Table R1: Pass@1 results on HumanEval (HumanEval+) and MBPP (MBPP+) benchmarks. The column of FT Tokens (Source) specifies the tokens and origin of fine-tuning (FT) data used to train each model.

Model	Params	Base Model	FT Tokens (Source)	HumanEval (+)	MBPP (+)	Average (+)
Closed-source Models						
GPT-3.5-Turbo	-	-	-	72.6 (65.9)	81.7 (69.4)	77.2 (67.7)
GPT-4-Turbo	-	-	-	$85.4 \ (81.7)$	83.0 (70.7)	$84.2\ (76.2)$
Open-source Models						
Llama 2-Chat	70B	Llama 2	-	31.7 (26.2)	52.1 (38.6)	41.9 (32.4)
CodeLlama-Python	70B	Llama 2	-	57.9 (50.0)	72.4 (52.4)	65.2 (51.2)
CodeLlama-Instruct	70B	CodeLlama	5B (Llama Generation)	$65.2\ (58.5)$	73.5 (55.1)	$69.4\ (56.8)$
CodeLlama-Python	34B	Llama 2	-	51.8 (43.9)	67.2 (50.4)	59.5 (47.2)
WizardCoder-CL	34B	CodeLlama-Python	80M (GPT Generation)	73.2 (56.7)	73.2 (51.9)	73.2 (54.3)
${\bf Deep Seek\text{-}Coder\text{-}Instruct}$	33B	${\bf Deep Seek\text{-}Coder\text{-}Base}$	2B (GitHub Crawling)	78.7 (67.7)	78.7 (59.7)	78.7 (63.7)
StarCoder	15B	-	-	34.1 (33.5)	55.1 (43.4)	44.6 (38.5)
CodeLlama-Python	13B	Llama 2	-	42.7 (36.6)	61.2 (45.6)	52.0 (41.1)
${\bf Wizard Coder\text{-}SC}$	15B	StarCoder	80M (GPT Generation)	$51.9 \; (45.7)$	61.9 (44.9)	$56.9\ (45.3)$
Llama 2	7B	-	-	14.0 (10.4)	26.1 (17.5)	20.1 (14.0)
StarCoder	7B	-	-	24.4 (21.3)	$33.1\ (29.2)$	28.8 (25.3)
CodeLlama-Python	7B	Llama 2	-	37.8(33.5)	57.6 (42.4)	47.7(38.0)
WizardCoder-CL	7B	CodeLlama-Python	80M (GPT Generation)	48.2 (42.1)	56.6 (42.4)	52.4 (42.3)
DeepSeek-Coder-Base	6.7B	-	-	47.6 (41.5)	70.2(53.6)	58.9 (47.6)
Magicoder-CL	7B	${\bf Code Llama\text{-}Python}$	90M (GPT Generation)	60.4 (49.4)	64.2 (46.1)	62.3 (47.8)
MagicoderS-CL	7B	${\bf Code Llama\text{-}Python}$	240M (GPT Generation)	70.7 (60.4)	68.4 (49.1)	69.6 (54.8)
Magicoder-DS	6.7B	DeepSeek-Coder-Base	90M (GPT Generation)	66.5 (55.5)	$75.4\ (55.6)$	71.0 (55.6)
DeepSeek-Coder-Instruct	6.7B	DeepSeek-Coder-Base	2B (GitHub Crawling)	73.8 (69.5)	72.7(55.6)	73.3 (62.6)
MagicoderS-DS	6.7B	${\it Deep Seek-Coder-Base}$	240M (GPT Generation)	76.8 (65.2)	75.7(56.1)	76.3 (60.7)
$AlchemistCoder$ - $L\ (ours)$	7B	Llama 2	200M (GPT Harmonization)	56.7(52.4)	54.5 (49.6)	55.6 (51.0)
$AlchemistCoder\text{-}CL\ (ours)$	7B	${\bf Code Llama-Python}$	200M (GPT Harmonization)	74.4 (68.3)	68.5 (55.1)	71.5 (61.7)
$AlchemistCoder ext{-}DS\ (ours)$	6.7B	DeepSeek-Coder-Base	200M (GPT Harmonization)	79.9 (75.6)	77.0 (60.2)	78.5 (67.9)

Instruction:

Change the color of the text to blue.

Input:

Text: The quick brown fox

Response:

<style>

To change the color of the text to blue, you can use CSS. Here's an example of how you can achieve this:

```
.blue-text {
    color: blue;
}
</style>
class="blue-text">The quick brown fox
By applying the "blue-text" class to the paragraph element, the text will be displayed in blue color.
```

Inherent Conflict:

Missing Language Declaration. The instruction does not specify the programming language, while the response assumes HTML/CSS and provides an implementation accordingly.

AlchemistPrompt-customized Instruction:

Assume we are working with a HTML document and have the permissions to modify the CSS styles associated with it.

Change the color of the text to blue.

Input:

Text: The quick brown fox

Instruction:

Find the minimum of two given numbers.

Input: 4, 6

Output: The minimum number is 4

Response:

Notebook Format:

Reasoning:

To find the minimum of two given numbers, we can use an if-else statement. We will compare the two numbers, assign the smaller value to a variable called "minimum number", and print out it.

Code:

HTML

```
num1, num2 = 4, 6
if num1 < num2:
    minimum_number = num1
else:
    minimum_number = num2
print("The minimum number is", minimum_number)</pre>
```

Execution Results:

The minimum number is 4

Inherent Conflict:

Format Exception. The response introduces a notebook format not specified by the instruction.

AlchemistPrompt-customized Instruction:

Complete the simple task in notebook format, including reasoning, code, and execution results.

Find the minimum of two given numbers.

Input: 4, 6

Output: The minimum number is 4

Instruction (Source #1&2):

Replace all words with 5 letters or more that start with a vowel, and end with a consonant, with "*****" in the given text.

"The quick brown fox jumps over the lazy dog"

Response (Source #1):

Sure! Here is the text with the specified replacements:

"The quick brown fox jumps **** the lazy dog"

Response (Source #2):

Here's a Python function that achieves this:

```
import re
def replace_words(text):
    pattern = r'\b[aeiouAEIOU]\w{3,}[^aeiouAEIOU]\b'
    result = re.sub(pattern, '*****', text)
    return result

text = "The quick brown fox jumps over the lazy dog"
print(replace words(text))
```

Inherent Conflict:

Response Format Discrepancy. For similar instructions, Source #1 provides the result directly, while Source #2 provides the implementation code, which may lead to confusion in understanding the instructions.

AlchemistPrompt-customized Instruction (Source #2):
In this task, you are required to create a Python
program that scans through a given text and replaces
specified words.

Replace all words with 5 letters or more that start with a vowel, and end with a consonant, with "*****" in the given text.

"The quick brown fox jumps over the lazy dog"

Figure R1: Examples of inherent conflicts (e.g., various styles and quality) within multi-source code corpora. By applying AlchemistPrompt-customized instructions that are more consistent with the responses, the diversity from multiple sources can be effectively managed and utilized, thereby improving the quality of our fine-tuning data and the instruction-following capabilities of the fine-tuned models.