
A Algorithm Details

Our terminology is summarized below:

θs,∗ Bandit instance parameter in task s, generated as θs,∗ ∼ P (·;µ∗)
P (·;µ∗) Task prior, a distribution over bandit instance parameter θs,∗
µ∗ Meta-parameter, a parameter of the task distribution
Q Meta-prior, a distribution over the meta-parameter µ∗
Ps Uncertainty-adjusted prior in task s, a distribution over θs,∗ conditioned on H1:s−1

Qs Meta-posterior in task s, a distribution over µ∗ conditioned on H1:s−1

Ys,t Stochastic rewards of all arms in round t of task s
As,t Pulled arm in round t of task s

We continue with two lemmas, which are used in the algorithmic part of the paper (Section 3).

Proposition 1. Let Ls(θ) =
∏n
`=1 pAs,`

(Ys,`(As,`); θ) be the likelihood of observations in task s.
Then for any task s ∈ [m],

Ps(θ) =

∫
µ

P (θ;µ)Qs(µ) dκ1(µ) , Qs(µ) =

∫
θ

Ls−1(θ)P (θ;µ) dκ2(θ)Qs−1(µ) .

Proof. To simplify presentation, our proof is under the assumption that θs,∗ and µ∗ take on countably-
many values. A more general measure-theory treatment, where we would maintain measures over
θs,∗ and µ∗, would follow the same line of reasoning; and essentially replace all probabilities with
densities. A good discussion of this topic is in Section 34 of Lattimore and Szepesvari [31].

The following convention is used in the proof. The values of random variables that we marginalize
out, such as θs,∗ and µ∗, are explicitly assigned. For fixed variables, such as the history H1:s−1, we
also treat H1:s−1 as the actual value assigned to H1:s−1.

We start with the posterior distribution of θs,∗ in task s, which can be expressed as

P (θs,∗ = θ |H1:s−1) =
∑
µ

P (θs,∗ = θ, µ∗ = µ |H1:s−1)

=
∑
µ

P (θs,∗ = θ |µ∗ = µ)P (µ∗ = µ |H1:s−1) .

The second equality holds because θs,∗ is independent of history H1:s−1 given µ∗. Now note that
P (µ∗ = µ |H1:s−1) is the meta-posterior in task s. It can be rewritten as

P (µ∗ = µ |H1:s−1) =
P (µ∗ = µ |H1:s−1)

P (µ∗ = µ |H1:s−2)
P (µ∗ = µ |H1:s−2)

=
P (Hs−1 |H1:s−2, µ∗ = µ)

P (Hs−1 |H1:s−2)
P (µ∗ = µ |H1:s−2)

∝ P (Hs−1 |H1:s−2, µ∗ = µ)︸ ︷︷ ︸
f1(µ)

P (µ∗ = µ |H1:s−2) ,

where P (µ∗ = µ |H1:s−2) is the meta-posterior in task s− 1. The last step follows from the fact that
P (Hs−1 |H1:s−2) is constant in µ. Now we focus on f1(µ) above and rewrite it as

f1(µ) =
∑
θ

P (Hs−1, θs−1,∗ = θ |H1:s−2, µ∗ = µ)

=
∑
θ

P (Hs−1 |H1:s−2, θs−1,∗ = θ, µ∗ = µ)P (θs−1,∗ = θ |H1:s−2, µ∗ = µ)

=
∑
θ

P (Hs−1 |H1:s−2, θs−1,∗ = θ)︸ ︷︷ ︸
f2(θ)

P (θs−1,∗ = θ |µ∗ = µ) .

In the last step, we use that the history Hs−1 is independent of µ∗ given H1:s−2 and θs−1,∗, and that
the task parameter θs−1,∗ is independent of H1:s−2 given µ∗.
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Now we focus on f2(θ) above. To simplify notation, it is useful to define Yt = Ys−1,t(As−1,t) and
At = As−1,t. Then we can rewrite f2(θ) as

f2(θ) =

n∏
t=1

P (At, Yt |H1:s−1,t, θs−1,∗ = θ)

=

n∏
t=1

P (Yt |At, H1:s−1,t, θs−1,∗ = θ)P (At |H1:s−1,t, θs−1,∗ = θ)

=

n∏
t=1

P (Yt |At, θs−1,∗ = θ)P (At |H1:s−1,t) ∝ P (Y1:n |A1:n, θs−1,∗ = θ) .

In the third equality, we use that the reward Yt is independent of history H1:s−1,t given the pulled
arm At and task parameter θs−1,∗, and that At is independent of θs−1,∗ given H1:s−1,t. In the last
step, we use that P (At |H1:s−1,t) is constant in θ.

Finally, we combine all above claims, note that

P (θs,∗ = θ |µ∗ = µ) = P (θs−1,∗ = θ |µ∗ = µ) = P (θ;µ) ,

and get

P (θs,∗ = θ |H1:s−1) =
∑
µ

P (θ;µ)P (µ∗ = µ |H1:s−1) ,

P (µ∗ = µ |H1:s−1) =
∑
θ

P (Y1:n |A1:n, θs−1,∗ = θ)P (θ;µ)P (µ∗ = µ |H1:s−2) .

These are the claims that we wanted to prove, since

Ps(θ) = P (θs,∗ = θ |H1:s−1) ,

Qs(µ) = P (µ∗ = µ |H1:s−1) ,

Ls−1(θ) = P (Y1:n |A1:n, θs−1,∗ = θ) .

This concludes the proof.

Lemma 7. Fix integers s and n, features (x`,t)`∈[s],t∈[n], and consider a generative process

µ∗ ∼ N (µq,Σq) ,

∀` ∈ [s] : θ`,∗ | µ∗ ∼ N (µ∗,Σ0) ,

∀` ∈ [s], t ∈ [n] : Y`,t | µ∗ ∼ N (x>`,tθ`,∗, σ
2) ,

where all variables are drawn independently. Then µ∗ | (Y`,t)`∈[s], t∈[n] ∼ N (µ̂, Σ̂) for

µ̂ = Σ̂

(
Σ−1
q µq +

s∑
`=1

B`
σ2
− G`
σ2

(
Σ−1

0 +
G`
σ2

)−1
B`
σ2

)
,

Σ̂−1 = Σ−1
q +

s∑
`=1

G`
σ2
− G`
σ2

(
Σ−1

0 +
G`
σ2

)−1
G`
σ2

,

where G` =
∑n
t=1 x`,tx

>
`,t is the outer product of the features in task ` and B` =

∑n
t=1 x`,tY`,t is

their sum weighted by observations.

Proof. The claim is proved in Appendix D of Kveton et al. [28]. We restate it for completeness.
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B Proofs for Section 4.1: Generic Regret Bound

B.1 Preliminaries and Omitted Definitions

Notation for History: Let us recall that Hs,t = ((As,1, Ys,1), . . . , (As,t−1, Ys,t−1)) denote the
events in task s upto and excluding round t for all t ≥ 1 (Hs,1 = ∅). The events in task s is denoted
as Hs = Hs,n+1 and all the events upto and including stage s is denoted as H1:s = ∪ss′=1Hs′ .
Let us also define history upto and excluding round t in task s as H1:s,t = {H1:s−1 ∪Hs,t}, with
H1:s = H1:s,n+1. Given the history upto and excluding round t in task s, the conditional probability
is given as Ps,t(·) = P[· | H1:s,t], and the conditional expectation is given as Es,t(·) = E[· | H1:s,t].
Note P[·] and E[·] denote the unconditional probability and expectation, respectively.

History dependent Entropy and Mutual Information: We now define the entropy and mutual
information terms as a function of history.

The mutual information between the parameter θs,∗, and the action (As,t) and reward (Ys,t) at the
beginning of round t in task s, for any s ≤ m and t ≤ n, as a function of history is defined as

Is,t(θs,∗;As,t, Ys,t) = Es,t
[
log

(
Ps,t(θs,∗, Ys,t, As,t)

Ps,t(θs,∗)Ps,t(Ys,t, As,t)

)]
We also define the mutual information between the parameter µ∗, and the action (As,t) and reward
(Ys,t) at the beginning of round t in task s, for any s ≤ m and t ≤ n as

Is,t(µ∗;As,t, Ys,t) = Es,t
[
log

(
Ps,t(µ∗, Ys,t, As,t)

Ps,t(µ∗)Ps,t(Ys,t, As,t)

)]
Further, the history dependent conditional mutual information between (µ∗, θs,∗), and As,t and Ys,t,
namely Is,t(θs,∗, µ∗;As,t, Ys,t), is defined below.

Is,t(θs,∗, µ∗;As,t, Ys,t) = Es,t
[
log

(
Ps,t(θs,∗, µ∗, Ys,t, As,t)

Ps,t(θs,∗, µ∗)Ps,t(Ys,t, As,t)

)]
Finally, we define the history dependent conditional mutual information between θs,∗, and As,t and
Ys,t given µ∗ as Is,t(θs,∗;As,t, Ys,t | µ∗).

Is,t(θs,∗;As,t, Ys,t | µ∗) = Es,t
[
log

(
Ps,t(θs,∗, Ys,t, As,t | µ∗)

Ps,t(θs,∗ | µ∗)Ps,t(Ys,t, As,t | µ∗)

)]
The conditional entropy terms are defined as follows:

hs,t(θs,∗) = Es,t [− log (Ps,t(θs,∗))] ,
hs,t(µ∗) = Es,t [− log (Ps,t(µ∗))] ,

hs,t(θs,∗ | µ∗) = Es,t [− log (Ps,t(θs,∗ | µ∗))] .

Therefore, all the different mutual information terms Is,t(·;As,t, Ys,t), and the entropy terms hs,t(·)
are random variables that depends on the history H1:s,t.

We next state some entropy and mutual information relationships which we will use later.

Proposition 8. For all s, t, and any history H1:s,t, the following hold

Is,t(θs,∗, µ∗;As,t, Ys,t) = Is,t(µ∗;As,t, Ys,t) + Is,t(θs,∗;As,t, Ys,t | µ∗) ,
Is,t(θs,∗;As,t, Ys,t) = hs,t(θs,∗)− hs,t+1(θs,∗) .

History Independent Entropy and Mutual Information: The history independent conditional
mutual information and entropy terms are then given by taking expectation over the possible histories

I(·;As,t, Ys,t | H1:s,t) = E[Is,t(·;As,t, Ys,t)], h(· | H1:s,t) = E[hs,t(·)]
I(·;As,t, Ys,t | µ∗, H1:s,t) = E[Is,t(·;As,t, Ys,t | µ∗)], h(· | µ∗, H1:s,t) = E[hs,t(· | µ∗)]
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An important quantity that will play a pivotal role in our regret decomposition is the conditional
mutual information of the meta-parameter given the entire history, which is expressed as

I(µ∗;H1:m) =

m∑
s=1

n∑
t=1

I(µ∗;As,t, Ys,t | H1:s,t) = E
m∑
s=1

n∑
t=1

Is,t(µ∗;As,t, Ys,t).

The first equality is due to chain rule of mutual information, where at each round the new history
H1:s,t+1 = H1:s,t ∪ (As,t, Ys,t).

Similarly, in each stage s, the mutual information between parameter θs,∗ and the events in stage s,
i.e. Hs, conditioned on µ∗ and history up to task (s− 1) is key in quantifying the local regret of task
s. Which is again expressed as

I(θs,∗;Hs | µ∗, H1:s−1) =

n∑
t=1

I(θs,∗;As,t, Ys,t | µ∗, H1:s,t) = E
n∑
t=1

Is,t(θs,∗;As,t, Ys,t | µ∗).

The first inequality again follows chain rule of mutual information with new history being the
combination of old history, and the action and the observed reward in the current round.

We further have the relation of mutual information and conditional entropy as

I(θs,∗;Hs | µ∗, H1:s−1) = h(θs,∗ | µ∗, H1:s−1)− h(θs,∗ | µ∗, H1:s) ,

I(µ∗;H1:m) = h(µ∗)− h(µ∗ | H1:m) .

Weyl’s Inequalities: In this paper, the matrices under consideration are all Positive Semi-definite
(PSD) and symmetric. Thus, the eignevalues are non-negative and admits a total order. We denote the
eigenvalues of a PSD matrix A ∈ Rd, for any integer d ≥ 1, as λd(A) ≤ · · · ≤ λ1(A); where λ1(A)
is the maximum eigenvalue, and λd(A) is the minimum eigenvalue of the PSD matrix A.

Weyl’s inequality states for two Hermitian matrices (PSD and Symmetric in reals) A and B,

λj(A) + λk(B) ≤ λi(A+B) ≤ λr(A) + λs(B), ∀ j + k − d ≥ i ≥ r + s− 1.

The two important relations, derived from Weyl’s inequality, that we frequently use in the proofs are
given next. For PSD and symmetric matrices {Ai} we have

λ1(
∑
i

Ai) ≤
∑
i

λ1(Ai), and λd(
∑
i

Ai) ≥
∑
i

λd(Ai).
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Lemma 2. Suppose that (3) holds for all s ∈ [m] and t ∈ [n], for some Γs,t, εs,t ≥ 0. In addition,
let (Γs)s∈[m] and Γ be non-negative constants such that Γs,t ≤ Γs ≤ Γ holds for all s ∈ [m] and
t ∈ [n] almost surely. Then

R(m,n) ≤ Γ
√
mnI(µ∗;H1:m) +

m∑
s=1

Γs

√
nI(θs,∗;Hs | µ∗, H1:s−1) +

m∑
s=1

n∑
t=1

E [εs,t] .

Proof. The proof follows through the series of inequalities below (explanation added).

R(m,n) = E
∑
s,t

[∆s,t]

[Eq. (3)] ≤ E
∑
s,t

Γs,t

√
Is,t(θs,∗;As,t, Ys,t) + E

∑
s,t

εs,t

[I(X;Z) ≤ I(X,Y ;Z)] ≤ E
∑
s,t

Γs,t

√
Is,t(θs,∗, µ∗;As,t, Ys,t) + E

∑
s,t

εs,t

[Chain Rule] = E
∑
s,t

Γs,t

√
Is,t(µ∗;As,t, Ys,t) + Is,t(θs,∗;As,t, Ys,t | µ∗) + E

∑
s,t

εs,t

[
√
a+ b≤

√
a+
√
b] ≤ E

∑
s,t

Γs,t

√
Is,t(µ∗;As,t, Ys,t) + E

∑
s,t

Γs,t

√
Is,t(θs,∗;As,t, Ys,t | µ∗)

+ E
∑
s,t

εs,t

[Γs,t ≤ Γs ≤ Γ,∀s, t, w.p. 1] ≤ ΓE
∑
s,t

√
Is,t(µ∗;As,t, Ys,t) +

∑
s

Γs

[
E
∑
t

√
Is,t(θs,∗;As,t, Ys,t | µ∗)

]
+ E

∑
s,t

εs,t

[Jensen’s Inequality] ≤ Γ
∑
s,t

√
EIs,t(µ∗;As,t, Ys,t) +

∑
s

Γs
∑
t

√
EIs,t(θs,∗;As,t, Ys,t | µ∗)

+ E
∑
s,t

εs,t

[Cauchy-Schwarz] ≤ Γ

√
mn

∑
s,t

EIs,t(µ∗;As,t, Ys,t) +
∑
s

Γs

√
n
∑
t

EIs,t(θs,∗;As,t, Ys,t | µ∗)

+ E
∑
s,t

εs,t

[Chain Rule] = Γ
√
mnI(µ∗;H1:m) +

∑
s

Γs

√
nI(θs,∗;Hs | µ∗, H1:s−1) + E

∑
s,t

εs,t

- The first inequality follows due to Eq. (3).

- The second inequality uses the fact that I(X;Z) ≤ I(X,Y ;Z) for any random variables
X , Y , and Z. Here X = θs,∗, Y = µ∗, and Z = (As,t, Ys,t).

- The second equality uses the chain rule I(X,Y ;Z) = I(X;Z) + I(X;Z | Y ), as stated in
Proposition 8, with the same random variables X , Y , and Z.

- The Jensen’s inequality uses concavity of
√
·.
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C Proofs for Section 4.2: Linear Bandit

C.1 Marginalization of the Variables

Notation in Marginalization: LetN (x;µ,Σ) denote a (possibly multivariate) Gaussian p.d.f. with
mean µ and covariance matrix Σ for variable x. We now recall the notations of posterior distributions
at different time of our algorithm

P (θ;µ) = P (θs,∗ = θ |µ∗ = µ) = N (θ;µ,Σ0), Q(µ) = P (µ∗ = µ) = N (µ;µ0,Σq)

Ps(θ) = P (θs,∗ = θ |H1:s−1) =

∫
µ

P (θ;µ)Qs(µ) dµ,

Ps,t(θ) = P (θs,∗ = θ |H1:s,t) ∝ P (Hs,t | θs,∗ = θ)Ps(θ),

Qs(µ) = P (µ∗ = µ |H1:s−1) =

∫
θ

P (Hs−1 | θs−1,∗ = θ)P (θ;µ) dθQs−1(µ)

The marginalization is proved in an inductive manner due to the dependence of the action matrix A
on the history. We recall the expression of the rewards,

Ys,t = ATs,tθs,∗ + ws,t

In each round t and task s, given the parameter θs,∗ and the action As,t, the reward Ys,t has the
p.d.f. P(Ys,t | θs,∗, As,t) = N (Ys,t;A

T
s,tθs,∗, σ

2). Let ∝X denote that the proportionality constant
is independent of X (possibly a set).

We obtain the posterior probability of the true parameter in task s in round t, given the true parameter
µ∗. Let us define for all s ≤ m, and t ≤ n.

Ps,t,µ∗(θ) = P(θs,∗ = θ | µ∗, H1:s,t) ∝
t−1∏
t′=1

P(Ys,t′ | θs,∗ = θ,As,t′)P (θ, µ∗)

∝θ
t−1∏
t′=1

exp

(
−

(Ys,t′ −ATs,t′θ)2

2σ2

)
N (θ;µ∗,Σ0)

∝θ exp

(
−

t−1∑
t′=1

(θ −As,t′Ys,t′)T
As,t′A

T
s,t′

2σ2 (θ −As,t′Ys,t′)

)
N (θ;µ∗,Σ0)

∝θ exp

(
−
(
θ − θ̄

)T t−1∑
t′=1

As,t′A
T
s,t′

2σ2

(
θ − θ̄

))
N (θ;µ∗,Σ0)

[
θ̄ = (

t−1∑
t′=1

As,t′A
T
s,t′

σ2 )−1
t−1∑
t′=1

As,t′Ys,t′

]

∝θ N

(
θ; Σ̂s,t,µ∗

(
Σ−1

0 µ∗ +

t−1∑
t′=1

As,t′Ys,t′

)
, Σ̂s,t,µ∗

) [
Σ̂−1
s,t,µ∗ = Σ−1

0 +

t−1∑
t′=1

As,t′A
T
s,t′

σ2

]

We now obtain the posterior probability of the true parameter in task s in round t as by taking integral
over the prior of the parameter µ∗.

Ps,t(θ) = P(θs,∗ = θ | H1:s,t) ∝
t−1∏
t′=1

P(Ys,t′ | θs,∗ = θ,As,t′)

∫
µ

P (θ, µ)Qs(µ)dµ

∝θ
t−1∏
t′=1

exp

(
−

(Ys,t′ −ATs,t′θ)2

2σ2

)∫
µ

N (θ;µ,Σ0)N (µ; µ̂s, Σ̂s)dµ

∝θ exp

(
−

t−1∑
t′=1

(θ −As,t′Ys,t′)T
As,t′A

T
s,t′

2σ2 (θ −As,t′Ys,t′)

)
N (θ; µ̂s,Σ0 + Σ̂s)

∝θ exp

(
−

t−1∑
t′=1

(θ −As,t′Ys,t′)T
As,t′A

T
s,t′

2σ2 (θ −As,t′Ys,t′)

)
N (θ; µ̂s,Σ0 + Σ̂s)
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∝θ exp

(
−
(
θ − θ̄

)T t−1∑
t′=1

As,t′A
T
s,t′

2σ2

(
θ − θ̄

))
N (θ; µ̂s,Σ0 + Σ̂s)

[
θ̄ = (

t−1∑
t′=1

As,t′A
T
s,t′

σ2 )−1
t−1∑
t′=1

As,t′Ys,t′

]

∝θ N

(
θ; (

t−1∑
t′=1

As,t′A
T
s,t′

σ2 )−1
t−1∑
t′=1

As,t′Ys,t′ , (

t−1∑
t′=1

As,t′A
T
s,t′

σ2 )−1

)
N (θ; µ̂s,Σ0 + Σ̂s)

∝θ N

(
θ; Σ̂s,t

(
(Σ0 + Σ̂s)

−1µ̂s +

t−1∑
t′=1

As,t′Ys,t′

)
, Σ̂s,t

) [
Σ̂−1
s,t = (Σ0 + Σ̂s)

−1 +

t−1∑
t′=1

As,t′A
T
s,t′

σ2

]

Thus, for µ̂s,t = Σ̂s,t

(
(Σ0 + Σ̂s)

−1µ̂s +
∑t−1
t′=1As,t′Ys,t′

)
, the parameter conditioned on the

history is distributed as θs,∗ | H1:s,t ∼ N (µ̂s,t, Σ̂s,t).

We now compute the posterior of the meta-parameter µ∗ in a similar way, but some of the computation
can be avoided by using Lemma 7.

Qs+1(µ) =

∫
θ

P(Hs | θs,∗ = θ)P (θ;µ)dθQs(µ)

∝θ,µ
∫
θ

n∏
t=1

P(Ys,t | θs,∗ = θ,As,t)P (θ, µ)dθQs(µ)

∝θ,µ
s∏
`=1

∫
θ`

n∏
t=1

P(Y`,t | θ`,∗ = θ`, A`,t)P (θ`, µ)dθsQ0(µ)

= N (µ̂s+1, Σ̂s+1)

The second equality is obtained by expanding out the Qs(µ) expressions iteratively, and using the
fact that Q0(µ) is the prior distribution of µ at the beginning. The final equality follows from the
application of Lemma 7, by observing that the expression describes a setting identical to the setting
therein, with actions x`,t = A`,t for all ` ∈ [s] and t ∈ [n]. The probability of playing the actions
A`,t (as oppossed to fixed x`,t in Lemma 7) are absorbed by the proportionality constant.

Recall that we have due to Lemma 7, for G` =
∑n
t=1A`,tA

T
`,t, ∀` ∈ [m] and for any s ∈ [m],

Σ̂−1
s = Σ−1

q +

s−1∑
`=1

G`

σ2 − G`

σ2

(
Σ−1

0 + G`

σ2

)−1 G`

σ2 = Σ−1
q +

s−1∑
`=1

G`

σ2

(
Σ−1

0 + G`

σ2

)−1
Σ−1

0 .

Further, if in task ` if forced exploration is used, then G` is invertible, and using Woodbury matrix
identity we have

G`

σ2

(
Σ−1

0 + G`

σ2

)−1
Σ−1

0 =
(
Σ0 + (G`

σ2 )−1
)−1

.
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C.2 Proof of Lemma 4

Lemma 4. For any H1:s,t-adapted action sequence and any s ∈ [m], we have

I(θs,∗;Hs | µ∗, H1:s−1) ≤ d
2 log

(
1 + λ1(Σ0)n

σ2

)
, I(µ∗;H1:m) ≤ d

2 log
(

1 +
λ1(Σq)m

λd(Σ0)+σ2/n

)
.

Proof. We obtain the conditional mutual entropy of θs,∗ given the history upto (s− 1)-th task and θ
(similar to Lu et al.[33])

I(θs,∗;Hs | µ∗, H1:s−1) = h(θs,∗ | µ∗, H1:s−1)− h(θs,∗ | µ∗, H1:s)

= E[hs−1,n+1(θs,∗ | µ∗)]− E[hs,n+1(θs,∗ | µ∗)]
= 1

2 log(det(2πeΣ0))− E[ 1
2 log(det(2πeΣ̂s,n,µ∗))]

= 1
2E[log(det(Σ0) det(Σ̂−1

s,n,µ∗))]

= 1
2E

[
d∏
i=1

λi(Σ0)λi(Σ̂
−1
s,n,µ∗)))

]

≤ 1
2 log

(
d∏
i=1

λi(Σ0)

(
1

λi(Σ0)
+

n

σ2

))

≤ d
2 log

(
1 + n

λ1(Σ0)

σ2

)
The first inequality follows from the definition of conditional mutual information (here we have outer
expectation). Using the relation between the history-independent and history-dependent entropy
terms we obtain the second inequality. Note that hs−1,n+1(θs,∗ | µ∗) is independent of history, as
the θs,∗ given µ∗ does not depend on old tasks.

For the first inequality, we derive the following history independent bound.

λi(Σ̂
−1
s,n,µ∗) = λi

(
Σ−1

0 + 1
σ2

n∑
t′=1

As,t′A
T
s,t′

)

≤ λi
(
Σ−1

0

)
+ λ1

(
n∑

t′=1

As,t′A
T
s,t′

σ2

)

≤ 1

λi(Σ0)
+ tr

(
n∑

t′=1

As,t′A
T
s,t′

σ2

)

≤ 1

λi(Σ0)
+

n

σ2

The matrices 1
σ2

∑n
t′=1As,t′A

T
s,t′ , and Σ−1

0 are Hermitian matrices, giving us the first inequality by
applicaiton of Weyl’s inequality. The last inequality first uses linearity of trace, and tr(As,t′ATs,t′) =

tr(ATs,t′As,t′) ≤ 1, by Assumption 1.

Similarly, we derive the mutual information of the meta-parameter of θ given the history as follows
I(µ∗;H1:m) = h(µ∗)− h(µ∗ | H1:m)

= h(µ∗)− E[hm,n+1(µ∗)]

= 1
2 log(det(2πeΣq))− E[ 1

2 log(det(2πeΣ̂m+1))]

= 1
2E[log(det(Σq) det(Σ̂−1

m+1))]

≤ d
2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)
For the final inequality above, we derive a history independent bounds in a similar manner.

λi(Σ̂
−1
m+1) ≤ λi(Σ−1

q ) + λ1

 m∑
s′=1

(
Σ0 + (

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )−1

)−1

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≤ λi(Σ−1
q ) +

m∑
s′=1

λ1

(Σ0 + (

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )−1

)−1


≤ 1

λi(Σq)
+

m∑
s′=1

λ−1
d

(
Σ0 + (

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )−1

)

≤ 1

λi(Σq)
+

m∑
s′=1

(
λd(Σ0) + λd

(
(

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )−1

))−1

≤ 1

λi(Σq)
+

m∑
s′=1

(
λd(Σ0) + λ−1

1 (

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )

)−1

≤ 1

λi(Σq)
+

m∑
s′=1

(
λd(Σ0) + σ2

n

)−1

=
1

λi(Σq)
+

mn

nλd(Σ0) + σ2

C.3 Proof of Lemma 3

Lemma 3. For all tasks s ∈ [m], rounds t ∈ [n], and any δ ∈ (0, 1], (3) holds almost surely for

Γs,t = 4

√
σ2

max(Σ̂s,t)

log(1 + σ2
max(Σ̂s,t)/σ2)

log(4|A|/δ) , εs,t =

√
2δσ2

max(Σ̂s,t) + 2Es,tEs,t[‖θs,∗‖2] ,

where Es,t is the indicator of forced exploration in round t of task s. Moreover, for each task s, the
following history-independent bound holds almost surely,

σ2
max(Σ̂s,t) ≤ λ1(Σ0)

1 +
λ1(Σq)

(
1 + σ2

ηλ1(Σ0)

)
λ1(Σ0) + σ2/η + sλ1(Σq)

 . (5)

Proof. We next derive the confidence interval bounds, similar to Lu et al. [33], for the reward Ys,t
around it’s mean conditioned on the history Hs−1 ∪Hs,t−1. Let θ̂s,t be the parameter sampled by
TS in task s and round t, when we do not have forced exploration.

Es,t[∆s,t] = Es,t[ATs,∗θs,∗ −ATs,tθs,∗] = Es,t[ATs,tθ̂s,t −ATs,tθs,∗]

The last equality holds as for Thompson sampling ( d= denotes equal distribution)

ATs,∗θs,∗ | H1:s,t
d
= ATs,tθ̂s,t | H1:s,t.

When for task s and round t we have forced exploration the bound is given as

Es,t[∆s,t] = Es,t[ATs,tθ̂s,t −ATs,tθs,∗] + Es,t[ATs,∗θs,∗ −ATs,tθ̂s,t]

≤ Es,t[ATs,tθ̂s,t −ATs,tθs,∗] + 2Es,t[max
a∈A
|aT θs,∗|]

≤ Es,t[ATs,tθ̂s,t −ATs,tθs,∗] + 2Es,t[‖θs,∗‖2].

In the second last inequality we use the fact that θs,∗ | H1:s,t
d
= θ̂s,t | H1:s,t.

Recall Ys,t(a) denote the reward obtained by taking action a in task s and round t. Also recall that
θ̂s,t | H1:s,t ∼ N (µ̂s,t, Σ̂s,t). Let us consider the set

Θs,t = {θ :| aT θ − aT θ̂s,t |≤ Γs,t

2

√
Is,t(θs,∗; a, Ys,t(a)),∀a ∈ A}.
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The history dependent conditional mutual entropy of θs,∗ given the history Hs−1 ∪Hs,t (not µ∗)
(which will be useful in deriving concentration bounds) as

Is,t(θs,∗;As,t, Ys,t) = hs,t(θs,∗)− hs,t+1(θs,∗)

= 1
2 log(det(2πe(Σ̂s,t−1)))− 1

2 log(det(2πeΣ̂s,t))

= 1
2 log(det(Σ̂s,t−1Σ̂−1

s,t ))

= 1
2 log

(
det

(
I + Σ̂s,t−1

As,tA
T
s,t

σ2

))
= 1

2 log

(
det

(
1 +

AT
s,tΣ̂s,t−1As,t

σ2

))
The last step above uses Matrix determinant lemma.1 Recall that σ2

max(Σ̂s,t) = maxa∈A a
T Σ̂s,ta

for all s ≤ m and t ≤ n. For δ ∈ (0, 1], let

Γs,t = 4

√
σ2

max(Σ̂s,t−1)

log(1 + σ2
max(Σ̂s,t−1)/σ2)

log( 4|A|
δ ).

Now it follows from Lu et al. [33] Lemma 5 that for the Γs,t defined as above we have

Ps,t(θ̂s,t ∈ Θs,t) ≥ 1− δ/2.

We continue with the regret decomposition as

Es,t[∆s,t]

= Es,t
[
1(θ̂s,t, θs,∗ ∈ Θs,t)

(
ATs,tθ̂s,t −ATs,tθs,∗

)]
+ Es,t

[
1
c(θ̂s,t, θs,∗ ∈ Θs,t)

(
ATs,tθ̂s,t −ATs,tθs,∗

)]
≤ Es,t

[∑
a∈A

1(As,t = a)Γs,t

√
Is,t(θs,∗; a, Ys,t(a))

]

+

√
Ps,t(θ̂s,t or θs,∗ /∈ Θs,t)Es,t

[(
ATs,tθ̂s,t −ATs,tθs,∗

)2
]

≤ Γs,t

√
Is,t(θs,∗;As,tYs,t) +

√
Ps,t(θ̂s,t or θs,∗ /∈ Θs,t) max

a∈A

√
Es,t

[(
aT θ̂s,t − aT θs,∗

)2
]

≤ Γs,t

√
Is,t(θs,∗;As,tYs,t) +

√
2δσ2

max(Σ̂s,t−1)︸ ︷︷ ︸
εs,t

- The left side term in the first inequality uses the definition of Θs,t. The right side term
in the first inequality holds due to Cauchy–Schwarz. In particular, we use E[XY ] ≤√
E[X2]E[Y 2] with X = 1

c(θ̂s,t, θs,∗ ∈ Θs,t) and Y =
(
ATs,tθ̂s,t −ATs,tθs,∗

)
.

- The left side term in the second inequality follows steps similar to proof of Lemma 3 in Lu
et al. [33]. The right side term in the second inequality maximizes over the possible actions
(we can take the max out of the expectation as action As,t is a function of history upto task
s, and round t− 1). The last inequality follows from the following derivation

Es,t
[(
aT θ̂s,t − aT θs,∗

)2
]

≤ Es,t
[
aT
(

(θ̂s,t − µs,t−1)− (θs,∗ − µs,t−1)
)2
]

≤ aT
(
Es,t

[
(θ̂s,t − µs,t−1)(θ̂s,t − µs,t−1)T

]
+ Es,t

[
(θs,∗ − µs,t−1)(θs,∗ − µs,t−1)T

])
a

≤ 2aT Σ̂s,t−1a ≤ 2σ2
max(Σ̂s,t−1)

1Matrix determinant lemma states that for an invertible square matrix A, and vectors u and v

det
(
A+ uvT

)
=

(
1 + vTA−1u

)
det (A) . We use A = I , u = Σ̂s,t−1As,t, and v = As,t/σ

2.
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This conclude the proof of the first part.

We first claim that σ2
max(Σ̂s,t) ≤ λ1(Σ̂s,t). Indeed, as ‖a‖2 ≤ 1, we have

σ2
max(Σ̂s,t) = max

a∈A
aT Σ̂s,ta ≤ max

a∈A
aTλ1(Σ̂s,t)a ≤ λ1(Σ̂s,t).

Furthermore, λ1(Σ̂s,t) decreases with s and t (precisely with n(s− 1) + t). To show this we use

λ1(Σ̂s,t) = λ−1
d (Σ̂−1

s,t )

= λ−1
d

(
(Σ0 + Σ̂s)

−1 +

t∑
t′=1

As,t′A
T
s,t′

σ2

)

≤ λ−1
d

(
(Σ0 + Σ̂s)

−1 +

t−1∑
t′=1

As,t′A
T
s,t′

σ2

)
= λ−1

d (Σ̂−1
s,t−1) = λ1(Σ̂s,t−1)

The inequality holds due to Weyl’s inequality and
As,tA

T
s,t

σ2 being a PSD matrix. In particular, we
have λd(A+B) ≥ λd(A) + λd(B), given A and B are Hermitian. Thus

λ−1
d (A+B) ≤ (λd(A) + λd(B))−1 ≤ λ−1

d (A).

Recall in each task s, due to forced exploration, we have λd(
∑n
t′=1

As,t′A
T
s,t′

σ2 ) ≥ η
σ2 , where η is

the forced exploration constant. We now prove an upper bound for the term λ1(Σ̂s) independent of
action sequences.

λ1(Σ0 + Σ̂s)− λ1(Σ0) ≤ λ1(Σ̂s) = λ−1
d (Σ̂−1

s )

= λ−1
d

Σ−1
q +

s−1∑
s′=1

(
n∑

t′=1

As′,t′A
T
s′,t′

σ2

)(
Σ−1

0 +

n∑
t′=1

As′,t′A
T
s′,t′

σ2

)−1

Σ−1
0


≤

λd(Σ−1
q ) +

s−1∑
s′=1

λd

(Σ0 + (

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )−1

)−1
−1

≤

λd(Σ−1
q ) +

s−1∑
s′=1

(
λ1(Σ0) + λ1

(
(

n∑
t′=1

As′,t′A
T
s′,t′

σ2 )−1

))−1
−1

≤
(
λ−1

1 (Σq) + s(λ1(Σ0) + σ2/η)−1
)−1

In the above derivation, we use the Weyl’s inequalities multiple times. Note the direction of inequality
should be ≤ if there are even number of inverses, whereas it should be ≥ if there are an odd number
of inverses associated. The first inequality uses the inequality λd(

∑
iAi) ≥

∑
i λd(Ai) given all the

matrices Ai-s are Hermitian. The second inequality similarly uses λ1(
∑
iAi) ≤

∑
i λ1(Ai) given

all the matrices Ai-s are Hermitian. The final inequality uses the minimum eigenvalue bound when
forced exploration is used.

This concludes the second part of the proof, in particular

σ2
max(Σ̂s,t) ≤ λ1(Σ0 + Σ̂s) ≤ λ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)

 .

C.4 Proof of Theorem 5

Theorem 5 (Linear bandit). The regret of AdaTS is bounded for any δ ∈ (0, 1] as

R(m,n) ≤ c1
√
dmn︸ ︷︷ ︸

Learning of µ∗

+ (m+ c2)Rδ(n;µ∗)︸ ︷︷ ︸
Per-task regret

+ c3dm︸ ︷︷ ︸
Forced exploration

,
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where

c1 =

√
8

λ1(Σq)+λ1(Σ0)

log

(
1+

λ1(Σq)+λ1(Σ0)
σ2

) log(4|A|/δ) log
(

1 +
λ1(Σq)m

λd(Σ0)+σ2/n

)
,

c2 =
(

1 + σ2

ηλ1(Σ0)

)
logm, and c3 = 2

√
‖µq‖22 + tr(Σq + Σ0). The per-task regret is bounded as

Rδ(n;µ∗) ≤ c4
√
dn+

√
2δλ1(Σ0)n, where

c4 =

√
8 λ1(Σ0)

log

(
1+

λ1(Σ0)
σ2

) log(4|A|/δ) log
(

1 + λ1(Σ0)n
σ2

)
.

Proof. We note that, for each s, we can bound w.p. 1

Γs,t ≤ 4

√√√√√√√√√√√
λ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)


log

1 + λ1(Σ0)
σ2

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)

 log(4|A|/δ).

This is true by using the upper bounds on σ2
max(Σ̂s,t) in Lemma 3, and because the function√

x/ log(1 + ax) for a > 0 increases with x. Similarly, we have

εs,t ≤

√√√√√δλ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)

.
Therefore, we have the bounds Γs,t ≤ Γs w.p. 1 for all s and t by using appropriate s, and by setting
s = 0 we obtain Γ.

We are now at a position to provide the final regret bound. For any δ > 0

R(m,n) ≤ Γ
√
mnI(µ∗;Hm) + E

∑
s

Γs

√
nI(θs,∗;Hs | µ∗, Hs−1) + E

∑
s,t

εs,t

≤ 4

√
λ1(Σq) + λ1(Σ0)

log(1 + (λ1(Σq) + λ1(Σ0))/σ2)
log(4 | A | /δ)

√
mnd2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)
︸ ︷︷ ︸

regret for learning µ

+

m∑
s=1

4

√√√√√√√√√√√
λ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)


log

1 + λ1(Σ0)
σ2

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)

 log(4|A|/δ)

√
nd2 log

(
1 + n

λ1(Σ0)

σ2

)

+

m∑
s=1

n

√√√√√2δλ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+sλ1(Σq)


+ 2

(
m∑
s=1

n∑
t=1

Es,t

)
E[‖θs,∗‖2]

≤ 4

√
λ1(Σq) + λ1(Σ0)

log(1 + (λ1(Σq) + λ1(Σ0))/σ2)
log(4|A|/δ)

√
mnd2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)
︸ ︷︷ ︸

regret for learning µ
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+

(
m+ 1

2λ1(Σ0)

m∑
s=1

λ1(Σq)(λ1(Σ0)+σ2/η)
λ1(Σ0)+σ2/η+sλ1(Σq)

)
×4

√√√√ λ1(Σ0)

log
(

1 + λ1(Σ0)
σ2

) log(4|A|/δ)

√
nd2 log

(
1 + n

λ1(Σ0)

σ2

)
+ n

√
2λ1(Σ0)δ


+ 2md

√
‖µq‖22 + tr(Σq + Σ0)

≤ 4

√
λ1(Σq) + λ1(Σ0)

log(1 + (λ1(Σq) + λ1(Σ0))/σ2)
log(4|A|/δ)

√
mnd2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)
︸ ︷︷ ︸

regret for learning µ

+
(
m+ (1 + σ2/η

λ1(Σ0) ) log(m)
)
×4

√√√√ λ1(Σ0)

log
(

1 + λ1(Σ0)
σ2

) log(4|A|/δ)

√
nd2 log

(
1 + n

λ1(Σ0)

σ2

)
+ n

√
2λ1(Σ0)δ


+ 2md

√
‖µq‖22 + tr(Σq + Σ0)

The first inequality follows by substituting the appropriate bounds. The second inequality first
removes the part highlighted in blue (which is positive) inside the logarithm, and then uses the fact
that
√

1 + x ≤ 1 + x/2 for all x ≥ 1. We also use E[‖θs,∗‖2] =
√
‖µq‖22 + tr(Σq + Σ0) and the

fact that AdaTS explores for d rounds in each task. The final inequality replaces the summation by an
integral over s and derives the closed form.
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D Proofs for Section 4.3: Semi-Bandit

In this section, we expand the linear bandit analysis to handle multiple inputs as is common in
semi-bandit feedback in combinatorial optimizations. Furthermore, as the rewards for each base-arm
are independent for each arm we can improve our analysis providing tighter prior dependent bounds.
The center piece of the proof is again the mutual information separation between the meta-parameter
and the parameter in each stage. However, in the regret decomposition we sum the confidence
intervals of different arms separately.

Notations: We recall the necessary notations for the proof of regret upper bound in the semi-bandit
setting. For each arm k the meta-parameter µ∗,k ∼ N (µq,k, σ

2
q,k). The mean reward at the beginning

for each task s, for an arm k is sampled from N (µ∗,k, σ
2
0,k). The reward realization of arm k in

round t and task s is denoted by Ys,t(k) = θs,∗(k) + ws,t(k) where be the reward of the arm k at
time t (arm k need not be played during time t). Then the reward obtained for the action a (a subset
of [K] with size at most L) is given as Ys,t(a) =

∑
k∈a Ys,t(k). Let, for each task s and round t, the

action (a subset of [K]) be As,t, and the observed reward vector be Ys,t = (Ys,t(k) : k ∈ As,t).

The linear bandits notations for history, conditional probability, and conditional expectation carry
forward to semi-bandits. Additionally, let us denote the number of pulls for arm k, in phase s,
upto and excluding round t as Ns,t(k). The total number of pulls for arm k in task s is denoted as
Ns(k) = Ns,n+1(k), and up to and including task s is denoted by N1:s(t).

Mutual Information in Semi-bandits: The history dependent and independent mutual information
terms are defined analogously, but we are now interested in the terms for each arms separately. For
any arm k ∈ [K] and action a ⊆ [K], the history dependent mutual information terms of interest are

Is,t(θs,∗(k);As,t, Ys,t | µ∗,k) = Es,t
[

Ps,t(θs,∗(k), As,t, Ys,t | µ∗,k)

Ps,t(θs,∗(k) | µ∗,k)Ps,t(As,t, Ys,t | µ∗,k)

]
Is,t(θs,∗(k); a, Ys,t(a) | µ∗,k) = Es,t

[
Ps,t(θs,∗(k), Ys,t(k) | µ∗,k, As,t = a)

Ps,t(θs,∗(k) | µ∗,k, As,t = a)Ps,t(Ys,t(a) | µ∗,k, As,t = a)

]
Is,t(µ∗,k;As,t, Ys,t) = Es,t

[
Ps,t(µ∗,k, As,t, Ys,t)

Ps,t(µ∗,k)Ps,t(As,t, Ys,t)

]
Is,t(µ∗,k; a, Ys,t(a)) = Es,t

[
Ps,t(µ∗,k, Ys,t(k) | As,t = a)

Ps,t(θs,∗(k) | As,t=a)Ps,t(Ys,t(a) | As,t=a)

]
The history mutual information independent terms of interest are

I(θs,∗(k);As,t, Ys,t | µ∗,k, H1:s,t) = E[Is,t(θs,∗(k);As,t, Ys,t | µ∗,k)],

I(µ∗,k;As,t, Ys,t | H1:s,t) = E[Is,t(µ∗,k;As,t, Ys,t)].

We now derive the mutual information of θs,∗(k) and events in task s, i.e. Hs, given µ∗,k, and history
upto and excluding task s, i.e. H1:s−1.

Lemma 9. For any k ∈ [K], s ∈ [m], and H1:s,t adapted sequence of actions ((As,t)
n
t=1)ms=1, the

following statements hold for a (K,L)-Semi-bandit

I(θs,∗(k);Hs | µ∗,k, H1:s−1) = E
∑
t

Ps,t(k ∈ As,t)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

I(µ∗,k | H1:m) = E
∑
s

∑
t

Ps,t(k ∈ As,t)Is,t(µ∗,k; k, Ys,t(k)).

Proof. The proof follows by the application of the chain rule of mutual information, and noticing
that the rounds when an arm k was not played the mutual information Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)
and Is,t(µ∗,k; k, Ys,t(k)) both are zero. This is true because no information is gained about the
parameters θs,∗(k) and µ∗,k in those rounds.
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I(θs,∗(k);Hs | µ∗,k, H1:s−1)

= E
∑
t

I(θs,∗(k);As,t, Ys,t | µ∗,k, H1:s−1, Hs,t−1)

= E
∑
t

Is,t(θs,∗(k);As,t, Ys,t | µ∗,k)

= E
∑
t

∑
a∈A

Ps,t(As,t = a)Is,t(θs,∗(k); a, Ys,t(a) | µ∗,k)

= E
∑
t

∑
a∈A

Ps,t(As,t = a)1(k ∈ a)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

+ E
∑
t

∑
a∈A

Ps,t(As,t = a)Is,t(θs,∗(k); a \ k, Ys,t(a \ k) | µ∗,k, (k, Ys,t(k)))

= E
∑
t

Ps,t(k ∈ As,t)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

Here, a \ k implies the action with arm k removed from subset a. Due to the independence of
the reward of each arm, for any fixed action a, θs,∗(k) ⊥ (a \ k, Ys,t(a \ k)) conditioned on µ∗,k,
(k, Ys,t(k)), and history H1:s,t. Therefore, we have

Is,t(θs,∗(k); a \ k, Ys,t(a \ k) | µ∗,k, (k, Ys,t(k))) = 0.

A similar sequence of steps lead to

I(µ∗,k | H1:m) = E
∑
s

∑
t

Ps,t(k ∈ As,t)Is,t(µ∗,k; k, Ys,t(k)).

The above equalities develop the chain rules of mutual information for each of the arms separately,
by leveraging the independence of the rewards per arms.

Per Task Regret Bound: We derive the per task regret using the information theoretical confidence
intervals while accounting for each arm separately. Let the posterior distribution of θs,∗(k) at the
beginning of round t of task s beN (µ̂s,t(k), σ̂2

s,t(k)) for appropriate µ̂s,t(k) and σ̂2
s,t(k) that depends

on the history H1:s,t, for all k ∈ [K], s ∈ [m], and t ∈ [n]. We will derive these terms or bounds on
these terms later.
Lemma 10. For an H1:s,t adapted sequence of actions ((As,t)

n
t=1)ms=1, and any δ ∈ (0, 1], the

expected regret in round t of stage s in a (K,L)-Semi-bandit is bounded as

Es,t[∆s,t] =
∑
k∈[K]

Ps,t(k ∈ As,t)
(

Γs,t(k)
√
Is,t(θs,∗(k); k, Ys,t(k)) +

√
2δ 1

Kσ
2
s,t(k)

)
, (6)

where

Γs,t(k) = 4

√
σ̂2
s,t−1(k)

log(1 + σ̂2
s,t−1(k)/σ2)

log( 4K
δ ).

Proof. Similar to linear bandits we have without forced exploration

Es,t[∆s,t] = Es,t[
∑

k∈As,∗

θs,∗(k)−
∑
k∈As,t

θs,∗(k)]

= Es,t[
∑
k∈As,t

θ̂s,t(k)−
∑
k∈As,t

θs,∗(k)]

= Es,t[
∑
a∈A

1(As,t = a)
∑
k∈a

(θ̂s,t(k)− θs,∗(k))]

= Es,t[
∑
k∈[K]

1(k ∈ As,t)(θ̂s,t(k)− θs,∗(k))]

=
∑
k∈[K]

Ps,t(k ∈ As,t)Es,t[θ̂s,t(k)− θs,∗(k)].
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The second equality is due to Thompson sampling ( d= denotes equal distribution)∑
k∈As,∗

θs,∗(k) | H1:s,t
d
=
∑
k∈As,t

θ̂s,t(k) | H1:s,t.

When forced exploration is used in some task s and round t we have, θs,∗(k) | H1:s,t
d
= θ̂s,t(k) |

H1:s,t

Es,t[∆s,t] = Es,t[
∑

k∈As,∗

θs,∗(k)−
∑
k∈As,t

θs,∗(k)]

= Es,t[
∑
k∈As,t

θ̂s,t(k)−
∑
k∈As,t

θs,∗(k)] + Es,t[
∑

k∈As,∗

θs,∗(k)−
∑
k∈As,t

θ̂s,t(k)]

= Es,t[
∑
k∈As,t

θ̂s,t(k)−
∑
k∈As,t

θs,∗(k)] + Es,t[
∑

k∈As,∗

θs,∗(k)−
∑
k∈As,t

θ̂s,t(k)]

≤
∑
k∈[K]

Ps,t(k ∈ As,t)Es,t[θ̂s,t(k)− θs,∗(k)] + 2
√
KEs,t[

√∑
k∈K

θ2
s,∗(k)]

For each k ∈ [K], for appropriate µ̂s,t(k) and σ̂2
s,t(k) we know that θ̂s,t(k) | H1:s,t ∼

N (µ̂s,t(k), σ̂2
s,t(k)). We define the confidence set for each arm k at round t of task s, for some

Γs,t(k), which can be a function of H1:s,t, to be specified late, as

Θs,t(k) = {θ :| θ − µ̂s,t(k) |≤ Γs,t(k)
2

√
Is,t(θs,∗(k); k, Ys,t(k))}.

A derivation equivalent to linear bandits, gives us

Is,t(θs,∗(k); k, Ys,t(k)) = 1
2 log

(
1 +

σ̂2
s,t−1(k)

σ2

)
.

Because, we only consider arm k we obtain as a corollary of Lemma 5 in Lu et al. [33] that for any k,
and any δ 1

K > 0 for

Γs,t(k) = 4

√
σ̂2
s,t−1(k)

log(1 + σ̂2
s,t−1(k)/σ2)

log( 4K
δ ).

we have Ps,t(θ̂s,t(k) ∈ Θs,t(k)) ≥ 1− δ/2K.

We proceed with the regret bound as

Es,t[θ̂s,t(k)− θs,∗(k)]

≤ Es,t[1(θ̂s,t(k), θs,∗(k) ∈ Θs,t(k))(θ̂s,t(k)− θs,∗(k))]

+ Es,t[1c(θ̂s,t(k), θs,∗(k) ∈ Θs,t(k))(θ̂s,t(k)− θs,∗(k))]

≤ Γs,t(k)
√
Is,t(θs,∗(k); k, Ys,t(k)) +

√
P(θ̂s,t(k) or θs,∗(k) /∈ Θs,t(k))Es,t[(θ̂s,t(k)− θs,∗(k))2]

≤ Γs,t(k)
√
Is,t(θs,∗(k); k, Ys,t(k)) +

√
δ 1
KEs,t[(θ̂s,t(k)− µ̂s,t(k))2 + (θs,∗(k)− µ̂s,t(k))2]

≤ Γs,t(k)
√
Is,t(θs,∗(k); k, Ys,t(k)) +

√
2δ 1

Kσ
2
s,t(k)

This concludes the proof.

Regret Decomposition: We now develop the regret decomposition for the (K,L)-Semi-bandit
based on the per step regret characterization in Lemma 10.

Lemma 11. Let, for each k ∈ [K], (Γs(k))s∈[m] and Γ(k) be non-negative constants such that
Γs,t(k) ≤ Γs(k) ≤ Γ(k) holds for all s ∈ [m] and t ∈ [n] almost surely. Then for any δ ∈ (0, 1] the
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regret of AdaTS admits the upper bound

R(m,n) ≤
√
mnKL

√
1
K

∑
k∈[K]

Γ2(k)I(µ∗,k;H1:m) + 2

√
mK

∑
k∈K

(
µ2
q(k) + σ2

0,k + σ2
q,k

)

+

m∑
s=1

√nKL√ 1
K

∑
k∈[K]

Γ2
s(k)I(θs,∗(k);Hs | µ∗,k, H1:s−1) + n

√
2δ 1

K

∑
k∈[K]

σ̂2
s(k)

 .

Proof. The regret decomposition is computed in the following steps. Recall that Es,t is the indicator
if in round t of task s we use exploration.

R(m,n) = E

[∑
s,t

∆s,t

]

≤ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)
(

Γs,t(k)
√
Is,t(θs,∗(k); k, Ys,t(k))

)
+ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)εs,t(k)

+ 2E

∑
s,t

Es,t
√
KEs,t[

√∑
k∈K

θ2
s,∗(k)]


≤ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)
(

Γs,t(k)
√
Is,t(θs,∗(k), µ∗,k; k, Ys,t(k))

)
+ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)
√

2δ 1
Kσ

2
s,t(k)

+ 2mK3/2E[

√∑
k∈K

θ2
s,∗(k)]

= E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)
(

Γs,t(k)
√
Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k) + Is,t(µ∗,k; k, Ys,t(k))

)
+ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)
√

2δ 1
Kσ

2
s,t(k)

+ 2mK3/2

√∑
k∈K

(
µ2
q(k) + σ2

0,k + σ2
q,k

)

≤ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)Γs,t(k)

(√
Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k) +

√
Is,t(µ∗,k; k, Ys,t(k))

)
+ E

∑
s,t

∑
k∈[K]

Ps,t(k ∈ As,t)
√

2δ 1
Kσ

2
s,t(k)

+ 2mK3/2

√∑
k∈K

(
µ2
q(k) + σ2

0,k + σ2
q,k

)

≤ Γs(k)
∑
s

∑
k∈[K]

E

[∑
t

Ps,t(k ∈ As,t)
√
Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

]

+
∑
k∈[K]

Γ(k)E

[∑
s,t

Ps,t(k ∈ As,t)
√
Is,t(µ∗,k; k, Ys,t(k))

]

+
∑
s

∑
k∈[K]

√
2δ 1

K σ̂
2
s(k)E[

∑
t

Ps,t(k ∈ As,t)] + 2mK3/2

√∑
k∈K

(
µ2
q(k) + σ2

0,k + σ2
q,k

)
The first inequality follows from the expression for the reward gaps in Equation 6. The next two
equations follow due to the chain rule of mutual information, similar to the linear bandit case. The only
difference in this case we use the parameters for each arm (θs,∗(k) and µ∗,k) separately. Also, we use
the fact that there are at most mK rounds where forced exploration is used for the m tasks. The next
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inequality is due to
√
a+ b ≤

√
a+
√
b. The final inequality follows as Γs,t(k) ≤ Γs(k) ≤ Γ(k),

and σs,t(k) ≤ σs(k) w.p. 1 for all k ∈ [K], and s ≤ m and t ≤ n.

We now derive the bounds for the sum of the mutual information terms for the per task parameters
given the knowledge of the meta-parameter.∑

s

∑
k∈[K]

Γs(k)E

[∑
t

Ps,t(k ∈ As,t)
√
Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

]

=
∑
s

∑
k∈[K]

Γs(k)E

[∑
t

√
Ps,t(k ∈ As,t)

√
Ps,t(k ∈ As,t)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

]

≤
∑
s

∑
k∈[K]

Γs(k)E

√∑
t

Ps,t(k ∈ As,t)
√∑

t

Ps,t(k ∈ As,t)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)


≤
∑
s

∑
k∈[K]

Γs(k)

√
E
∑
t

Ps,t(k ∈ As,t)
√
E
∑
t

Ps,t(k ∈ As,t)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k)

=
∑
s

∑
k∈[K]

Γs(k)
√

ENs(k)
√
I(θs,∗(k);Hs | µ∗,k, H1:s−1)

≤
∑
s

√
K
∑
k∈[K]

ENs(k)

√
1
K

∑
k∈[K]

Γ2
s(k)I(θs,∗(k);Hs | µ∗,k, H1:s−1)

=
∑
s

√
nKL

√
1
K

∑
k∈[K]

Γ2
s(k)I(θs,∗(k);Hs | µ∗,k, H1:s−1)

The first equality is easy to see. Next sequence of inequalities follow mainly by repeated application
of Cauchy-Schwarz in different forms, and application of chain rule of mutual information. We now
describe the other ones.

- The second equation follow as
∑
i aibi ≤

√∑
i a

2
i

∑
i b

2
i for ai, bi ≥ 0, with ai =√

Ps,t(k ∈ As,t) and bi =
√
Ps,t(k ∈ As,t)Is,t(θs,∗(k); k, Ys,t(k) | µ∗,k).

- The third equation uses E[XY ] ≤
√

E[X2]E[Y 2] for X,Y > 0 w.p. 1 (positive random
variables).

- The next equality first uses the relation E
∑
t Ps,t(k ∈ As,t) = E[Ns(k)] where Ns(k)

is the number of time arm k is played in the task s. Then it also use the chain rule for
I(θs,∗(k);Hs | µ∗,k, H1:s−1).

- For the next inequality, we apply Cauchy-Schwarz (
∑
i aibi ≤

√∑
i a

2
i

∑
i b

2
i ) again as

ai =
√
E[Ns(k)] and bi = I(θs,∗(k);Hs | µ∗,k, H1:s−1). Also note that K and 1

K cancels
out.

- The final inequality is attained by noticing E[
∑
kNs(k)] ≤ nL, as at most L arms can be

played in each round.

The sum of the mutual information terms pertaining to the meta-parameter can be derived equivalently.∑
k∈[K]

Γ(k)E

[∑
s,t

Ps,t(k ∈ As,t)
√
Is,t(µ∗,k; k, Ys,t(k))

]

=
∑
k∈[K]

Γ(k)E

[∑
s,t

√
Ps,t(k ∈ As,t)

√
Ps,t(k ∈ As,t)Is,t(µ∗,k; k, Ys,t(k))

]

≤
∑
k∈[K]

Γ(k)E

√∑
s,t

Ps,t(k ∈ As,t)
√∑

s,t

Ps,t(k ∈ As,t)Is,t(µ∗,k; k, Ys,t(k))


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≤
∑
k∈[K]

Γ(k)

√
E
∑
s,t

Ps,t(k ∈ As,t)
√

E
∑
s,t

Ps,t(k ∈ As,t)Is,t(µ∗,k; k, Ys,t(k))

=
∑
k∈[K]

Γ(k)
√
EN1:m(k)

√
I(µ∗,k;H1:m)

≤
√
K
∑
k∈[K]

EN1:m(k)

√
1
K

∑
k∈[K]

Γ2(k)I(µ∗,k;H1:m)

=
√
mnKL

√
1
K

∑
k∈[K]

Γ2(k)I(µ∗,k;H1:m)

For the third term we have∑
k∈[K]

√
2δ 1

K σ̂
2
s(k)E[

∑
t

Ps,t(k ∈ As,t)]

≤
∑
k∈[K]

√
2δ 1

K σ̂
2
s(k)E[Ns(k)]

≤
√

2δ 1
K

∑
k∈[K]

σ̂2
s(k)

√∑
k∈[K]

(E[Ns(k)])2

≤
√

2δ 1
K

∑
k∈[K]

σ̂2
s(k)

∑
k∈[K]

E[Ns(k)] ≤ n
√

2δ 1
K

∑
k∈[K]

σ̂2
s(k)

This provides us with the bound stated in the lemma.

Finally, we have E[
√∑

k∈K θ
2
s,∗(k)] ≤

√∑
k∈K

(
µ2
q(k) + σ2

0,k + σ2
q,k

)

Bounding Mutual Information: The derivation of the mutual information can be done similar to
the linear bandits while using the diagonal nature of the covariance matrices. We present a different
argument here.
Lemma 12. For any H1:s,t-adapted action-sequence and any s ∈ [m] and k ∈ [K], we have

I(θs,∗(k);Hs | µ∗,k, H1:s−1) ≤ 1
2 log

(
1 + n

σ2
0,k

σ2

)
,

I(µ∗,k;H1:m) ≤ 1
2 log

(
1 +m

σ2
q,k

σ2
0,k+σ2/n

)
.

Proof. We have the following form for the conditional mutual information θs,∗(k) with the events
Hs(k) conditioned on the meta-parameter µ∗,k, and the history of arm k pulls upto stage s (for each
s) H1:s−1, as a function of Hs, given as

I(θs,∗(k);Hs | µ∗,k, H1:s−1) = 1
2E log

(
1 +Ns(k)

σ2
0,k

σ2

)
≤ 1

2 log
(

1 + n
σ2
0,k

σ2

)
.

Another way to see this is, in each stage if µ∗,k was known then the variance of the estimate of
θs,∗(k), or equivalently of (θs,∗(k) − µ∗,k), after Ns(k) samples and with an initial variance σ2

0,k

will be 1
σ−2
0 (k)+Ns(k)σ−2(k)

. We note that only when Ns(k) ≥ 1 the mutual information is non-zero.

Thus we have the multiplication with P(Ns(k) ≥ 1). The mutual information is then derived easily.

Similarly, the mutual information of θs,∗(k) and the entire history of arm k pulls, i.e. H1:m(k), is
stated as follows.

I(µ∗,k;H1:m) = 1
2E log

(
1 +

m∑
s=1

σ2
q,k

σ2
0,k + σ2/Ns(k)

)
≤ 1

2 log

(
1 +m

σ2
q,k

σ2
0,k + σ2/n

)
.
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We claim (proven shortly) that at the end of task m the variance of estimate of µ∗,k is (σ̂−2
q (k) +∑m

s′=1(σ2
0,k + σ2/Ns′(k))−1)−1. This gives the first equality. The final inequality holds by noting

that minimizing the terms σ2/Ns(k) with Ns(k) = n, for all s, (as any arm can be pulled at most n
times in any task) maximizes the mutual information.

We now derive the variance of µ∗,k. Let the distribution of µ∗,k at the beginning of stage s is
N (µ̂s(k), σ̂2

s(k)). From the Ns(k) samples of arm k, we know θs,∗(k) ∼ N (θ̂s(k), σ2/Ns(k))

where θ̂s(k) is the empirical mean of arm k in task s. Further, θs,∗(k)− µ∗,k ∼ N (0, σ2
0,k) by our

reward model. Thus, we have from the two above relation

µ∗,k ∼ N

(
σ2/Ns(k)

σ2
0,k + σ2/Ns(k)

θ̂s(k), σ2
0,k + σ2/Ns(k)

)
.

However, we also know independently that µ∗,k ∼ N (µ̂s(k), σ̂2
s(k)). Therefore, a similar combina-

tion gives us µ∗,k ∼ N (µ̂s+1(k), σ̂2
s+1(k)) where

µ̂s+1(k) = σ̂−2
s+1(k)

(
µ̂s(k)σ̂2

s(k) + θ̂s(k)σ2/Ns(k)
)

σ̂−2
s+1(k) = σ̂−2

s (k) + (σ2
0,k + σ2/Ns(k))−1

σ̂−2
s+1(k) = σ−2

q,k +

s∑
s′=1

(σ2
0,k + σ2/Ns′(k))−1.

The last equality follows from induction with the base case σ̂2
0(k) = σ2

q,k.

Bounding Γs(k): We finally provide the bound on the Γs(k) and Γ(k) terms used in the regret
decomposition Lemma 11.

Lemma 13. For all s ∈ [m], and (Γs(k))s∈[m] and Γ(k) as defined in Lemma 11 admit the following
bounds, for any δ ∈ (0, 1], almost surely

Γs(k) ≤ 4

√√√√√√ σ2
0,k

(
1 +

(1+σ2/σ2
0,k)σ2

q,k

(σ2
0,k+σ2)+sσ2

q,k

)
1
2 log

(
1 +

σ2
0,k

σ2

(
1 +

(1+σ2/σ2
0,k)σ2

q,k

(σ2
0,k+σ2)+sσ2

q,k

)) log( 4K
δ ),

Γ(k) ≤ 4

√√√√ σ2
0,k+σ2

q,k

log

(
1+

σ2
0,k+σ2

q,k

σ2

) log( 4K
δ ).

Proof. At the beginning of task s we know that θs,∗(k) ∼ N (µ̂s(k), σ2
0,k + σ̂2

s(k)). And as the
variance of θs,∗(k) decreases during task s with new samples from arm k, we have the variance
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The inequality holds by taking Ns′(k) = 1 in the expression of σ̂2
s(k) for all tasks as arm k has been

played using forced exploration.

Therefore, we can bound Γs(k), for any s, as
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Deriving Final Regret Bound: We proceed with our final regret bound as
Theorem 6 (Semi-bandit). The regret of AdaTS is bounded for any δ ∈ (0, 1] as

R(m,n) ≤ c1
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The per-task regret is bounded as Rδ(n;µ∗) ≤ c5
√
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√
2δ 1

K

∑
k∈[K] σ

2
0,kn, where

c5 = 4

√√√√ 1
K

∑
k∈[K]:σ0,k>0

σ2
0,k

log

(
1+

σ2
0,k

σ2

) log(4K/δ) log
(

1 +
σ2
0,kn

σ2

)
.

The prior widths σq,k and σ0,k are defined as in Section 3.1.

Proof. We now use the regret decomposition in Lemma 11, the bounds on terms Γs(k) and Γ(k) in
Lemma 13, and the mutual information in Lemma 12 bounds derived earlier to obtain our final regret
bound for the semi-bandits. The regret bound follows from the following chain of inequalities.
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The derivation follows through steps similar to the corresponding derivations for the linear bandits.
In the second inequality we differentiate the arms which has σ2

0,k = 0 against the rest. Any arm k

with σ2
0,k = 0 has no mutual information once µ∗,k is known, i.e. I(θs,∗(k);Hs | µ∗,k, H1:s−1) = 0

for all such k.
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Figure 4: AdaTS in a K-armed Gaussian bandit. We vary both K and meta-prior width σq .
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Figure 5: AdaTS in a d-dimensional linear bandit with K = 5d arms. We vary both d and meta-prior
width σq .

E Supplementary Experiments

We conduct two additional experiments. In Appendix E.1, we extend synthetic experiments from
Section 5. In Appendix E.2, we experiment with two real-world classification problems: MNIST [32]
and Omniglot [30].

E.1 Synthetic Experiments

This section extends experiments in Section 5 in three aspects. First, we show the Gaussian bandit
with K ∈ {2, 4, 8} arms. Second, we show the linear bandit with d ∈ {2, 4, 8} dimensions. Third,
we implement AdaTS with a misspecified meta-prior.

Our results are reported in Figures 4 and 5. The setup of this experiment is the same as in Figure 2,
and it confirms all earlier findings. We also experiment with two variants of misspecified AdaTS. In
AdaTS+, the meta-prior width is widened to 3σq . This represents an overoptimistic agent. In AdaTS−,
the meta-prior width is reduced to σq/3. This represents a conservative agent. We observe that this
misspecification has no major impact on the regret of AdaTS, which attests to its robustness.
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Figure 6: AdaTS in two meta-learning problems of digit classification from MNIST. On the top, we
plot the cumulative regret as it accumulates over rounds within each task. Below we visualize the
average digit, corresponding to the pulled arms in round 1 of the tasks.
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Figure 7: AdaTS in two meta-learning problems of character classification from Omniglot. On the
top, we plot the cumulative regret as it accumulates over rounds within each task. Below we visualize
the average character, corresponding to the pulled arms in round 1 of the tasks.

E.2 Online One-Versus-All Classification Experiments

We consider online classification on two real-world datasets, which are commonly used in meta-
learning. The problem is cast as a multi-task linear bandit with Bernoulli rewards. Specifically, we
have a sequence of image classification tasks where one class is selected randomly to be positive. In
each task, at every round, K random images are selected as the arms and the goal is to pull the arm
corresponding to an image from the positive class. The reward of an image from the positive class is
Ber(0.9) and for all other classes is Ber(0.1). Dataset-specific settings are as follows:

1. MNIST [32]: The dataset contains 60 000 images of handwritten digits, which we split into
equal-size training and test sets. We down-sample each image to d = 49 features and then
use these as arm features. The training set is used to estimate µ0 and Σ0 for each digit. The
bandit algorithms are evaluated on the test set. In each simulation, we have m = 10 tasks
with horizon n = 200 and K = 30 arms.

2. Omniglot [30]: The dataset contains 1 623 different handwritten characters from 50 different
alphabets. This is an extremely challenging dataset because we have only 20 human-drawn
images per character. Therefore, it is important to adapt quickly. We train a 4-layer CNN to
extract d = 64 features using characters from 30 alphabets. The remaining 20 alphabets are
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split into equal-size training and test sets, with 10 images per character in each. The training
set is used to estimate µ0 and Σ0 for each character. The bandit algorithms are evaluated on
the test set. In each simulation, we have m = 10 tasks with horizon n = 10 and K = 10
arms. We guarantee that at least one character from the positive class is among the K arms.

In all problems, the meta-prior isN (0, Id) and the reward noise is σ = 0.1. We compare AdaTS with
the same three baselines as in Section 5, repeat all experiments 20 times, and report the results in
Figures 6 and 7. Along with the cumulative regret, we also visualize the average digit / character
corresponding to the pulled arms in round 1 of each task. We observe that AdaTS learns a very good
meta-parameter µ∗ almost instantly, since its average digit / character in task 2 already resembles the
unknown highly-rewarding digit / character. This happens even in Omniglot, where the horizon of
each task is only n = 10 rounds. Note that the meta-prior was not selected in any dataset-specific
way. The fact that AdaTS still works well attests to the robustness of our method.
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