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A APPENDIX

A.1 VISUALIZATION

To make assessments about the clusterability of learned representations in the encoding space, we
visualize the feature distribution by using t-SNE (Van der Maaten & Hinton, 2008). It is noted that if
the information of the latent state is properly learned and encoded by the model, the representations
from the same underlying state should cluster together. Figure 6 shows the comparisons about
representations distribution of different models. It demonstrates that the representations learned by
proposed BTSF from the same hidden state are better than the other approaches. The visualization
results further prove the superior representation ability of our model. In Addition, we have evaluated
on the all univariate time series datasets: the UCR archive. The corresponding critical difference
diagram is shown in Figure 7. The BTSF significantly outperforms the other approaches with an
average rank of almost 1.3.
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Figure 6: T-SNE visualization of signal representations for HAR dataset.
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Figure 7: Critical difference diagram showing pairwise statistical difference comparison of BTSF
and previous methods on the UCR archive.

A.2 EFFECTIVENESS

To prove the efficiency of our devised bilinear fusion, we provide the deduction of gradient flow
from the loss function. Since the overall architecture is a directed acyclic graph, the parameters can
be trained by back-propagating the gradients of the contrastive loss. The bilinear form simplifies the
gradient computations. Let ∂L

∂f be the gradient of L with respect to f , then for Eq.(8) by chain rule
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Table 6: Ablation experiments of BTSF.

Accuracy Temporal Spectral Sum/Concat Bilinear Iterative Bilinear

Slicing 88.3 86.7 88.7 90.7 91.5
Dropout 89.4 88.4 89.8 92.4 94.6

Layer-Wise Dropout 89.8 89.1 90.4 93.1 95.4

of gradients we can get:
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From the Eq.(10) and Eq.(12), , we conclude that the gradient update of parameters θt in temporal
feature Ft is closely related to the spectral feature since Fs is treated as a weighted coefficient
straightly multiplying the gradient, and vice versa. Additionally, we can know that interaction matrix
W has a strong connection with cross-domain affinities FtFs

T from the Eq.(11) which leads to a
better combination of temporal and spectral features. In hence, it is proved that our BTSF adequately
explores and utilizes the underlying spectral and temporal information of time series.

A.3 MORE ABLATION STUDIES

To quantify the promotion of each module in BTSF, we make a specific ablation study where all ex-
periments are conducted on HAR dataset and results are in Table 6. We use TNC as a baseline which
applies time slicing as augmentation with accuracy of 88.3%. We could find that our instance-level
augmentation (dropout) is better than segment-level augmentation (slicing) and layer-wise dropout
(adding dropout in internal layers) has a promotion by 1.5% compared with slicing. However, we
do not apply layer-wise dropout in aforementioned experiments for fair comparisons otherwise our
BTSF will have better performance. Besides, incorporating spectral feature with temporal feature
by using summation or concatenation will also improve the results, which illustrates the necessity of
cross-domain interaction. The accuracy is obviously promoted by 2%∼3% when involving temporal
and spectral information with bilinear fusion, and iterative operation will further improve the per-
formance by enhancing and refining the temporal-spectral interaction. In conclusion, instance-level
augmentation (dropout) and iterative bilinear fusion are two main modules of BTSF which largely
improve the generalization ability of unsupervised learned representations with accuracy of 94.6%,
an improvement of 6.3% to baseline.

Studies of hyperparameters In the proposed BTSF, there are some hyperparameters needed to
be carefully set, the dropout rate, temperature number τ and the loops number of iterative bilinear
fusion. Table 7 illustrates that when the rate is set to 0.1, BTSF acquires the best performance since
setting too high value would lose the original properties of time series and setting too low value
would bring about representation collapse. Table 8 demonstrates that when τ is set to 0.05 , BTSF
has the best performance. It is reasonable that proper value of τ would promote the optimization
of training process and make representations more discriminative with the adjustment. We also run
the experiments of loops number of iterative bilinear fusion and the results are depicted in Figure
8. From the results, we conclude that our iterative bilinear fusion is effective and its performance
converges after just three loops.

A.4 DATASETS DESCRIPTIONS AND MORE EXPERIMENTS

In all experiments, we use Pytorch 1.8.1 (Paszke et al., 2017) and train all the models on a GeForce
RTX 2080 Ti GPU with CUDA 10.2. We apply an Adam optimizer (Kingma & Ba, 2017) with
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Table 7: Ablation experiments of dropout rate

dropout rate p=0.01 p=0.05 p=0.1 p=0.15 p=0.2 p=0.3
HAR 90.29 92.78 94.63 93.36 91.21 88.07

Sleep-EDF 82.76 85.34 87.45 86.01 83.44 80.92
ECG Waveform 93.13 96.56 98.12 97.28 95.63 92.05

Table 8: Ablation experiments on temperature number τ .

τ 0.001 0.01 0.05 0.1 1
HAR 90.04 92.91 94.63 93.04 91.85

Sleep-EDF 82.69 84.82 87.45 85.11 83.28
ECG Waveform 93.06 95.74 98.12 96.47 94.88

a learning rate of 3e-4, weight decay of 1e-4 and batch size is set to 256. In this part, we would
introduce all the datasets used in our experiments which involve three kinds of downstream tasks,
time series classification, forecasting and anomaly detection. The definitions of downstream tasks
are detailed in the following:

• Time Series Classification: Given the univariate time series {x1, x2, . . . , xT } or multivariate
time series {x1,x2, . . . ,xD} as input, time series classification is to classify the input consisting
of real-valued observations to a certain class.

• Time Series Forecasting: Given the past univariate observations {xt−T1+1, . . . , xt} or multi-
variate ones {xt−T1+1, . . . ,xt} as input, time series forecasting aims to predict the future data
points {xt+1, xt+2, . . . , xt+T2} or {xt+1,xt+2, . . . ,xt+T2} based on the input.

• Time Series Anomaly Detection: Given the univariate time series {x1, x2, . . . , xT } or multi-
variate time series {x1,x2, . . . ,xD} as input, time series anomaly detection is to find out which
point (x̂i or x̂i) or subsequence ({x̂1, x̂2, . . . , x̂T } or {x̂1, x̂2, . . . , x̂T }) of the input behaves
unusually when compared either to the other values in the time series (global outlier) or to its
neighboring points (local outlier).

Data Preprocessing Following Franceschi et al. (2019); Zhou et al. (2021), for univariate time
series classification task, we normalize datasets using z-score so that the set of observations for
each dataset has zero mean and unit variance. For multivariate time series classification task, each
variable is normalized independently using z-score. For forecasting tasks, all reported metrics are
calculated based on the normalized time series.

A.4.1 CLASSIFICATION

In the time series classification task, we choose six popular datasets which are widely used in previ-
ous works. These six datasets are Human Activity Recognition (HAR) (Anguita et al., 2013), Sleep
Stage Classification (Sleep-EDF) (Goldberger et al., 2000), Epilepsy Seizure Prediction (Andrze-
jak et al., 2001), ECG Waveform (Moody, 1983),UCR (Dau et al., 2019) and UEA (Bagnall et al.,
2018). The detailed introduction to these datasets are as follows:

Human Activity Recognition HAR dataset contains 30 individual subjects which provide six
activities for each subject. These six activities are walking, walking upstairs, downstairs, standing,
sitting, and lying down. The data of HAR is collected by sensors with a sampling rate of 50 HZ and
the collected signals record the continuous activity of every subject.

Sleep Stage Classification The dataset is designed for EEG signal classification task where each
signal belongs to one of five categories: Wake (W), Non-rapid eye movement (N1, N2, N3) and
Rapid Eye Movement (REM). And the Sleep-EDF dataset collects the PSG for the whole night, and
we just used a single EEG channel, following previous works (Eldele et al., 2021a).

Epilepsy Seizure Prediction The Epileptic Seizure Prediction dataset contains EEG signals which
are collected from 500 subjects. The brain activity for each subject was recorded for 23.6 seconds.

17



Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6
Loops

85

90

95
Ac

cu
ra

cy

Accuracy Trend of Loops Number

HAR
Sleep-EDF
ECG Waveform

Figure 8: Accuracy trend of changing loops number on HAR, Sleep-EDF and ECG Waveform
datasets.

Table 9: More comparisons of classification results about BTSF and previous work, results of TST
(Zerveas et al., 2021), Rocket (Dempster et al., 2020) and Supervised (Zerveas et al., 2021) are
quoted from TST for fair comparisons.

Methods TST Rocket Supervised BTSF
EthanolConcentration 32.6 45.2 33.7 49.4

FaceDetection 68.9 64.7 68.1 73.0
Handwriting 35.9 58.8 30.5 62.3

Heartbeat 77.6 75.6 77.6 84.7
JapaneseVowels 99.7 96.2 99.4 99.8
InsectWingBeat 68.7 - 68.4 78.3

PEMS-SF 89.6 75.1 91.9 95.7
SelfRegulationSCP1 92.2 90.8 92.5 96.5
SelfRegulationSCP2 60.4 53.3 58.9 64.9
SpokenArabicDigits 99.8 71.2 99.3 99.8

UWaveGestureLibrary 91.3 94.4 90.3 97.1
Avg Accuracy 74.8 72.5 74.2 82.0

Avg Rank 1.7 2.3 1.7 1.2

Additionally, the original classes of the dataset are five, and we preprocess the dataset for classifica-
tion task like Eldele et al. (2021b).

ECG Waveform The ECG Waveform is a real-world clinical dataset, it includes 25 long-term
Electrocardiogram (ECG) recordings (10 hours in duration) of human subjects with atrial fibrillation.
Besides, it contains two ECG signals with a sampling rate of 250HZ.

UCR and UEA The UCR and UEA are widely used public datasets for time series analysis. The
UCR archive consists of univariate datasets while UEA archive contains multivariate datasets, which
cover multiple scenes in real world.

Table 9 shows the comparison results between BTSF with recent works following their evaluation
protocols. The results show that BTSF significantly outperforms them in a large margin. Table 10
shows the classification results of Epileptic Seizure Prediction datasets. From the illustrated results,
we conclude that our BTSF gets the best performance and exceeds other methods by a large margin
in univariate and multivariate time series classification tasks.
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Table 10: More comparisons of classification results of ESP dataset.

Methods Epilepsy Seizure Prediction
Accuracy AUPRC

Supervised 96.32±0.38 0.97±0.65

KNN 87.96±1.32 0.89±1.04
SRL 94.65±0.97 0.95±0.86
CPC 96.61±0.43 0.97±0.69

TS-TCC 97.23±0.10 0.98±0.21
TNC 96.15±0.33 0.96±0.45

BTSF 99.01±0.12 0.99±0.06

A.4.2 FORECASTING

In Section 4, we conduct experiments on four datasets about time series forecasting, including two
collected real-world datasets for long sequence time-series forecasting (LSTF) problem and one
public benchmark dataset as in Zhou et al. (2021). The detailed introduction to these datasets are as
follows:

Electricity Transformer Temperature (ETT) The ETT is a crucial indicator in the electric power
long-term deployment. The 2-year data was collected from two separated counties in China, which
was first used to investigate the granularity on the LSTF problem with each data point containing the
target value ”oil temperature” and six power load features. ETTh1 , ETTh2 and ETTm1 represent
for 1-hour-level and 15-minute-level respectively.

Weather This dataset contains local climatological data for about 1,600 U.S. places, 4 years from
2010 to 2013, where data points are collected every 1 hour with each data point consisting of the
target value “wet bulb” and 11 climate features.

We run the forecasting tasks about prediction length of 48 and 1440 on ETT dataset and visualize the
forecasting results of BTSF, TNC and supervised models. From Figure 9 and 10, we could find that
our BTSF achieves the best forecasting results under both short-term and long-term settings since
it adequately leverages the global context and utilize temporal-spectral relations which are helpful
in producing more accurate predictive representations. The complete comparisons of forecasting
results in Table 11 further prove the superiority of BTSF.

A.4.3 ANOMALY DETECTION

In Section 4, we conduct extensive experiments about time series anomaly detection on five widely
used datasets, which are all public available. The detailed introduction to these datasets are illus-
trated as follows:

Secure Water Treatment (SWaT) The SWaT dataset is a scaled down version of a real-world
industrial water treatment plant producing filtered water (Goh et al., 2016). The collected dataset
(Mathur & Tippenhauer, 2016) consists of 11 days of continuous operation: 7 days collected under
normal operations and 4 days collected with attack scenarios.

Water Distribution (WADI) This dataset is collected from an extension of the SWaT tesbed. It
consists of 16 days of continuous operation: 14 days were collected under normal operation and 2
days with attack scenarios.

Server Machine Dataset (SMD) This dataset is a 5-week-long dataset from a large internet com-
pany which was collected and made publicly available (Su et al., 2019). It contains data from 28
server machines with each one monitored by m=33 metrics. SMD is divided into two subsets of
equal size: the first half is the training set and the second half is the testing set.
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Figure 9: Visualizing forecasting results of length 48 on ETT dataset.

Soil Moisture Active Passive (SMAP) and Mars Science Laboratory (MSL) SMAP and MSL
are two real-world public datasets, expert-labeled datasets from NASA (Hundman et al., 2018).
They contain respectively the data of 55/27 entities each monitored by m = 25/55 metrics.

The complete comparisons of all metrics (P, R and F1) in anomaly detection are illustrated in Ta-
ble 12. Our BTSF outperforms other methods imcluding supervised method in a large margin. It
demonstrates BTSF is more sensitive to the outliers in time series.
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Table 11: Comparisons of multivariate forecasting Results.

Datasets Length Supervised SRL CPC TS-TCC TNC BTSF
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.577 0.549 0.698 0.661 0.687 0.634 0.653 0.610 0.632 0.596 0.541 0.519
48 0.685 0.625 0.758 0.711 0.779 0.768 0.720 0.693 0.705 0.688 0.613 0.524
168 0.931 0.752 1.341 1.178 1.282 1.083 1.129 1.044 1.097 0.993 0.640 0.532
336 1.128 0.873 1.578 1.276 1.641 1.201 1.492 1.076 1.454 0.919 0.864 0.689
720 1.215 0.896 1.892 1.566 1.803 1.761 1.603 1.206 1.604 1.118 0.993 0.712

ETTh2

24 0.720 0.665 1.034 0.901 0.981 0.869 0.883 0.747 0.830 0.756 0.359 0.432
48 1.451 1.001 1.854 1.542 1.732 1.440 1.701 1.378 1.689 1.311 0.544 0.527
168 3.389 1.515 5.062 2.167 4.591 3.126 3.956 2.301 3.792 2.029 1.669 0.875
336 2.723 1.340 4.921 3.012 4.772 3.581 3.992 2.852 3.516 2.812 1.954 1.093
720 3.467 1.473 5.301 3.207 5.191 2.781 4.732 2.345 4.501 2.410 2.566 1.276

ETTm1

24 0.323 0.369 0.561 0.603 0.540 0.513 0.473 0.490 0.429 0.455 0.302 0.342
48 0.494 0.503 0.701 0.697 0.727 0.706 0.671 0.665 0.623 0.602 0.395 0.387
96 0.678 0.614 0.901 0.836 0.851 0.793 0.803 0.724 0.749 0.731 0.438 0.399
288 1.056 0.786 2.471 1.927 2.066 1.634 1.958 1.429 1.791 1.356 0.675 0.429
672 1.192 0.926 2.042 1.803 1.962 1.797 1.838 1.601 1.822 1.692 0.721 0.643

Weather

24 0.335 0.381 0.688 0.701 0.647 0.652 0.572 0.603 0.484 0.513 0.324 0.369
48 0.395 0.459 0.751 0.883 0.720 0.761 0.647 0.691 0.608 0.626 0.366 0.427
168 0.608 0.567 1.204 1.032 1.351 1.067 1.117 0.962 1.081 0.970 0.543 0.477
336 0.702 0.620 2.164 1.982 2.019 1.832 1.783 1.370 1.654 1.290 0.568 0.487
720 0.831 0.731 2.281 1.994 2.109 1.861 1.850 1.566 1.401 1.193 0.601 0.522

Table 12: Comparisons of multivariate anomaly detection.

Datasets Metric Supervised SRL CPC TS-TCC TNC BTSF

SAaT
P 0.996 0.784 0.791 0.823 0.816 0.997
R 0.842 0.603 0.644 0.712 0.726 0.873
F1 0.901 0.710 0.738 0.775 0.799 0.944

WADI
P 0.720 0.459 0.473 0.522 0.561 0.763
R 0.761 0.478 0.492 0.525 0.574 0.801
F1 0.649 0.340 0.382 0.427 0.440 0.685

SMD
P 0.984 0.751 0.783 0.802 0.834 0.993
R 0.963 0.790 0.774 0.811 0.806 0.985
F1 0.958 0.768 0.732 0.794 0.817 0.972

SMAP
P 0.791 0.562 0.597 0.639 0.641 0.881
R 0.985 0.755 0.781 0.812 0.826 0.994
F1 0.842 0.598 0.620 0.679 0.693 0.906

MSL
P 0.937 0.728 0.778 0.825 0.819 0.968
R 0.980 0.702 0.749 0.793 0.815 0.993
F1 0.945 0.788 0.813 0.795 0.833 0.984
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Figure 10: Visualizing long-term forecasting results of length 1440 on ETT dataset.
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