) Overlay of activity type masks on a time-series of InSAR phase difference products.

(b) Overlay of intensity level masks on a time-series of InSAR phase difference products.

Figure 2: Examples of annotated InSAR products with overlayed annotated masks indicating: (a)
distinct geophysical activity types and (b) activity intensity levels.

Figure 3: Distribution of time-series lengths across training, validation, and test sets.

Training Setup. We conducted all experiments on a single GPU (NVIDIA GeForce RTX 309078

Ti). We trained all models for 90 epochs, using the AdamW optimizer [Loshchilov and Hutter, 2017]79

with a fixed learning rate of 10−5 and a weight decay set to 10−2. For classification, we found that80

cross-entropy loss consistently delivered the best performance, except for ViT that displayed more81

stable convergence with focal loss. For segmentation, focal loss was more effective, likely due to82

its robustness to class imbalance in pixel-wise annotations [Lin et al., 2017]. To mitigate the effect83

of class imbalance, we employed an undersampling strategy during training. For each epoch, all84

available positive samples were included, along with a randomly selected subset of negative samples85

of equal size. All models were trained with a random set of data augmentations including gaussian86

blur, random resize crop, horizontal and vertical flips and random rotations. Tables 2 and 3 report the87
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number of trainable parameters for all models along with the average runtime of each experiment for88

both classification and segmentation tasks respectively.89

Table 2: Overview of classification architectures
# Trainable parameters (M) # Average runtime (hours)

Model architecture Single-image Time-series Single-image Time-series

ResNet-50 23.5 23.6 2.2 2.7
MobileNetV3 (Large) 4.2 4.2 1.7 2.0
EfficientNetV2 (Small) 20.2 20.2 2.6 2.7
ConvNeXt (Small) 87.6 87.6 4.9 5.4
ViT (Small) 22.3 24.0 2.5 3.2

Table 3: Overview of segmentation architectures
# Trainable parameters (M) # Average runtime (hours)

Model architecture Backbone Single-image Time-series Single-image Time-series

DeepLabV3 ResNet-50 26.7 26.8 2.3 2.9
UNet ResNet-50 32.5 32.6 2.3 3.0
SegFormer ResNet-50 24.9 24.9 1.6 3.7

C Qualitative Results and Model Insights90

In this section, we present indicative examples that provide insights on models’ performance beyond91

quantitative metrics, especially given the inherent ambiguities and complexities of the data.92

Ambiguity in Segmentation Masks. As discussed in section 5 of the main text, delineating the93

exact boundaries of deformation is often ambiguous, especially in regions of high-incoherence. Such94

noise is inherent to the data itself, making the annotation, and thereby accurate prediction challenging.95

In Fig. 4 we offer two representative examples of qualitatively good model predictions that do not96

perfectly align with the annotator’s estimation, indicating the aforementioned ambiguity. In this case,97

model predictions accurately identify the observable deformation patterns to some extent, but exclude98

the noisy areas. The human annotator, however, includes these noisy regions, considering them as99

part of the event, even if they do not exhibit ground deformation fringes.100

Time-Series Predictions. Fig. 5 illustrates important insights concerning model predictions on101

time-series inputs. Although both time-series of the figure focus on the same volcanic region,102

variations in the spatial extent or deformation onset across time-steps can affect detection ability.103

In the first sequence, less-pronounced deformation patterns are only visible in the final time-step,104

which the model fails to detect. In contrast, the second sequence displays a progressively intensifying105

deformation signal starting from the second time-step, providing stronger temporal cues that allow106

the model to correctly identify and segment the affected area. This example highlights how both the107

timing and strength of deformation signals across the time-series could play an important role in the108

the model’s ability to identify deformation.109
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Figure 4: Qualitative examples of true positive model predictions that illustrate the inherent ambiguity
in segmentation masks, where deformation extent is difficult to define. The left image of each pair
depicts the InSAR phase difference, while the right image overlays the ground truth mask (in red) and
the model prediction (in green) on the InSAR product (in grayscale). The results presented here have
been obtained by the best performing DeepLabV3 model, which utilizes atmospheric data as input.

(a)

(b)

Figure 5: Time-series examples over La Palma, Tenerife, demonstrating the role of temporal context
in model predictions. The upper image series of each subfigure depicts the InSAR products in each
timestep, and the lower image series depicts the ground truth masks (in red) for each time step with
the corresponding InSAR in grayscale as the background. The last image in the lower series depicts
the union of all ground truth masks (in red) and the model predictions (in green). Results have been
obtained with the best performing SegFormer model (with atmospheric input). Subfigure a) shows
a false negative case where only the final time-step exhibits deformation, which the model fails to
detect, while subfigure b) illustrates a case where the model successfully identifies the deformation
due to its increased presence in the last two time-steps. These examples highlight how variations in
signal strength and onset time can influence model prediction.
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