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1 Summary of Appendix
This appendix includes the following content:

(1) Detailed description of the graph benchmarks used in the ex-
periment part.

(2) Detailed experimental settings.
(3) Theoretical and empirical complexity analysis.
(4) More Parameter analysis (number of GIN layers and latent

dimensions).
(5) Justification of the backbone sharing strategy.
(6) Statistical significance of experimental results.

2 Detailed Description of Graph Benchmarks
In this section, we provide a detailed description of all the graph
benchmarks used in the experiment, including the number of graphs,
the average node numbers and edge numbers, and the classes.
Table 1 summarizes the information of these graph benchmarks.
Specifically, in the single-dataset experiment, we use three so-
cial network benchmarks, including IMDB-BINARY, COLLAB, and
IMDB-MULTI. In the multi-dataset experiment, we construct four
datasets by integrating different types of graph data, e.g., molecules,
biological, and social network data. The details are illustrated as
follows:

• MOLECULES: This benchmark consists of multiple molecule
datasets, including MUTAG, DHFR, PTC_MR, BZR, COX2, AIDS,
and NCI1.

• BIOCHEM: This benchmark is a cross-domain dataset includ-
ing datasets in MOLECULE, and additional biological datasets,
including ENZYMES, PROTEINS, and DD.

• SOCIALNET: This benchmark contains multiple social network
datasets, including IMDB-BINARY, COLLAB, and IMDB-MULTI.

• MIX: This benchmark contains all datasets from three domains,
including molecular, biological, and social networks, in Table 1.

All graph benchmarks used in this paper are from TUDataset [2], a
publicly available graph benchmark database1.

∗Both authors contributed equally to this research.
†Corresponding author.
1https://chrsmrrs.github.io/datasets/docs/datasets/

3 Detailed Experimental Settings
In this section, we provide more details of the experimental settings
in the paper, including the training details, trade-off parameter
settings, and baseline settings.

• Training Details:We fix the batch size as 64 for all experiments
and use Adam [1] as the optimizer with a fixed learning rate
𝛼 = 0.001. We first pre-train each local model, excluding the
student network and knowledge distillationmodule for 10 epochs.
Then, we jointly train the entire network with collaborative
learning for 200 epochs.

• Trade-off Parameter Settings: The objective function of FGAD
contains two trade-off parameters, i.e., 𝜆 and 𝛾 , we vary their
values within the range of [1𝑒−4, 1𝑒3] and evaluate their impacts
on performance in the Section 4.5.1 (in the main text). Regarding
the number of clients 𝐶 in a single-dataset, we vary it within the
range of [2, . . . , 10] and evaluate its impact in Section 4.5.2 (in the
main text), while for multi-dataset, the number of clients is set
to the number of its sub-datasets. Besides that, for the number of
GIN layers 𝐾 , we also evaluate its impact under different values
in Appendix 6.

• Baseline Settings: For the state-of-the-art baselines, including
FedAvg, FedProx, GCFL, and FedStar, we integrate them with
DeepSVDD [3] to build end-to-end GAD models. We also include
the self-training strategy that removes collaborative learning, as
one of the baselines. Note that we employ the same GIN backbone
as FGAD to guarantee the fairness of the performance compari-
son. The objective of local models in each client is to minimize
the distance from the projection of the training data in the latent
space to the centroid, where the centroid is randomly initialized
following the setting in DeepSVDD and fixed throughout the
training phase. In the collaborative learning phase, we upload the
learned decision boundaries in each client as part of the parame-
ters and aggregate them in the server. Finally, we can calculate
the anomaly scores by the distances between the graph represen-
tations and the centroid after training. The smaller the score, the
more a graph tends to be considered normal.

4 Theoretical Complexity Analysis
Here, we provide a theoretical complexity analysis of the proposed
FGAD method. Assume there are 𝑁 graphs across all clients, and
with maximal 𝑚 nodes and |𝐸 |max edges within a graph. In the
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Table 1: Detailed information of the datasets used in the experiment.

Dataset Name #Graphs #Average Nodes #Average Edges #Graph Classes Data Type
IMDB-BINARY 1,000 19.77 96.53 2 Social Network
COLLAB 5,000 74.49 2,457.78 3 Social Network
IMDB-MULTI 1,500 13.00 65.94 3 Social Network
MUTAG 188 17.93 19.79 2 Molecule
DHFR 756 42.43 44.54 2 Molecule
PTC_MR 344 14.29 14.69 2 Molecule
BZR 405 35.75 38.36 2 Molecule
COX2 467 41.22 43.45 2 Molecule
AIDS 2,000 15.69 16.20 2 Molecule
NCI1 4,110 29.87 32.30 2 Molecule
ENZYMES 600 32.63 62.14 6 Biology
PROTEINS 1,113 39.06 72.82 2 Biology
DD 1,178 284.32 715.66 2 Biology

local model of each client, the maximal dimension among input
and latent space of GIN is denoted by 𝑑 , and the number of GIN
layers is represented by 𝐿. In Addition, the maximal latent dimen-
sions of the teacher and student heads are denoted by 𝑑t and 𝑑s,
respectively, and the number of latent layers in the teacher and
student heads is denoted by 𝐾t and 𝐾s. We can analyze the time
and space complexity of FGAD within a single client, as well as the
communication complexity in collaborative learning, as follows:

• Time Complexity: Since the teacher and student models share
the same GIN backbone, the time complexity of the GIN back-
bone is O(𝑁𝐿(𝑚𝑑2 + |𝐸 |max𝑑)). Similarly, the time complexity of
the anomaly generator in the teacher model mainly comes from
the GIN. For the teacher and student heads, the time complexi-
ties are O(𝐾t𝑑𝑑t) and O(𝐾s𝑑𝑑s), respectively. Consequently, the
overall time complexity of FGAD framework is approximately
O(2𝑁𝐿(𝑚𝑑2 + |𝐸 |max𝑑) + (𝐾t𝑑t + 𝐾s𝑑s)𝑑), where includes the
anomaly generator weight-shared GIN backbone, and the teacher
and student heads.

• Space Complexity: For the space complexity of the GIN back-
bone, the space complexity mainly comes from the storage of
weight and bias matrices in each layer, which can be denoted by
O(𝐿𝑑 (1 + 𝑑). For the teacher and student heads, their space com-
plexities can be derived similarly, i.e., O(𝐾t𝑑 (1+𝑑t) +𝐾s𝑑 (1+𝑑s)).
Consequently, the overall space complexity of FGAD framework
is approximately O(𝐿𝑑 (1 + 𝑑) + 𝐾t𝑑 (1 + 𝑑t) + 𝐾s𝑑 (1 + 𝑑s)).

• CommunicationComplexity: Since the teachermodel in FGAD
is used for the personalization of local clients, only the student
head engages in collaboration. Consequently, the communication
complexity is approximately O(𝐾s𝑑𝑑s) and O(𝐾s𝑑 (1 + 𝑑s)).

5 Empirical Complexity Analysis
To more comprehensively analyze the complexity of FGAD, we
further provide empirical complexity analysis. Specifically, we com-
pare the running time (in local training) and communication time
(in collaboration learning) of FGAD with other baselines. Note
that the experiment is conducted under uniform device settings to
ensure fairness. The experimental results are presented in Figure 1.
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Figure 1: Running time and communication cost comparison
in 200 epochs.

It can be observed from Figure 1(a) that the time complexity
of FGAD is competitive with several baselines, e.g., that of Fed-
Star, and significantly better than that of GCFL. Combined with
the performance comparison in Tables 1-2 (in the main text), the
overall experimental results demonstrate that FGAD not only signif-
icantly improves anomaly detection performance but also possesses
promising time efficiency compared to other baselines.

Additionally, communication cost (time) is also an important
evaluation metric in federated learning. Therefore, we further con-
duct the comparative experiment to demonstrate the efficiency of
FGAD. As shown in Figure 1(b), FGAD has the lowest communi-
cation time compared with other baselines, which aligns with the
comparison of exchanging amount of network parameters in Ta-
ble 1 (in the main text). It should be noted that this is the analog
communication time without considering the network bandwidth.
When it comes to real-world collaboration, the network bandwidth
will significantly impact the efficiency of model parameter transmis-
sion. Consequently, in cases of models with large parameter sizes,
communication time will become a pivotal factor that influences
the time complexity of collaborative learning.

6 Impact of GIN Layers
We delve into the impact of the number of GIN layers 𝐾 on the
anomaly detection performance of FGAD. The parameter 𝐾 plays a
pivotal role in determining the extent to which the model explores
neighborhood information and the overall complexity of FGAD. We
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(a) (b)

Figure 2: Average performance with standard deviation un-
der different numbers of GIN layers on IMDB-BINARY and
MOLECULES datasets. Note that the number of GIN layers is
set to [1, . . . , 10].
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Figure 3: Parameter sensitivity of different dimensions in
the hidden layer.

systematically analyze its impact by varying the 𝐾 within the range
of [1, . . . , 10] and conduct a series of experiments. Figure 2 reports
the experimental results on the IMDB-BINARY and MOLECULES
datasets, from which we have the following observations. First,
a certain depth of GIN is beneficial to fully leverage the struc-
tural information of graph data for learning powerful GAD models,
which could be verified from the performance improvement in
both datasets. Second, when the number of GIN layers continues
to increase, the performance improvements become increasingly
marginal or even exhibit slight degradation. This trend indicates
that a moderate number of GIN layers (e.g., 3) is sufficient to ef-
fectively leverage the neighborhood information within graphs.
Third, we can observe from the overall experimental results that
the performance stays relatively stable under the variation of 𝐾 ,
which demonstrates the robustness of FGAD.

7 Impact of Latent Dimensions
Here, we further conduct additional parameter analysis to evaluate
the impact of the latent dimension in the GIN layer. Specifically, we
set the latent dimension from [4, . . . , 128], and the experimental
results on MOLECULES and IMDB-BINARY are shown in Figure
3. The results suggest that FGAD exhibits relatively stable perfor-
mance across a wide range of latent layer dimensions, demonstrat-
ing its robustness. Nevertheless, we can observe that excessively
high dimensions (e.g., 128) might adversely affect performance,
which is probably due to the redundant information it brings.

8 Justification of the Backbone Sharing
To justify the rationale for sharing the backbone network between
the teacher and student models, we conduct additional experiments
by comparing the performance of FGAD with and without sharing
the GIN backbone. As shown in Table 2, we can observe there
is only a marginal difference in performance between these two
strategies. This observation suggests that sharing the GIN backbone
would not decrease the effectiveness of knowledge distillation in
FGAD. More importantly, the significant benefit of sharing the GIN
backbone is the substantial reduction in model complexity. This
streamlined architecture leads to a more efficient model in terms of
computational and memory resource usage.

Table 2: Performance (mean(%) ± std(%)) of FGAD under
shared/separated GIN backbone.

Backbone IMDB-BINARY IMDB-MULTI

AUC AUPRC AUC AUPRC

Shared GIN 64.97±0.52 66.60±1.12 60.51±1.18 66.82±0.14
w/o Shared GIN 63.13±1.19 66.43±2.23 58.13±0.84 66.67±0.00

9 Statistical Significance of Results
To verify the statistical significance of the experimental results com-
paring FGAD with other baseline methods, we conduct a Student’s
t-test between the proposed FGAD with several state-of-the-art
baselines. Note that a difference is considered statistically signifi-
cant if the 𝑝-value from the t-test is less than 0.05. Table 3 presents
the 𝑝-values (with 10 runs) for FGAD compared to various baselines
across two datasets (IMDB-Binary and MIX), demonstrating that
our results are statistically significant.

Table 3: 𝑝-value (t-test) of FGAD v.s. several baselines. Note
that IMDB-B denotes the IMDB-Binary dataset.

Method v.s. Self-train v.s. FedAvg v.s. GCFL v.s. FedStar

IMDB-B(AUC) 1.0 × 10−8 2.9 × 10−14 1.3 × 10−20 1.7 × 10−12
IMDB-B(AUPRC) 2.2 × 10−9 5.4 × 10−13 3.6 × 10−12 1.7 × 10−10
MIX(AUC) 5.5 × 10−6 2.7 × 10−14 6.0 × 10−14 3.2 × 10−6
MIX(AUPRC) 4.9 × 10−12 5.3 × 10−20 1.9 × 10−15 1.0 × 10−9
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