
Table R1: Pass@1 results on HumanEval (HumanEval+) and MBPP (MBPP+) benchmarks. The column of FT Tokens
(Source) specifies the tokens and origin of fine-tuning (FT) data used to train each model.

Model Params Base Model FT Tokens (Source) HumanEval (+) MBPP (+) Average (+)

Closed-source Models

GPT-3.5-Turbo - - - 72.6 (65.9) 81.7 (69.4) 77.2 (67.7)

GPT-4-Turbo - - - 85.4 (81.7) 83.0 (70.7) 84.2 (76.2)

Open-source Models

Llama 2-Chat 70B Llama 2 - 31.7 (26.2) 52.1 (38.6) 41.9 (32.4)

CodeLlama-Python 70B Llama 2 - 57.9 (50.0) 72.4 (52.4) 65.2 (51.2)

CodeLlama-Instruct 70B CodeLlama 5B (Llama Generation) 65.2 (58.5) 73.5 (55.1) 69.4 (56.8)

CodeLlama-Python 34B Llama 2 - 51.8 (43.9) 67.2 (50.4) 59.5 (47.2)

WizardCoder-CL 34B CodeLlama-Python 80M (GPT Generation) 73.2 (56.7) 73.2 (51.9) 73.2 (54.3)

DeepSeek-Coder-Instruct 33B DeepSeek-Coder-Base 2B (GitHub Crawling) 78.7 (67.7) 78.7 (59.7) 78.7 (63.7)

StarCoder 15B - - 34.1 (33.5) 55.1 (43.4) 44.6 (38.5)

CodeLlama-Python 13B Llama 2 - 42.7 (36.6) 61.2 (45.6) 52.0 (41.1)

WizardCoder-SC 15B StarCoder 80M (GPT Generation) 51.9 (45.7) 61.9 (44.9) 56.9 (45.3)

Llama 2 7B - - 14.0 (10.4) 26.1 (17.5) 20.1 (14.0)

StarCoder 7B - - 24.4 (21.3) 33.1 (29.2) 28.8 (25.3)

CodeLlama-Python 7B Llama 2 - 37.8 (33.5) 57.6 (42.4) 47.7 (38.0)

WizardCoder-CL 7B CodeLlama-Python 80M (GPT Generation) 48.2 (42.1) 56.6 (42.4) 52.4 (42.3)

DeepSeek-Coder-Base 6.7B - - 47.6 (41.5) 70.2 (53.6) 58.9 (47.6)

Magicoder-CL 7B CodeLlama-Python 90M (GPT Generation) 60.4 (49.4) 64.2 (46.1) 62.3 (47.8)

MagicoderS-CL 7B CodeLlama-Python 240M (GPT Generation) 70.7 (60.4) 68.4 (49.1) 69.6 (54.8)

Magicoder-DS 6.7B DeepSeek-Coder-Base 90M (GPT Generation) 66.5 (55.5) 75.4 (55.6) 71.0 (55.6)

DeepSeek-Coder-Instruct 6.7B DeepSeek-Coder-Base 2B (GitHub Crawling) 73.8 (69.5) 72.7 (55.6) 73.3 (62.6)

MagicoderS-DS 6.7B DeepSeek-Coder-Base 240M (GPT Generation) 76.8 (65.2) 75.7 (56.1) 76.3 (60.7)

AlchemistCoder-L (ours) 7B Llama 2 200M (GPT Harmonization) 56.7 (52.4) 54.5 (49.6) 55.6 (51.0)

AlchemistCoder-CL (ours) 7B CodeLlama-Python 200M (GPT Harmonization) 74.4 (68.3) 68.5 (55.1) 71.5 (61.7)

AlchemistCoder-DS (ours) 6.7B DeepSeek-Coder-Base 200M (GPT Harmonization) 79.9 (75.6) 77.0 (60.2) 78.5 (67.9)

Instruction: Merge the elements of two given arrays into
one, but ensure that the merged array contains only the
common elements between the two arrays.
Input:
[1, 2, 3, 4] and [3, 4, 5, 6]

Output:
[3, 4]
Response (a): Here is an example implementation in JavaScript:
function mergeArrays(array1, array2) {
let mergedArray = [];

for (let i = 0; i < array1.length; i++) {
if (array2.includes(array1[i])) {
mergedArray.push(array1[i]);

}
}

return mergedArray;
}

const array1 = [1, 2, 3, 4];
const array2 = [3, 4, 5, 6];
const mergedArray = mergeArrays(array1, array2);

console.log(mergedArray); // Output: [3, 4]
```

By using this algorithm, you can merge two arrays and obtain a
new array containing only the common elements between them.

Instruction: 
Change the color of the text to blue.
## Input:
Text: The quick brown fox

Response:
To change the color of the text to blue, you can
use CSS. Here's an example of how you can
achieve this:

By applying the "blue-text" class to the paragraph
element, the text will be displayed in blue color.

Inherent Conflict:
Missing Language Declaration. The instruction
does not specify the programming language, while
the response assumes HTML/CSS and provides an
implementation accordingly.

AlchemistPrompt-customized Instruction:
Assume we are working with a HTML document
and have the permissions to modify the CSS styles
associated with it.
Change the color of the text to blue.
## Input:
Text: The quick brown fox

<style>
.blue-text {

color: blue;
}

</style>
<p class="blue-text">The quick brown fox</p>

Before you begin, please make sure you know how to create a 
function in JavaScript and use the 'includes' method to check if 
an array contains a specific element. 

HTML

Instruction: 
Find the minimum of two given numbers.
## Input: 4, 6
## Output: The minimum number is 4

Response:
*Notebook Format:*
**Reasoning:**
To find the minimum of two given numbers, we can
use an if-else statement. We will compare the two
numbers, assign the smaller value to a variable called
"minimum_number", and print out it.
**Code:**

**Execution Results:**
The minimum number is 4

Inherent Conflict: 
Format Exception. The response introduces a
notebook format not specified by the instruction.

AlchemistPrompt-customized Instruction:
Complete the simple task in notebook format,
including reasoning, code, and execution results.
Find the minimum of two given numbers.
## Input: 4, 6
## Output: The minimum number is 4

num1, num2 = 4, 6
if num1 < num2:

minimum_number = num1
else:

minimum_number = num2
print(“The minimum number is", minimum_number)

Python

Instruction (Source #1&2): 
Replace all words with 5 letters or more that start with
a vowel, and end with a consonant, with "*****" in
the given text.
"The quick brown fox jumps over the lazy dog"

Response (Source #1):
Sure! Here is the text with the specified replacements:
"The quick brown fox jumps ***** the lazy dog“

Response (Source #2):
Here's a Python function that achieves this:
import re
def replace_words(text):

pattern = r'\b[aeiouAEIOU]\w{3,}[^aeiouAEIOU]\b'
result = re.sub(pattern, '*****', text)
return result

text = "The quick brown fox jumps over the lazy dog"
print(replace_words(text))

Python

Inherent Conflict:
Response Format Discrepancy. For similar instructions,
Source #1 provides the result directly, while Source #2
provides the implementation code, which may lead to
confusion in understanding the instructions.

AlchemistPrompt-customized Instruction (Source #2):
In this task, you are required to create a Python
program that scans through a given text and replaces
specified words.
Replace all words with 5 letters or more that start with
a vowel, and end with a consonant, with "*****" in
the given text.
"The quick brown fox jumps over the lazy dog"

Figure R1: Examples of inherent conflicts (e.g., various styles and quality) within multi-source code corpora. By applying
AlchemistPrompt-customized instructions that are more consistent with the responses, the diversity from multiple sources
can be effectively managed and utilized, thereby improving the quality of our fine-tuning data and the instruction-following
capabilities of the fine-tuned models.

1


