
Published as a conference paper at ICLR 2021

A IMPLEMENTING GRADIENT ESTIMATORS BY MODIFYING
BACKPROPAGATION

An advantage of the GRMC-K estimator is the ease with which it can be implemented using automatic
differentiation software. Here, we provide a pseudo code template for such an implementation.

c l a s s GRMCK(F u n c t i o n) :

d e f f o r w a r d (l o g i t s , t au , k) :
sample = s a m p l e O n e h o t C a t e g o r i c a l (l o g i t s)
s a v e f o r b a c k w a r d (sample , l o g i t s , t au , k)
r e t u r n sample

d e f backward (g r a d o u t p u t) :
sample , l o g i t s , t au , k = s e l f . s a v e d o b j e c t s
logZ = logsumexp (l o g i t s)
maxgumbel = getGumbel (logZ , k)
t g u m be l s = ge tTrunca tedGumbe l (

l o g i t s , k , sample , maxgumbel)
gumbels = mergeGumbels (

maxgumbel , tgumbels , sample)
J = ge tSmaxJacob i an (gumbels + l o g i t s) . mean (0)
r e t u r n g r a d o u t p u t . matmul (J)

B IMPLEMENTING GRADIENT ESTIMATORS WITH THE SURROGATE LOSS
FRAMEWORK

In this section, we consider an alternative framework for implementing the gradient estimators
presented in the main body. This framework is due to (Schulman et al., 2015) and known as the
surrogate loss framework. The key idea is that after the forward pass through a stochastic computation
graph, all sampling decisions have been taken. Therefore, any gradient can be written as resulting
from the differentiation of a surrogate objective in a deterministic computation graph.

Our exposition in the main body only considered a simplified scenario with a single discrete random
variable. Therefore, we present here two cases, involving a layer of multiple and a cascade of discrete
random variables. These two cases are general, because any case can be reduced to either of these
two or a combination of them.

For ease of exposition, we again do not consider any direct dependence of f on the parameters of
interest θ. The extension to this case is straight-forward and follows from basic calculus.

We also introduce the following notation to denote the stop of gradient flow. For X∗ =
stop gradient(X) indicates that the gradient flow is interrupted atX and no gradient information
is passed backward.

B.1 PARALLEL CASE

Let D1, . . . , Dm be a sequence of independent random variables. For j ≤ m, let Dj be a discrete
random variable Dj ∈ {0, 1}n in a one-hot encoding,

∑
Dj
i = 1, with distribution given by

pθj (D
j) ∝ exp(DjT θ) where θj ∈ Rn. Further, let Sjτ be defined analogously to equation (3).

Given a continuously differentiable f : Rmn → R, we wish to minimize

min
θ

E
[
f(D1, . . . Dm)

]
, (14)

where the expectation is taken over all m random variables.

In this setting, ∇REINF can be computed by differentiating the following surrogate objec-

12

Published as a conference paper at ICLR 2021

tive,

f(D1∗, . . . Dm∗)

m∑
j=1

log pθj (D
j) (15)

In this setting,∇GS can be computed by differentiating the following surrogate objective,
f(S1

τ , . . . S
m
τ) (16)

In this setting,∇ST can be computed by differentiating the following surrogate objective,
m∑
j=1

(
∂f(D1, . . . Dm)

∂Dj

)∗
softmaxτ (θj) (17)

In this setting,∇STGS can be computed by differentiating the following surrogate objective,
m∑
j=1

(
∂f(D1, . . . Dm)

∂Dj

)∗
Sjτ (18)

In this setting,∇GRMCK can be computed by differentiating the following surrogate objective,
m∑
j=1

(
∂f(D1, . . . Dm)

∂Dj

)∗ [
1

K

K∑
k=1

Sjkτ

]
(19)

B.2 SEQUENTIAL CASE

Let D1, . . . , Dm be a sequence of non-independent random variables. For j ≤ m, let Dj be a
discrete random variable Dj ∈ {0, 1}n in a one-hot encoding,

∑
Dj
i = 1, with distribution given by

pθj (D
j) ∝ exp(DjT θj) where θj ∈ Rn. For 2 ≤ j ≤ m, let θj = h(Dj−1), where h : Rn → Rn

is a continuously differentiable function. Given a continuously differentiable f : Rmn → R, we wish
to minimize

min
θ

E
[
f(D1, . . . , Dm)

]
(20)

In this setting,∇REINF and∇GS can be computed by differentiating the surrogate objective given in
the parallel case.
In this setting,∇ST can be computed by differentiating the following surrogate objective,

Lm :=

(
∂f(D1, . . . , Dm)

∂Dm

)∗
softmaxτ (θm) (21)

Lj :=

((
dLj+1(D1, . . . , Dm)

dDj

)∗
+

(
∂f(D1, . . . , Dm)

∂Dj

)∗)
softmaxτ (θj) (22)

In this setting,∇STGS can be computed by differentiating the following surrogate objective,

Lm :=

(
∂f(D1, . . . , Dm)

∂Dm

)∗
softmaxτ (θm +Gm) (23)

Lj :=

((
dLj+1(D1, . . . , Dm)

dDj

)∗
+

(
∂f(D1, . . . , Dm)

∂Dj

)∗)
softmaxτ (θj +Gj) (24)

In this setting,∇GRMCK can be computed by differentiating the following surrogate objective,

Lm :=

(
∂f(D1, . . . , Dm)

∂Dm

)∗ [
1

K

K∑
k=1

(
softmaxτ (θm +Gmk)

)]
(25)

Lj :=

((
dLj+1(D1, . . . , Dm)

dDj

)∗
+

(
∂f(D1, . . . , Dm)

∂Dj

)∗)[
1

K

K∑
k=1

(
softmaxτ (θj +Gjk)

)]
(26)

13

Published as a conference paper at ICLR 2021

C PROOFS FOR THE PROPOSITIONS

In this section, we provide derivations for all the propositions given in the main body.

C.1 PROPOSITION 1

The derivation is based on Jensen’s inequality and the law of iterated expectations.

Proof.

E
[
‖∇GR −∇θ‖2

]
= E

[
‖E [∇STGS|D]−∇θ‖2

]
(27)

= E
[
‖E [∇STGS −∇θ|D]‖2

]
(28)

≤ E
[
E
[
‖∇STGS −∇θ‖2|D

]]
(29)

= E
[
‖∇STGS −∇θ‖2

]
(30)

The inequality is strict whenever var [∇STGS|D] > 0, which is the case if τ <∞ and |θi| <∞ for
all i ≤ n.

C.2 PROPOSITION 2

The derivation is based on Jensen’s inequality and the linearity of expectations. For ease of exposition,
denote by∇STGS

(
Sk|D

)
a particular realization of the ST-GS estimator for a given D.

Proof.

E
[
‖∇GRMCK −∇θ‖2

]
= E

∥∥∥∥∥ 1

K

K∑
k=1

∇STGS

(
Sk|D

)
−∇θ

∥∥∥∥∥
2
 (31)

= E

∥∥∥∥∥ 1

K

K∑
k=1

(
∇STGS

(
Sk|D

)
−∇θ

)∥∥∥∥∥
2
 (32)

≤ E

[
1

K

K∑
k=1

‖∇STGS

(
Sk|D

)
−∇θ‖2

]
(33)

=
1

K

K∑
k=1

E
[
‖∇STGS (S|D)−∇θ‖2

]
(34)

= E
[
‖∇STGS −∇θ‖2

]
(35)

The inequality is strict whenever K > 1 and var [∇STGS|D] > 0, which is the case if τ < ∞ and
|θi| <∞ for all i ≤ n.

C.3 PROPOSITION 3

The derivation is based on the law of total variance.

14

Published as a conference paper at ICLR 2021

Proof.

var
[
∇1:B

GRMCK

]
= E

[
var
[
∇1:B

GRMCK |D1:B , X1:B

]]
+ var

[
E
[
∇1:B

GRMCK |D1:B , X1:B

]]
(36)

= E

[
var

[
1

B

B∑
b=1

∇bGRMCK

∣∣∣∣∣Db, Xb

]]
+ var

[
E

[
1

B

B∑
b=1

∇bGRMCK

∣∣∣∣∣Db, Xb

]]
(37)

= E

[
1

B2

B∑
b=1

var
[
∇bGRMCK

∣∣Db, Xb

]]
+ var

[
E

[
1

B

B∑
b=1

∇bGRMCK

∣∣∣∣∣Db, Xb

]]
(38)

=
1

B
E [var [∇GRMCK |D,X]] + var

[
1

B

B∑
b=1

E
[
∇bGRMCK |Db, Xb

]]
(39)

=
1

B
E
[

1

K
var [∇STGS|D,X]

]
+

1

B
var [E [∇GRMCK |D,X]] (40)

=
1

BK
E [var [∇STGS|D,X]] +

1

B
var [∇GR] (41)

D EXPERIMENTAL DETAILS

D.1 UNSUPERVISED PARSING ON LISTOPS

For our unsupervised parsing expeiment on ListOps, we use the basic version of the model described
in Choi et al. (2017) with an embedding dimension and hidden dimension of 128. We do not use the
leaf-rnn. We do not use the intra-attention module. We do not use dropout, but set weight decay
to be 1e− 4. Because our interest is in using this experiment primarily as a testbed to evaluate the
effectiveness of different gradient estimators for this model at different temperatures and for trees of
different depth, we use a very simple experimental set-up. We rely on stochastic gradient descent
without momentum to train all models. We use grid search to determine an optimal learning rate from
{0.1, 0.2, . . . 1.0} and set the temperature τ to be in {0.01, 0.1, 1.0}. We repeat five independent
random runs at each setting and report the mean over the five runs. We train for ten epochs and set
the batch size to be equal to the maximum sequence length L.

Havrylov et al. (2019) also consider unsupervised parsing on ListOps with a variant of the model in
Choi et al. (2017). They achieve near perfect accuracy, albeit in a highly customized experimental
set-up. We list the most important differences below:

• Havrylov et al. (2019) does not use single-evaluation estimators, we do: They report near
perfect accuracy only when using the self-critical baseline. This baseline requires an
additional forward pass. All their single-evaluation results are in a similar ballpark as ours
accounting for the additional differences below.

• Havrylov et al. (2019) uses extensive hyperparameter tuning, we do not: They tune learning
rate, learning rate schedule, weight decay, entropy regularisation, variance reduction hyper-
parameters, optimizer (Adadelta), number of updates for PPO, leaf transformations and train
for 300 epochs. In contrast, we only tune the (constant) learning rate via gridsearch and use
SGD (see above) for each temperature and train for ten epochs.

• Havrylov et al. (2019) uses customized training procedures, we are simply plug-in: They
use PPO, gradient normalization, different control variates and entropy regularization. We
simply plug our estimator into the model from Choi et al. (2017).

• Havrylov et al. (2019) uses a model with more parameters than us: We do not use any leaf
LSTM. It improves performance (Choi et al., 2017), but may also confound tree learning
(e.g., leaf-LSTM may learn to solve the task, making tree obsolete), so we do not use it.

• Havrylov et al. (2019) uses more training data than us: We reserved 10% of the training set
for validation, while they use less than 2%.

15

Published as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 3: Our estimator (GR-MCK) effectively reduces the variance over the entire training trajectory
at all arities. The variance reduction compares favorable to the minibatch variance. Columns
correspond to arities, i.e. (a) binary, (b) 4-ary, (c) 8-ary, (d) 16-ary. First row, log10-trace of MC
covariance matrix for various gradient estimators over iterations. Second row, log10-trace of MB
covariance matrix over iterations (same for all gradient estimators).

D.2 GENERATIVE MODELLING WITH VARIATIONAL AUTO-ENCODERS

We trained variational auto-encoders with n-ary discrete random variables with values on the corners
of the hypercube {−1, 1}log2(n). The model with arity {2, 4, 8, 16} included {240, 120, 80, 60}
random variables respectively.

All models were optimized using stochastic gradient descent with momentum for 50000 steps on
minibatches of size 20 and 200 respectively. Hyperparameters were randomly sampled and the best
setting was selected from twenty independent runs. Learning rate and momentum were randomly
sampled from {5, 6, . . . 50}×10−4 and (0, 1) respectively. We did not anneal the learning rate during
training. For regularising the network, we used weight-decay, which was randomly sampled from
{0, 10−1, 10−2 . . . , 10−6}. The temperature was randomly sampled from [0.1, 1.0] and not annealed
throughout training.

All models were evaluated on the validation and test set using the importance-weighted bound on the
log-likelihood described in Burda et al. (2015) with 5000 samples.

To estimate the variance of a gradient estimator in the VAE experiment we used 5000 randomly
sampled minibatches of size 20, for each of which we performed 100 independent forward passes and
then computed the associated gradient for the parameters of the inference network. We then summed
the variance to get a singe scalar measurement.

To estimate the bias of a gradient estimator in the VAE experiment, we proceeded as above to
approximate the expectation for a gradient estimator. We approximated the true gradient by following
this procedure for the REINFORCE algorithm.

To assess training speed, we measured the average number of iterations needed to achieve a pre-
specified loss threshold on the validation set. In particular, we ran multiple independent runs under
the same experimental conditions for all gradient estimators. Among only runs that achieved the
threshold within the total budget, we report the average number of iterations taken to cross the
threshold.

E ADDITIONAL FIGURES

16

Published as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 4: Increasing the number of Monte Carlo samples K to reduce variance in gradient estimation
tends to improve performance. The performance difference tends to be larger at smaller batch sizes.
Columns correspond to arities, i.e. (a) binary, (b) 4-ary, (c) 8-ary, (d) 16-ary. First row, IWAE on
test set for best validated model trained at various batch sizes. Second row, IWAE on test set for best
validated model trained at various K at batch size 20.

Table 3: Our estimator, GR-MCK, consistently achieves better performance across arities and
batchsizes. The outperformance tends to be larger at smaller batchsizes. Best bound on the nega-
tive log-likelihood selected on the validation set from 20 independent runs at randomly searched
hyperparameters.

BINARY 4-ARY 8-ARY 16-ARY

ESTIMATOR VALID. TEST VALID. TEST VALID. TEST VALID. TEST

BATCH-
SIZE 5

ST-GS 107.7 106.7 107.8 106.7 107.5 106.4 108.1 107.0
GR-MC1000 106.7 105.7 104.7 103.8 105.1 104.1 107.0 105.9

BATCH-
SIZE 10

ST-GS 104.4 103.5 103.2 102.2 103.5 102.4 104.1 103.1
GR-MC1000 103.7 102.9 100.8 99.8 100.9 99.9 101.8 100.7

BATCH-
SIZE 15

ST-GS 103.4 102.4 100.4 99.5 100.3 99.3 101.9 101.0
GR-MC1000 102.3 101.4 99.0 98.0 99.2 98.3 100.2 99.1

BATCH-
SIZE 20

ST-GS 101.5 100.7 100.0 99.1 99.0 98.0 99.8 98.8
GR-MC1000 101.3 100.5 98.4 97.6 97.5 96.5 97.8 96.8

BATCH-
SIZE 25

ST-GS 101.7 100.9 98.6 97.6 98.8 97.8 99.0 98.1
GR-MC1000 100.7 99.8 97.2 96.3 96.6 95.7 97.1 96.2

BATCH-
SIZE 50

ST-GS 101.2 100.2 96.7 95.9 95.7 94.8 98.0 97.0
GR-MC1000 99.5 98.7 96.0 95.1 95.9 95.1 95.9 95.0

BATCH-
SIZE 100

ST-GS 98.8 97.9 96.3 95.4 95.7 94.8 94.4 93.6
GR-MC1000 98.5 97.7 95.0 94.1 94.3 93.4 94.6 93.7

BATCH-
SIZE 200

ST-GS 97.9 97.1 94.5 93.7 93.6 92.8 93.4 92.6
GR-MC1000 97.8 97.0 94.3 93.5 93.2 92.5 93.1 92.2

17

