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Supplemental material

A Detailed Dataset Description

This section details the annotation schema used in Hephaestus Minicubes. Building upon the expert
labels from the original Hephaestus dataset [[Bountos et al., 2022], annotations were adapted to a
spatiotemporal format compatible with the datacube structure. A comprehensive view of the dataset
variables can be seen in Tab. |I|and examples of different annotation types are shown in In the
following paragraphs we will detail the key variables of Hephaestus Minicubes.

Activity. Activity-related segmentation masks lie at the core of the dataset’s annotation schema
detailing the presence of deformation, its geophysical source and its intensity.

A high-level Deformation Mask, delineates Volcanic and Earthquake induced deformation pat-
terns.

The Activity Type Mask captures more detailed geophysical context, distinguishing among several
common deformation source models: Mogi [Kiyool|1958], Dyke [|[Okada, 1985} Sigmundsson et al.,
2010f], Si11 [Fialko et al.,2001]], and Spheroid [Yang et al.,|1988], as well as deformation attributed
to Earthquake events or labeled as Unidentified when no clear model can be observed.

The Intensity Level Mask categorizes the strength of deformation signals based on the number of
visible fringes in the interferogram: Low (1 fringe), Medium (2-3 fringes), and High (more than
3 fringes). For earthquake-related events, the intensity is marked as None, reflecting their distinct
deformation characteristics.

Additionally, we include a Phase categorical variable that captures the state of the volcano i.e. Rest
(no sign of volcanic activity), Unrest (indicating uplift), or Rebound (indicating subsidence). Again,
for Earthquake events, we set the phase to None.

Noise. A separate set of annotation variables aim to capture specific signal characteristics and
noise patterns. These include: glacier fringes, when observed fringes result from glacier melting
(1 if present, O otherwise); orbital fringes, for phase ramps caused by satellite orbital errors; and
atmospheric fringes, which take four values: type O (no atmospheric impact), type 1 (vertical
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Table 1: Overview of Hephaestus Minicubes Dataset Variables

Variable Description

InSAR Products

Phase Difference Difference in SAR signal phase, indicating surface displacement.
Coherence The reliability of the interferometric phase measurement.

Topography

DEM Digital Elevation Model: a representation of Earth’s surface topography.

Atmospheric Variables

Total Column Water Vapour
Surface Pressure

Vertical Integral of Temperature

Water vapour from surface to the top of the atmosphere.

Atmospheric pressure at Earth’s surface.

Mass-weighted temperature integral from surface to top of the atmo-
sphere.

Annotations
Deformation Mask

Activity Type Mask
Intensity Level Mask

Phase

Atmospheric Fringes
Glacier Fringes
Orbital Fringes
Corrupted

No Info

Low Coherence

High level mask for deformation presence {Non-Deformation,
Volcanic, Earthquake}.

Mask identifying the activity type: {Sill, Dyke, Mogi, Spheroid,
Earthquake, Unidentified}.

Mask identifying the intensity level of the activity {None, Low,
Medium, High}.

Phase of the activity: {Rest, Unrest, Rebound, None }.
Identifies types of atmospheric noise.

Identifies deformation patterns from glacier melting.

Identifies phase ramps due to orbital errors.

Flag for corrupted data.

Identifies low-coherence interferograms, where meaningful interpreta-
tion is not possible.

Identifies samples that are characterized from interferometric signal
decorrelation.

Is Crowd Identifies whether multiple deformation masks exist.

Caption Expert text description of the interferogram and annotation rationale.
Confidence Value indicating the annotator’s confidence [0-1].

Metadata

Unique Id Unique identifier for each sample.

Valid Date Pair

Boolean flag for primary/secondary dates with existing InSAR products.

stratification correlated with topography due to changes in the troposphere’s refractive index), type
2 (turbulent mixing and vapors caused by liquid or solid particles in the atmosphere), and type 3 (a
combination of type 1 and type 2). The low coherence variable is set to 1 when interferometric
signal decorrelation dominates the image. No info is used when coherence is so low throughout the
interferogram that meaningful interpretation is not possible.

InSAR Processing Errors. Automated InSAR generation pipelines may, occasionally, result in
faulty products. To identify corrupted InSAR, and facilitate automatic detection of such instances in
future applications, we include a set of annotation variables denoting technical faults. The first is the
binary variable corrupted, which identifies interferograms that are entirely problematic and unusable.
The second is processing error, which distinguishes between specific InSAR processing errors: type
1 refers to debursting errors during the synchronization of bursts from one or more sub-swaths; type
2 indicates Sentinel-1 sub-swath merging errors, which appear as visible discontinuities, while type
0 denotes interferograms free of such processing issues.

Meta-Information. The confidence score is a continuous value in the range [0, 1] that reflects
the annotator’s confidence regarding the deformation classification. The is crowd variable is set to O
when at most one local fringe pattern is present and 1 when two or more such patterns appear within
the same interferogram. Furthermore, the caption field contains a text description providing expert
commentary, interpretation rationale, or relevant contextual notes for the InSAR phase difference
product. Finally the unique id serves as a unique identifier for each sample, and the valid date pair
flag indicates whether the combination of primary and secondary dates corresponds to an existing
InSAR product, intended for use in the multi-dimensional array functionality.

Annotation Process. The annotation process was carried out by a team of InSAR experts through
photo-interpretation on the available wrapped interferograms. Each image was optically inspected
over the locations of volcanoes, as well as the surrounding areas, in order to evaluate the quality
of the interferograms and indicate the impact of atmospheric delays and potential artifacts. Each
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positive annotation was cross-validated via external sources (publications, reliable news sources) as
well as the COMET Volcano Deformation Portal B to support the evaluation of whether the observed
displacement was due to true volcanic activity or atmospheric delay effects. For further details
regarding the annotation process readers are referred to the original Hephaestus dataset [Bountos
et al.,[2022].

A.1 Visualizing Annotation Diversity

In this section we present selected examples of different annotation variables, illustrating the diversity
and richness of the annotation variables in Hephaestus Minicubes.

Text Captions. In Fig.[T} we showcase InSAR imagery with various apparent deformation patterns
and atmospheric phenomena, together with the expert textual captions, highlighting the complexity
and variability captured in the dataset. Each caption provides a thorough description of the location
and type of all underlying phenomena, as well as a reference to interpretation challenges if present.

() (b) (©

(a) "Vertical stratification can be detected on the high altitude areas. Turbulent mixing effect can also be detected on the right, central and
top-left side. Two deformation patterns can be detected on the right side. A dyke-type of high intensity on the leftmost and sill-type of medium
intensity on the rightmost. "

(b) "Turbulent mixing effect or wave-like patterns caused by liquid and solid particles of the atmosphere can be detected around the area. No
deformation activity can be detected. Orbital fringes detected. Difficulties in extracting information."

(c) "Noise can be detected on the bottom-right area. Turbulent mixing effect can be detected on the wider left and central side of the region.
Vertical stratification can also be detected on the central-top side of the region. An earthquake deformation pattern can be detected on the
top-central side of the region."

Figure 1: Textual annotations highlighting volcanic and atmospheric phenomena in InSAR imagery
from the Hephaestus Minicubes dataset.

Activity and Intensity Masks. In Fig.[2] we present different time-series of InSAR products
overlaid with expert-provided activity type and intensity level masks. These examples illustrate the
temporal evolution of deformation signals and how distinct geophysical phenomena are annotated
both categorically and in terms of intensity, emphasizing the structured labeling within Hephaestus
Minicubes. The InSAR products are shown in grayscale for visual clarity.

B Extended Experimental Details

In this section we provide additional details on the experimental configurations used in the provided
benchmark.

Time-series Construction. We construct the time-series by first grouping samples based on their
primary SAR acquisition date. The distribution of the length of the resulting time-series can be seen in
Fig. [3] Based on this, we fix the time-series length to 3, to ensure input consistency. For primary SAR
acquisitions that produce time-series with length greater than 3, we extract all possible sub-sequences
of the predefined length. Conversely, if they contain fewer than 3, we randomly duplicate available
interferograms to reach the required time-series length.

'https://comet.nerc.ac.uk/comet-volcano-portal/
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e Sill [ Dyke . Mogi m Spheroid Earthquake Unidentified

(a) Overlay of activity type masks on a time-series of InSAR phase difference products.

Low mmm Medium . High
(b) Overlay of intensity level masks on a time-series of InSAR phase difference products.

Figure 2: Examples of annotated InSAR products with overlayed annotated masks indicating: (a)
distinct geophysical activity types and (b) activity intensity levels.
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Figure 3: Distribution of time-series lengths across training, validation, and test sets.

Training Setup. We conducted all experiments on a single GPU (NVIDIA GeForce RTX 3090
Ti). We trained all models for 90 epochs, using the AdamW optimizer [Loshchilov and Hutter, 2017
with a fixed learning rate of 10~° and a weight decay set to 10~2. For classification, we found that
cross-entropy loss consistently delivered the best performance, except for ViT that displayed more
stable convergence with focal loss. For segmentation, focal loss was more effective, likely due to
its robustness to class imbalance in pixel-wise annotations 2017]. To mitigate the effect
of class imbalance, we employed an undersampling strategy during training. For each epoch, all
available positive samples were included, along with a randomly selected subset of negative samples
of equal size. All models were trained with a random set of data augmentations including gaussian
blur, random resize crop, horizontal and vertical flips and random rotations. Tables [2]and [3|report the
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number of trainable parameters for all models along with the average runtime of each experiment for
both classification and segmentation tasks respectively.

Table 2: Overview of classification architectures

# Trainable parameters (M) # Average runtime (hours)
Model architecture Single-image Time-series Single-image Time-series
ResNet-50 235 23.6 22 2.7
MobileNetV3 (Large) 4.2 4.2 1.7 2.0
EfficientNetV2 (Small) 20.2 20.2 2.6 2.7
ConvNeXt (Small) 87.6 87.6 4.9 5.4
ViT (Small) 22.3 24.0 2.5 32

Table 3: Overview of segmentation architectures

# Trainable parameters (M) # Average runtime (hours)
Model architecture ~ Backbone Single-image Time-series Single-image Time-series
DeepLabV3 ResNet-50 26.7 26.8 23 2.9
UNet ResNet-50 325 32.6 2.3 3.0
SegFormer ResNet-50 249 24.9 1.6 3.7

C Qualitative Results and Model Insights

In this section, we present indicative examples that provide insights on models’ performance beyond
quantitative metrics, especially given the inherent ambiguities and complexities of the data.

Ambiguity in Segmentation Masks. As discussed in section 5 of the main text, delineating the
exact boundaries of deformation is often ambiguous, especially in regions of high-incoherence. Such
noise is inherent to the data itself, making the annotation, and thereby accurate prediction challenging.
In Fig. ] we offer two representative examples of qualitatively good model predictions that do not
perfectly align with the annotator’s estimation, indicating the aforementioned ambiguity. In this case,
model predictions accurately identify the observable deformation patterns to some extent, but exclude
the noisy areas. The human annotator, however, includes these noisy regions, considering them as
part of the event, even if they do not exhibit ground deformation fringes.

Time-Series Predictions. Fig. []illustrates important insights concerning model predictions on
time-series inputs. Although both time-series of the figure focus on the same volcanic region,
variations in the spatial extent or deformation onset across time-steps can affect detection ability.
In the first sequence, less-pronounced deformation patterns are only visible in the final time-step,
which the model fails to detect. In contrast, the second sequence displays a progressively intensifying
deformation signal starting from the second time-step, providing stronger temporal cues that allow
the model to correctly identify and segment the affected area. This example highlights how both the
timing and strength of deformation signals across the time-series could play an important role in the
the model’s ability to identify deformation.



Figure 4: Qualitative examples of true positive model predictions that illustrate the inherent ambiguity
in segmentation masks, where deformation extent is difficult to define. The left image of each pair
depicts the InSAR phase difference, while the right image overlays the ground truth mask (in red) and
the model prediction (in green) on the InSAR product (in grayscale). The results presented here have
been obtained by the best performing DeepLabV3 model, which utilizes atmospheric data as input.

(b)

Figure 5: Time-series examples over La Palma, Tenerife, demonstrating the role of temporal context
in model predictions. The upper image series of each subfigure depicts the InSAR products in each
timestep, and the lower image series depicts the ground truth masks (in red) for each time step with
the corresponding InSAR in grayscale as the background. The last image in the lower series depicts
the union of all ground truth masks (in red) and the model predictions (in green). Results have been
obtained with the best performing SegFormer model (with atmospheric input). Subfigure a) shows
a false negative case where only the final time-step exhibits deformation, which the model fails to
detect, while subfigure b) illustrates a case where the model successfully identifies the deformation
due to its increased presence in the last two time-steps. These examples highlight how variations in
signal strength and onset time can influence model prediction.
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