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Abstract

Community detection in random graphs or hypergraphs is an interesting funda-
mental problem in statistics, machine learning and computer vision. When the
hypergraphs are generated by a stochastic block model, the existence of a sharp
threshold on the model parameters for community detection was conjectured by
Angelini et al. 2015. In this paper, we confirm the positive part of the conjecture,
the possibility of non-trivial reconstruction above the threshold, for the case of two
blocks. We do so by comparing the hypergraph stochastic block model with its
Erdös-Rényi counterpart. We also obtain estimates for the parameters of the hyper-
graph stochastic block model. The methods developed in this paper are generalised
from the study of sparse random graphs by Mossel et al. 2015 and are motivated
by the work of Yuan et al. 2022. Furthermore, we present some discussion on the
negative part of the conjecture, i.e., non-reconstruction of community structures.

1 Introduction

Community detection, or clustering, aims to identify groups sharing similar properties from a global
population. It is a fundamentally important problem in statistics, network analysis and computer
vision [15, 34, 11, 28, 26]. Many clustering algorithms have been developed based on graphs in
which each edge contains exactly two vertices representing pairwise relationships on data. However,
real-world data are often much more complicated than the ordinary graph structures. For example, in
the co-authorship network [9, 24, 27], the number of co-authors may vary from paper to paper so that
one can hardly study edges consisting of two co-authors only.

To represent higher order relationships among data, hypergraphs have been proposed to model data
and have been shown to have some advantages over graphs [36]. In the co-authorship example above,
a generalised edge (called hyperedge) allows us to consider the connectivity of arbitrarily many co-
authors. In recent years, hypergraphs have been widely used to model complex data relationships, for
instance, in robust multi-structure clustering [26], bioinformatics [31], and social networks extraction
[35]. However, from both theoretical and methodological sides, the complexity of hypergraphs
creates much more challenges in the sense that many analysis tools developed in the graph case can
not be easily generalised to the hypergraph case. In general, analysing the spectral properties of the
adjacency tensor of a hypergraph is more difficult than studying the spectrum of the adjacency matrix
of a graph.
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The stochastic block model (SBM), also known as the planted partition model, was initially proposed
by Holland et al. [17] to model random graphs with community structures. The general idea behind
this model is to label each vertex as a community member identically and independently, and then
construct a random graph based on the membership and some given probabilities. It becomes the
well-known Erdös-Rényi graph model if we ignore the membership restriction. The recovery and/or
detection problem, based on the SBM, is to find the community membership when the number of
vertices is sufficiently large. SBM often serves as a benchmark for clustering algorithms on graph
data. Likewise, an analogous model called the hypergraph stochastic block model (HSBM) was
proposed to model higher-order relationships for random hypergraphs [13]. In what follows, we will
present a brief introduction to hypergraphs, HSBM and its associated detection problem.

1.1 The stochastic block model for hypergraphs

A hypergraph is a pair H = (V, E), where V is a set of vertices and E is a set of hyperedges, which is
a collection of subsets of V . The degree of a vertex v ∈ V is the number of hyperedges in H that
contains v. The degree of a hyperedge e ∈ E is the number of vertices contained in e. The hypergraph
H is called d-uniform if the degree of every hyperedge e ∈ E is d. A 2-uniform hypergraph is
a graph. An l-cycle in H is a cyclic ordering of a subset of the vertex set, and of hyperedges,
where any two adjacent hyperedges have exactly l common vertices. We call an l-cycle loose if
l = 1. For instance, let H3 = (V, E) be a 3-uniform hypergraph, where V = {v1, v2, · · · , v7},
E = {(vi, vj , vk)|1 ≤ i < j < k ≤ 7}. Then {(v1, v2, v3), (v3, v4, v5), (v5, v6, v1)} is a loose cycle.

There are many ways to represent a hypergraph. For instance, the incidence matrix of a hypergraph
H is defined as A ∈ {0, 1}|V|×|E|, where A(v, e) = 1 if the vertex v ∈ V is contained in the
hyperedge e ∈ E , and 0 otherwise. The adjacency tensor of H is defined as T , where Ti1,··· ,id = 1
if {i1, · · · , id} is a hyperedge of H , and 0 otherwise. The adjacency matrix of H is defined as
B = (Bij)|V|×|V|, where Bij =

∑
e:{i,j}∈e Te if i ̸= j, and 0 otherwise, here e is a hyperedge and

Te is an element in its associated adjacency tensor. Unfortunately, most of the computations involving
the adjacency tensor are NP-hard, for examples, determining the rank-1 approximation of a tensor,
whether a tensor has a given spectral norm [16].

For simplicity, from now on, we specify our d-uniform hypergraph stochastic block model with two
roughly balanced communities. Considering non-uniform hypergraphs or hypergraphs with multi-
communities may require extra effort, which will be reserved for future work. Let H = ([n], E) be a d-
uniform hypergraph with vertex set [n] := {1, 2, · · · , n} and hyperedge set E , σ := (σ1, · · · , σn) =
{+1,−1}n the spins on [n], which means each vertex i ∈ [n] is assigned with a spin σi ∈ {+1,−1}.
Let Sn be the set of all pairs (H,σ), we can generate a random pair (H,σ) from the finite set Sn as
follows ([13, 14, 19, 25]):

• First generate i.i.d random variables σi ∈ {+1,−1} uniformly for each i ∈ [n].

• Then, for the obtained σ = (σ1, · · · , σn), we generate a random d-uniform hypergraph
H where an hyperedge e = {i1, · · · , id} is included independently with probability pn
if σi1 = · · · = σid , and with probability qn otherwise, where 0 < qn < pn < 1 (pn, qn
possibly depending on n).

We denote by Hd(n, pn, qn) a d-uniform hypergraph generated by the process above. (With a little
notation abuse, we sometimes denote the distribution that such hypergraphs follow by the same
notation). In particular, H2(n, pn, qn) is a random graph generated by the graph version of the SBM.

Suppose C1 = {i ∈ [n]|σi = +1} and C2 = {i ∈ [n]|σi = −1} are two communities in the
hypergraph H . The goal of community detection is to estimate the unknown spin σ up to a sign
flip by observing H only from a sample (H,σ) drawn from Hd(n, pn, qn), i.e., to find estimators
σ̂i ∈ {+1,−1} that are correlated with the true partition σi. By correlation, we mean there exists a
constant c ∈ (0, 1), for any ϵ > 0,

lim
n→∞

P({|On(σ̂, σ)− c| > ϵ} ∩ {|On(σ̂, σ) + c| > ϵ}) = 0,

where On(σ̂, σ) :=
1
n

∑
i∈[n] σiσ̂i is the empirical overlap between σ and σ̂.
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Recall the definitions of exact recovery and almost exact recovery of communities in the literature
(for example, see [25]). By exact recovery, we mean finding a spin vector σ̂ ∈ {+1,−1}n such that

lim
n→∞

P({On(σ̂, σ) = 1} ∪ {On(σ̂, σ) = −1}) = 1.

That is, the estimated spin vector σ̂ is either exactly the true spin vector σ or exactly the negative true
spin vector −σ. By almost exact recovery, we mean finding a spin vector σ̂ ∈ {+1,−1}n such that,
for any ϵ > 0,

lim
n→∞

P({|On(σ̂, σ)− 1| > ϵ} ∩ {|On(σ̂, σ) + 1| > ϵ}) = 0.

That is, the empirical overlap On(σ̂, σ) is in [−1,−1 + ϵ) ∪ (1− ϵ, 1] asymptotically almost surely.
This case almost exactly recovers the community, as indicated by the terminology, compared with the
definition of exact recovery.

The study of sparse graphs/hypergraphs as well as those with constant average degree, is well
motivated from the viewpoint of real networks. For instance, many large social networks like Twitter
or LinkedIn, may have several millions of nodes but only ten times more edges [20]. A coauthorship
network may have millions of nodes, but the average degree is no more than 20 in general [24].
Therefore, it is natural to consider the sparse HSBM with pn and qn of the order O

(
1/nd−1

)
.

Decelle et al. [7] conjectured the existence of a sharp threshold, called Kesten-Stigun threshold, of
detection in the sparse graph SBM based on some ideas from statistical physics. More precisely, if
pn = a

n , qn = b
n , where a, b are constants independent of n, then detection is possible if and only if

(a− b)2 > 2(a+ b). This conjecture was confirmed in [21, 22, 23, 6], for examples, by studying the
spectra of the non-backtracking [6], self-avoiding [21] or graph powering [1] matrices. Moreover,
some efficient algorithms were proposed to achieve detection at the threshold [6, 29, 1].

In the case of the hypergraph SBM, Angelini et al. [2] conjectured the existence of a sharp threshold on
the model parameters, for community detection in the sparse hypergraph. If pn = a

( n
d−1)

, qn = b

( n
d−1)

,

i.e., the hypergraph H ∼ Hd(n, pn, qn) has constant expected vertex degree. Pal et al. [25] proved
the positive part of the conjecture, the detection is possible if β2 > α, where α = (d−1)a+(2d−1−1)b

2d−1 ,
β = (d− 1) a−b

2d−1 . Their method is based on the spectral analysis of the so-called self-avoiding matrix
associated with the hypergraph, which is a generalisation to random hypergraphs of the method
developed by Massoulié [21] for sparse random graphs. Moreover, the consistent estimators for
model parameters a and b are still unknown1.

In the present paper, we reconfirm the positive part of the conjecture by comparing the sparse HSBM
with an appropriate Erdös-Rényi hypergraph model (see Theorem 1.1), which has also been used
by Yuan et al. [34]. Further, we give consistent estimators for a and b if the detection is possible.
Our methods are motivated by the study of the community detection problem on the graph SBM
conducted by Mossel et al. [22]. The main results of the present paper are summarised as follows.

1.2 Main results

Let Hd

(
n, pn+(2d−1−1)qn

2d−1

)
be the Erdös-Rényi model in which each hyperedge is included with a

common probability pn+(2d−1−1)qn
2d−1 , which is chosen to make sure this model has the same average

degree as Hd(n, pn, qn). In other words, Hd

(
n, pn+(2d−1−1)qn

2d−1

)
represents a d-uniform random

hypergraph without any community structures. In particular, H2

(
n, pn+qn

2

)
is the traditional Erdös-

Rényi random graph that has been extensively studied in the graph literature [4, 12, 8].

Let Pn and P̃n denote the probability measures with respect to Hd(n, pn, qn) and
Hd

(
n, pn+(2d−1−1)qn

2d−1

)
, respectively. Then Pn and P̃n are said to be mutually contiguous if for any

measurable sets An, Pn(An) → 0 if and only if P̃n(An) → 0 as n → ∞. Pn and P̃n are said to be

1By some personal correspondence with Ludovic Stephan and Yizhe Zhu, we now realized that the algorithm
provided in [25] implied some way to find a way to estimate the parameters a, b, i.e., Theorem 6.1 of [25] gave
an estimate of α and a lower bound on β. However, it is not efficient and precise as the method in [30], where
the two leading eigenvalues of the non-backtracking operator give an estimation of a and b.
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asymptotically orthogonal if there exists a sequence of measurable sets An such that Pn(An) → 0

and P̃n(An) → 1 as n → ∞. From now on, we fix the following notation,

pn :=
a(
n

d−1

) , qn :=
b(
n

d−1

) , (1)

where a > b > 0 are some constants independent of n, d ≥ 2 is an integer. Define

α := (d− 1)
a+ (2d−1 − 1)b

2d−1
, β := (d− 1)

a− b

2d−1
, (2)

where α measures the expected degree of any vertex and β measures the discrepancy between the
number of neighbors with different signs of any vertex.

Theorem 1.1. If β2 > α, then Pn and P̃n are asymptotically orthogonal.
Theorem 1.2. Let Xζn be the number of loose cycles of length ζn and define

α̂n :=
d|E|(
n

d−1

) , β̂n := (2ζnXζn − α̂ζn
n )

1
ζn ,

where ζn = ⌊log1/4 n⌋, |E| is the number of observed hyperedges, then ân =
1

d−1

(
α̂n + (2d−1 − 1)β̂n

)
and b̂n = 1

d−1

(
α̂n − β̂n

)
are consistent estimators for a and b, re-

spectively. Namely, ân → a and b̂n → b in probability as n → ∞.

When d = 2, the condition β2 = α becomes (a−b)2 = 2(a+b), which is the threshold for community
detection in the (graph-based) SBM. Readers may refer to [21, 22, 23] for more detail. Intuitively
speaking, Theorem 1.1 says that Hd(n, pn, qn) and Hd

(
n, pn+(2d−1−1)qn

2d−1

)
are asymptotically

almost surely distinguishable above the threshold (i.e., can distinguish a community with structure
from a random hypergraph with the same average degree). Note that Theorem 1.1 also appeared
in [34] though there are some subtleties. In [34], the setting is pn = a

nd−1 , qn = b
nd−1 , which is

the same order as (1) (only differs by a constant factor (d − 1)!). Moreover, κ in Equation (4) in
Section 2.2 in [34] corresponds to our β2/α here. We generally follow the proof techniques of
[34]. The difference is that they show convergence to a Normal instead of a Poisson distribution
for the model Hd(n, pn, qn). If we take k = 2, m = 3 in Theorem 2.6 in [33], which means the
2-block, 3-uniform HSBM, they showed a sharp phase transition: when κ < 1, Hd(n, pn, qn) and
Hd

(
n, pn+(2d−1−1)qn

2d−1

)
are indistinguishable and distinguishable when κ > 1.

There are two types of problems or results: (a) find a way to distinguish HSBM with a corresponding
Erdös-Rényi hypergraph model and find a way to estimate the model parameters a, b; (b) develop an
algorithm to output a partition σ̂ that is correlated (at least 1/2 + ϵ portion of the labels are correct
up to a sign flip) to the ground truth labeling σ. Our work addresses (a), which does not imply any
way to find an estimator of the partition for (b). We get an estimator for the model parameters a, b
by counting cycles, but it does not provide a way to find a partition σ̂. Also, solving (b) does not
immediately imply solving (a), although most algorithms for (b) (such as the ones in [25, 30]) may
imply some way to solve (a).

The remainder of the present paper is organised as follows: In section 2, we study the probability
distribution of the number of ζn-loose cycle Xζn and then prove our main results based on the
techniques developed by Mossel et al. [22]. In section 3, we show some building blocks of proving
our main results, which followed the proof techniques of [34]. In section 4, we discuss the barriers
on showing the negative side of the threshold conjecture, i.e., non-reconstruction of community
structures. Section 5 concludes the paper, including some further discussion.

2 The distribution of loose cycles

In this section, we mainly show that the number of ζn-loose cycles of H ∼ Hd(n, pn, qn) or
H ∼ Hd

(
n, pn+(2d−1−1)qn

2d−1

)
is asymptotically approximately Poisson-distributed. In general

inhomogeneous graphs, Bollobás et al. [5] demonstrated that the number of cycles asymptotically
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follows the Poisson distribution. We borrow their proof techniques to get a similar conclusion in the
hypergraph case. Then, by comparing the first two moments of the number of ζn-loose cycles, we
can find that Hd(n, pn, qn) and Hd

(
n, pn+(2d−1−1)qn

2d−1

)
are asymptotically orthogonal if β2 > α.

Theorem 2.1. Let Xζn be the number of ζn-loose cycle of a hypergraph H . Suppose ζn =

O
(
log1/4(n)

)
.

(1) If H ∼ Hd(n, pn, qn), then Xζn
d−→ Pois

(
αζn+βζn

2ζn

)
;

(2) If H ∼ Hd

(
n, pn+(2d−1−1)qn

2d−1

)
, then Xζn

d−→ Pois
(

αζn

2ζn

)
,

where d−→ denotes convergent in distribution.

For any non-negative integer s, let [X]s be the product X(X − 1) · · · (X − s+ 1).

Lemma 2.2 (Lemma 2.8 in [32]). Let λ1, · · · , λk be some set of fixed non-negative reals, and let
X1,n, · · · , Xk,n be non-negative integer random variables defined on the same space Gn for each n.
If for each fixed set of non-negative integers r1, · · · , rk,

lim
n→∞

E

(
k∏

i=1

[Xi,n]ri

)
→

k∏
i=1

λri
i ,

then the variables X1,n, · · · , Xk,n are asymptotically independent Poisson with means λi.

By Lemma 2.2, if we can prove the expectation E[Xζn ]r → µr, then Xζn
d−→ Pois(µ), which will be

shown in the next section.

With the preparation provided by establishing Theorem 2.1, now we can prove our first main
result, Theorem 1.1. We use Pn(·), E(·), Var(·) to denote probability, mean and variation with
respect to Hd(n, pn, qn) while notations with tilde above denote their counterparts with respect to
Hd

(
n, pn+(2d−1−1)qn

2d−1

)
.

Proof of Theorem 1.1. Since β2 > α, there exists a constant ρ satisfying β > ρ >
√
α. Then

EXζn = VarXζn = o(ρ2ζn) and ẼXζn = ṼarXζn = o(ρ2ζn) as n → ∞.

Let An := {Xζn ≤ ẼXζn + ρζn}, by Chebyshev’s inequality,

P̃n(An) = P̃n

Xζn − ẼXζn√
ṼarXζn

≤ ρζn√
ṼarXζn

 ≥ 1− ṼarXζn

ρ2ζn
→ 1, as n → ∞. (3)

Since EXζn − ẼXζn ∼ βζn

2ζn
= ω(ρζn), then for larger enough ζn, EXζn − ρζn ≥ ẼXζn + ρζn ,

which implies Pn(An) ≤ Pn(Xζn ≤ EXζn − ρζn). By Chebyshev’s inequality,

Pn(An) ≤ Pn

(
Xζn − EXζn√

VarXζn

≤ −ρζn√
VarXζn

)
≤ VarXζn

ρ2ζn
→ 0, as n → ∞. (4)

By (3) and (4), we have shown that Pn and P̃n are asymptotically orthogonal.

Proof of Theorem 1.2. . First of all, we have a consistent estimator α̂n for α by simply count-
ing the number of hyperedges. If we can prove that β can be consistently estimated by β̂n =(
2ζnXζn − α̂ζn

n

) 1
ζn , then ân = 1

d−1

(
α̂n + (2d−1 − 1)β̂n

)
and b̂n = 1

d−1

(
α̂n − β̂n

)
are consis-

tent estimators for a and b, respectively.
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Take ρ ∈ (
√
α, β), by Chebyshev’s inequality,

Pn(2ζnXζn − αζn ≥ βζn − ρζn) = Pn

Xζn − αζn+βζn

2ζn√
VarXζn

≥
−ρζn

2ζn√
VarXζn


≥ 1−

(
2ζn
√

VarXζn

ρζn

)2

→ 1, as ζn → ∞.

(5)

Pn(2ζnXζn − αζn ≤ βζn + ρζn) = Pn

Xζn − αζn+βζn

2ζn√
VarXζn

≤
ρζn

2ζn√
VarXζn


≥ 1−

(
2ζn
√

VarXζn

ρζn

)2

→ 1, as ζn → ∞.

(6)

Thus, 2ζnXζn − αζn ∈ [βζn − ρζn , βζn + ρζn ] a.a.s. Since ρζn = o(βζn) as ζn → ∞, we have
2ζnXζn − αζn = (1 + o(1))βζn a.a.s. Since α̂ζn

n → αζn as ζn → ∞, we have 2ζnXζn − α̂ζn
n =

(1 + o(1))βζn a.a.s. Therefore, β̂n = (2ζnXζn − α̂ζn
n )

1
ζn → β as ζn → ∞.

3 Building blocks for proving Theorem 2.1

The main purpose of this section is to provide some building blocks for proving Theorem 2.1: Note,
the techniques originate from [34]. See also Lemma 6.3 on Page 28 and some proof techniques on
Page 24 in [33].

The proof that the number of loose cycles in hypergraphs follows the Poisson distribution is
very different from that in the graph case. In [22], since k vertices in a graph forming a cycle
of length m follow the Binomial distribution, we can calculate the probability P(N = m) =
P
(
Binom

(
k − 1, 1

2

)
∈ {m− 1,m}

)
for even m and the probability of these vertices form a cycle

is the summation of P(N = m) over all possible m (see the proof of Lemma 1 in [22]). In the
hypergraph case, the distribution of k loose cycles of length ζn forming a cycle is no longer the
Binomial distribution.

Lemma 3.1 (Lemma 6.3 in [33]). For any i1, i2, · · · , id ∈ {+1,−1}, let Ii1i2···id := (a− b)I(i1 =
i2 = · · · = id) + b, then for j ≥ 1,

F : =
∑

i1,··· ,ij(d−1)∈{+1,−1}

Ii1i2···idIidid+1···i2d−1
· · · Ii(j−1)d−(j−2)i(j−1)d−(j−3)···ij(d−1)i1

= (a− b)j + (a+ (2d−1 − 1)b)j .

Proof. Let Jj := (i(j−1)d−j+3,··· ,ij(d−1)
), then

F =
∑

J1,··· ,Jj

∑
i1,id,··· ,i(j−1)d−(j−2)∈{+1,−1}

Ii1J1idIidJ2i2d−1
· · · Ii(j−1)d−(j−2)Jji1

=
∑

J1,··· ,Jj

Tr(I(J1)I(J2) · · · I(Jj)),

where I(Js) = (IiJsh)
1
i,h=−1 is a 2× 2 matrix defined as follows,

I(Js) =

[
a b
b b

]
+

[
b b
b a

]
+

∑
Js:elements are different

I(Js)

=

[
a+ b 2b
2b a+ b

]
+ (2d−2 − 2)

[
b b
b b

]
=: I0.

Then, we have F = Tr(Ij0).
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Note that I0 = (a− b)I2 + 2d−2bJ∗, where I2 is the 2× 2 identity matrix, J∗ is the 2× 2 matrix
with all entries 1. Since the eigenvalues of J∗ are 2 and 0, and

I0 − λI2 = (a− b− λ)I2 + 2d−2bJ∗ =⇒ det(I0 − λI2) = (2d−2b)2det(J∗ − λ− (a− b)

2d−2b
I2),

the eigenvalues of I0 are a− b and a+ (2d−1 − 1)b. Therefore, we finally get

F = (a− b)j + (a+ (2d−1 − 1)b)j .

Proof of Theorem 2.1. (1) Note that [Xζn ]r is the number of ordered r-tuples of ζn-hyperedge loose
cycles. Let (Lζn,1, Lζn,2, · · · , Lζn,r) be the r-tuple of ζn-loose cycles, S1 the set of r-tuples where
the vertices of all the loose cycles are disjoint and S2 the set of r-tuples where at least one pair of the
loose cycles is not disjoint, i.e., they share some common vertices. Then the expectation of [Xζn ]r is
given by

E[Xζn ]r =
∑

(Lζn,i)∈S1

EI∪r
i=1Lζn,i

+
∑

(Lζn,i)∈S2

EI∪r
i=1Lζn,i

, (7)

where I∪n
i=1Lζn,i

is the indicator that Lζn,i are ζn-loose cycles.

Let v1, v2, · · · , vζn(d−1) be the distinct vertices and Y the indicator that v1, v2, · · · , vζn(d−1) is a
ζn-loose cycle, then EILζn,i

=
(

n
ζn(d−1)

) (ζn(d−1)−1)!
2((d−2)!)ζn

EY . Let σ be a random label assignment and
E(Lζn,i) the hyperedge set of Lζn,i, then

EY = Eσ

∏
{i1,··· ,id}∈E(Lζn,i)

Ii1i2···id(σ)(
n

d−1

)
=

1

2ζn(d−1)(
(

n
d−1

)
)ζn

∑
σ∈{±1}ζn(d−1)

∏
{i1,··· ,id}∈E(Lζn,i)

Ii1i2···id(σ),

(8)

where Ii1i2···id(σ) is the expected degree. If σv1 = · · · = σvd , then Ii1i2···id(σ) =
(

n
d−1

)
pn = a.

Otherwise, Ii1i2···id(σ) =
(

n
d−1

)
qn = b. We thus write Ii1i2···id(σ) = (a−b)I(σv1 = · · · = σvd)+b.

By Lemma 3.1 in the Appendix, we have

EY =
1

(
(

n
d−1

)
)ζn

[(
a+ (2d−1 − 1)b

2d−1

)ζn

+

(
a− b

2d−1

)ζn
]
, (9)

which implies

EILζn,i
=

(
n

ζn(d− 1)

)
(ζn(d− 1)− 1)!

((d− 2)!)ζn
1

2(
(

n
d−1

)
)ζn

[(
a+ (2d−1 − 1)b

2d−1

)ζn

+

(
a− b

2d−1

)ζn
]

∼ (d− 1)ζn

2nζn(d−1)

[(
a+ (2d−1 − 1)b

2d−1

)ζn

+

(
a− b

2d−1

)ζn
]
.

Note that the number of elements of S1 is |S1| =
(

n
m0

)
m0!
ζr
n

, where m0 = ζn(d − 1)r. When
m0 = o(

√
n), the first term in the right side of (7) is given by

|S1| × EI∪r
i=1Lζn,i

= |S1| ×
r∏

i=1

EILζn,i

=
n!

(n−m0)!

1

ζrn

(d− 1)ζnr

2rnζn(d−1)r

[(
a+ (2d−1 − 1)b

2d−1

)ζn

+

(
a− b

2d−1

)ζn
]r

=
n!

(n−m0)!nm0

[
1

2ζn
(αζn + βζn)

]r
∼
(
αζn + βζn

2ζn

)r

,
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where have used the fact that n!
(n−m0)!nm0

→ 1 if m0 = o(
√
n).

Now it remains to show that the second term in the right side of (7) converges to 0. Since |S2| ≤
m2

0n
m0−1, we have∑

(Lζn,i)∈S2

EI∪r
i=1Lζn,i

= |S2| × EI∪r
i=1Lζn,i

≤ m2
0n

m0−1

(
a(
n

d−1

))|E(H)|

≤ m2
0

am0

n
→ 0 as n → ∞

when m0 ≤ c loga n for a constant c ∈ (0, 1). Therefore, E[Xζn ]r →
(

αζn+βζn

2ζn

)r
, which completes

the proof of the first result of Theorem 2.1.

(2) To distinguish the distribution used in (1), we use Ẽ to express the expectation with respect to
Hd(n,

pn+(2d−1−1)qn
2d−1 ). Similar to the proof of (1), we have

Ẽ[Xζn ]r =
∑

(Lζn,i)∈S1

ẼI∪r
i=1Lζn,i

+
∑

(Lζn,i)∈S2

ẼI∪r
i=1Lζn,i

(10)

and

ẼILζn,i
=

(
n

ζn(d− 1)

)
(ζn(d− 1)− 1)!

2((d− 2)!)ζn(
(

n
d−1

)
)ζn

(
pn + (2d−1 − 1)qn

2d−1

)ζn

∼ (d− 1)ζn

2nζn(d−1)

(
a+ (2d−1 − 1)b

2d−1

)ζn

.

The first term in the right side of (10) is given by

|S1| × ẼI∪r
i=1Lζn,i

=

(
n

m0

)
m0!

ζrn

(d− 1)ζnr

2rnζn(d−1)r

(
a+ (2d−1 − 1)b

2d−1

)ζnr

=
n!

(n−m0)!nm0

(
αζn

2ζn

)r

∼
(
αζn

2ζn

)r

.

For (Lζn,i) ∈ S2, L := ∪r
i=1 has at most ζn(d− 1)r− 1 vertices and ζnr hyperedges, which implies

|V(L)| < (d− 1)|E(L)|. Then, we have

ẼI∪r
i=1Lζn,i

≤

(
a+ (2d−1 − 1)b(

n
d−1

)
2d−1

)|E(L)|

≤

(
a(
n

d−1

))|E(L)|

≤ ((d− 1)!)|E(L)|
( a

nd−1

)|E(L)|
,

where we have assumed a > b > 0. Since there are
(

n
|V(L)|

)
|V(L)|! many hyperedges isomorphic to

L, we get the estimation of the second term in the right side of (10) as follows,∑
(Lζn,i)∈S2

ẼI∪r
i=1Lζn,i

≤ ((d− 1)!)|E(L)|
( a

nd−1

)|E(L)|
(

n

|V(L)|

)
|V(L)|! → 0 as n → ∞.

Therefore, Ẽ[Xζn ]r →
(

αζn

2ζn

)r
, which completes the proof of the second result of Theorem 2.1.

4 Discussion on non-reconstruction of the community structures

Motivated by Theorem 1 in [22], we have the following conjecture.
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Conjecture 4.1. If β2 ≤ α, then for any fixed vertices v1 and v2, H ∼ Hd(n, pn, qn),

lim
n→∞

Pn(τv1 = +1|H, τv2) =
1

2
.

In the case of graph based SBM, the core strategy is to find a connection between H2(n, pn, qn)
and a Markov processes on a Galton-Watson tree. Before going further, we give the definition of
a Galton-Watson tree. Given ϵ ∈ [0, 1), let T be an infinite rooted tree with root ρ, the spin τρ of
the root ρ is uniformly assigned from {+1,−1}. Then, conditionally independently on τρ, the spins
τv of every children v of ρ is assigned as τv = τρ with probability ϵ and τv = −τρ with probability
1− ϵ. Continuing this process will give a Galton-Watson tree with spins. The broadcasting problem
on (T, ρ, τ) is whether the spin τρ could be deduced from the spins at generation l of the tree, where
l is sufficiently large. Such a problem on general infinite trees was initially proposed by Kesten and
Stigum in 1966 [18], although they used somewhat different terminologies. This problem was solved
by Blecher et al. [3] and Evans et al. [10].

In the case of HSBM, Pal and Zhu [25] generalized the above defined Galton-Watson tree to the
so-called multi-type Galton-Watson hypertree. Let T be an infinite rooted hypertree with root ρ
constructed as follows: Generate a root ρ with spin τρ ∈ {+1,−1} and then generate Pois(α) many
hyperedges that only intersects at ρ. For 0 ≤ s ≤ d− 1, a hyperedge is called type s if there are s
many children (i.e., the vertices in the hyperedge) with spin τρ and d − 1 − s many children with
spin −τρ in the hyperedge. Hyperedges of type d− 1 are generated with probability (d−1)a

α2d−1 and of

type s with probability
(d−1)b(d−1

s )
α2d−1 for 0 ≤ s ≤ d− 2. It is easy to check that

(d− 1)a

α2d−1
+

d−2∑
s=0

(d− 1)b
(
d−1
s

)
α2d−1

= 1.

We generate hyperedges of different types i.i.d. by Poisson distribution. For each hyperedge of type
s, in the first generation, we uniformly and randomly pick s vertices with spin τρ and the rest of the
d− 1− s vertices with spin −τρ. The subsequent generations are generated by induction.

Note we cannot use Theorem 1.1 in [10] directly to show that the threshold on deducing the spin of
the root based the spin of vertex at long generations. A key difference between the Galton-Watson tree
and the hypertree analogy is that the vertex spins in each hyperedge are not independent conditioned
on the previous generations. In other words, the independence we need is the paths from the root to a
vertex with the spins +1 and −1 that are independent. Although it is the case for vertices belonging
to different hyperedges (by the definition above), this cannot be the case for two vertices belonging
to the same hyperedge. Therefore, there is a key barrier to analyzing the broadcasting problem and
relating that to the percolation model analyzed in [10]. We are very grateful to Ludovic Stephan and
Yizhe Zhu for pointing out the key difference (personal correspondence).

The statement Pn(τv1 = +1|H, τv2) → 1
2 is equivalent to En(τv1 |H, τv2) → 0, i.e.,

Varn(τv1 |H, τv2) → 1. By the monotonicity of conditional variance, we have Var(τρ|H, τv, τ∂Hl
) ≤

Var(τρ|H, τv), where τ∂Hl
is the spin of vertex at generation l from the root ρ. It was shown that

a neighborhood H looks like a broadcasting process on a multi-type Galton-Watson hypertree (see
Theorem 5.2 in [25] for more strict claim). In order to close Conjecture 4.1, in addition to overcoming
the barrier above, we need to show that τv and τρ are asymptotically almost surely conditionally
independent given τ∂Hl

and H .

5 Conclusion

Community detection is of great interest in many fields such as network analysis, statistics and
computer vision. Hypergraphs have been widely used to model higher-order relationships among
data. The SBM (graph-based) model is popular in community detection but only directly models
pair-wise interactions. Its hypergraph version, HSBM, likewise serves as a benchmark for clustering
algorithms on higher order interaction (hypergraph) data.

This paper provides some theoretical analysis on the community detection thresholds in the sparse
HSBM. Specifically, motivated by a previous conjecture that there exists a sharp threshold on
the model parameters for community detection, we proved that above the threshold, it is possible
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to distinguish the hypergraph graph stochastic block model with a corresponding Erdös-Rényi
hypergraph model. Importantly, we also provide consistent estimators for the model parameters,
when the detection is possible.

Our estimators require the counting of the number of loose cycles in the hypergraph. To our best
knowledge, there is no efficient algorithm to count the number of loose cycles in hypergraphs in
general. Therefore, from the algorithmic side, it might be more practical to count the number of
non-backtracking/self-avoiding walks of the same length [25, 30], which can be computed by matrix
multiplication efficiently. Moreover, providing more practical estimators (or examining whether one
can estimate the number of loose cycles sufficiently accurate to still use the estimators of model
parameters we provide), is a worthy topic of future research.
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