
A Derivation Details

A.1 Leading-Order MSE

Bias of the Kernel-Based IS Estimation [2]

Define Eπb
[·] := Es∼p(s),a∼πb(a|s),r∼p(r|s,a)[·], then the bias of a kernel-based IS estimate is:

Bias[ρ̂K ] = Eπb
[ρ̂K ]− ρπ

= Eπb

[
1

NhDA

N∑
i=1

K

(
ai −π(si)

h

)
ri

πb(ai | si)

]
− ρπ. (12)

For the first term of Eq. (12),

Eπb

[
1

NhDA

N∑
i=1

K

(
ai −π(si)

h

)
ri

πb(ai | si)

]

=
1

hDA

∫∫∫
p(s)p(r| s,a)K

(
a− π(s)

h

)
rdrdads

=

∫∫∫
rp(s)

(
p(r|s, π(s)) + h2

2
u⊤ Ha p(r|s,a)|a=π(s) u+O

(
h4
))

K(u)dudrds

= ρπ +
h2

2

∫∫
rp(s) tr

([∫
uu⊤K(u)du

]
Ha p(r|s,a)|a=π(s)

)
drd s+O

(
h4
)

= ρπ +
h2

2

∫∫
rp(s) ∇2

ap(r|s,a)
∣∣
a=π(s)

drd s+O
(
h4
)
,

∴ Bias[ρ̂K ] =
h2

2

∫∫
rp(s) ∇2

ap(r|s,a)
∣∣
a=π(s)

drd s+O
(
h4
)
, (13)

where the following relations are used in the derivation:∫
K(u)du = 1,∫
uK(u)du = 0,

κ2(K) :=

∫
uu⊤K(u)du = I (By design on K),

u :=
a− π(s)

h
,

hDAdu = da.

Taylor expansion of p(r|s,a) at a = π(s) is also used for the derivation.

p(r| s,a) = p(r| s, π(s)) + (a−π(s))⊤∇ap(r| s,a)|a=π(s)

+
1

2
(a−π(s))⊤ Ha p(r| s,a)|a=π(s)(a−π(s)) + . . .

= p(r| s, π(s)) + hu⊤∇ap(r| s,a)|a=π(s)

+
h2

2
u⊤ Ha p(r| s,a)|a=π(s)u+ . . . ,

where in the second equality, hu = a− π(s) was used.
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Variance of the Kernel-Based IS Estimation [2]

Define Eπb
[·] := Es∼p(s),a∼πb(a|s),r∼p(r|s,a)[·], then the variance of a kernel-based IS estimate is:

Var[ρ̂K ] = Var

[
1

NhDA

N∑
i=1

K

(
ai −π(si)

h

)
ri

πb(ai | si)

]

=
1

N2
×N ×Var

[
1

hDA
K

(
a−π(s)

h

)
r

πb(a | s)

]
=

1

N

{
Eπb

[(
1

hDA
K

(
a−π(s)

h

)
r

πb(a | s)

)2
]

(14)

−
(
Eπb

[
1

hDA
K

(
a−π(s)

h

)
r

πb(a | s)

])2
}
.

The second term of the Eq. (14) is,

1

N

(
Eπb

[
1

hDA
K

(
a−π(s)

h

)
r

πb(a | s)

])2

=
1

N

(
Bias[ρ̂K ] + ρπ

)2
=

1

N

[
ρπ +

h2

2

∫∫
rp(s) ∇2

ap(r|s,a)
∣∣
a=π(s)

drd s+O
(
h4
)]2

,

∴
1

N

(
Eπb

[
1

hDA
K

(
a−π(s)

h

)
r

πb(a | s)

])2

= O

(
1

N

)
. (15)

The first term of the Eq. (14) is,

1

N
Eπb

[(
1

hDA
K

(
a−π(s)

h

)
r

πb(a | s)

)2
]

=
1

N
Es∼p(s)

[∫∫
r2

p(r| s,a)
h2DAπb(a | s)

K

(
a−π(s)

h

)2

da dr

]

=
1

N
Es∼p(s)

[∫∫
r2

K(u)2

hDA

p(r| s, hu+π(s))

πb(hu+π(s)| s)
du dr

]
, (16)

where in the second equality, a = hu+π(s) was used (which comes from u = a−π(s)
h ).

Let gr(s,a) :=
p(r| s,a)
πb(a | s) , and apply Taylor expansion at a = π(s),

gr(s,a) = gr(s, π(s)) + (a− π(s))⊤∇agr(s,a) |a=π(s)

+
1

2
(a− π(s))⊤ Ha gr(s,a) |a=π(s) (a− π(s)) +O(h3).
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By using a = hu+π(s),

gr(s, hu+π(s)) = gr(s, π(s)) + hu⊤∇agr(s,a) |a=π(s) (17)

+
h2

2
u⊤ Ha gr(s,a) |a=π(s) u+O(h3).

By plugging in Eq. (17) to Eq. (16),

1

N
Es∼p(s)

[∫∫
r2

K(u)2

hDA

p(r| s, hu+π(s))

πb(hu+π(s)| s)
du dr

]
=

1

NhDA
Es∼p(s)

[∫∫
r2K(u)2

(
gr(s, π(s)) +

h2

2
u⊤ Ha gr(s,a) |a=π(s) u+O(h4)

)
du dr

]
=

R(K)

NhDA
Es∼p(s)

[∫
r2p(r| s,a = π(s))

πb(a = π(s)| s)
dr

]
+

1

2NhDA−2
Es∼p(s)

[∫∫
r2K(u)2

(
u⊤ Ha gr(s,a) |a=π(s) u+O(h4)

)
du dr

]
=

R(K)

NhDA
Es∼p(s)

[∫
r2p(r| s,a = π(s))

πb(a = π(s)| s)
dr

]
+O

(
1

NhDA−2

)
, (18)

where R(K) :=
∫
K(u)2du.

From Eq. (15) and Eq. (18), the variance can be represented as,

∴ Var[ρ̂K ] =
R(K)

NhDA
Es∼p(s)

[
E
[
r2| s,a = π(s)

]
πb(a = π(s)| s)

]
+O

(
1

NhDA−2

)
. (19)

From the derived bias (Eq. (13)) and variance (Eq. (19)), MSE can be derived:

MSE[ρ̂K ] = Bias[ρ̂K ]2 +Var[ρ̂K ]

=

(
h2

2

∫∫
rp(s) ∇2

ap(r|s,a)
∣∣
a=π(s)

drd s

)2

+O
(
h6
)

+
R(K)

NhDA
Es∼p(s)

[
E
[
r2| s,a = π(s)

]
πb(a = π(s)| s)

]
+O

(
1

NhDA−2

)
.

Assuming that h → 0 and 1
NhDA

→ 0 as N → ∞,

MSE[ρ̂K ] ≈ h4Cb +
Cv

NhDA

=: LOMSE(h,N,DA),

Cb :=

(
1

2
Es∼p(s)

[
∇2

a (E[r| s,a]) |a=π(s)

])2

, Cv := R(K)Es∼p(s)

[
E[r2| s,a = π(s)]

πb(a = π(s)| s)

]
.
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A.2 Optimal Bandwidth

The optimal bandwidth (h∗) that minimizes the leading-order MSE [2] is,

d

dh
(LOMSE(h,N,DA)) = 4h3Cb −DAh

−DA−1N−1Cv,

4(h∗)3Cb −DA(h
∗)−DA−1N−1Cv = 0,

h∗ =

(
DACv

4NCb

) 1
DA+4

.

A.3 Derivation of Eq. (6)

For the derivation, we use the following relations:

p(r | s, z) = p(r, s, z)

p(s, z)
(20)

=
p(r, s,a)

∣∣∂ a
∂ z

∣∣
p(s,a)

∣∣∂ a
∂ z

∣∣
= p(r | s,a),

Hz p(r | s, z)|z=L(s)⊤π(s) =
∂2

∂ z ∂ z⊤
p(r | s, z) (21)

=
∂

∂ z

(
∂

∂ z
p(r | s, z)

)⊤

=
∂

∂ z

(
L(s)−1 ∂

∂ a
p(r | s,a)

)⊤

, by Eq. (20)

=
∂ a

∂ z

∂

∂ a

((
∂

∂ a
p(r | s,a)

)⊤

L(s)−⊤

)

= L(s)−1 ∂2

∂ a ∂a⊤
p(r | s,a)L(s)−⊤

= L(s)−1 Ha p(r | s,a)
∣∣
a=π(s)

L−⊤(s).

By changing a of Cb in Eq. (2) to z (= L(s)⊤ a), we get:

Cb,A =

(
1

2
Es∼p(s)

[
∇2

zr (s, z) |z=L(s)⊤π(s)

])2

=

(
1

2

∫∫
rp(s) tr

(
Hz p(r | s, z)|z=L(s)⊤π(s)

)
drds

)2

=

(
1

2
Es∼p(s)

[
tr
(
L(s)−1 Ha r(s,a)

∣∣
a=π(s)

L(s)−⊤
)])2

, by Eq. (21)

=

(
1

2
Es∼p(s)

[
tr
(
(L(s)L(s)⊤)−1 Ha r(s,a)

∣∣
a=π(s)

)])2

,

∴ Cb,A =

(
1

2
Es∼p(s)

[
tr
(
A(s)−1 Ha r(s,a)

∣∣
a=π(s)

)])2

.

17



B Proofs

B.1 Proof of Proposition 1

Proposition 1. (Adapted from Noh et al. [23]) For a high dimensional action space DA ≫ 4,
and given optimal bandwidth h∗ (Eq. (3)), the squared leading-order bias dominates over the
leading-order variance in LOMSE. Furthermore, LOMSE(h∗, N,DA) can be approximated by Cb
in Eq. (2).

LOMSE(h∗, N,DA) = N
− 4

DA+4

(DA

4

) 4
DA+4

+

(
4

DA

) DA
DA+4

C
DA

DA+4

b C
4

DA+4
v ≈ Cb. (22)

Proof. By plugging in h∗ in Eq. (3) to the leading-order bias and leading-order variance in Eq. (2)
and by taking DA → ∞ (or, for DA ≫ 4), their ratio is:

lim
DA→∞

(leading-order bias)2

leading-order var
= lim

DA→∞

(
DA

4

)
= ∞. (23)

Therefore, the squared leading-order bias dominates over the leading-order variance in the LOMSE
in the high dimensional action space (DA ≫ 4).

By plugging in h∗ Eq. (3) to the LOMSE in Eq. (2) we get,

LOMSE(h∗, N,DA) = N
− 4

DA+4

(DA

4

) 4
DA+4

+

(
4

DA

) DA
DA+4

C
DA

DA+4

b C
4

DA+4

v .

By taking DA → ∞ (or, for DA ≫ 4),

lim
DA→∞

N
− 4

DA+4 = 1,

lim
DA→∞

(
4

DA

) 4
DA+4

= 0,

lim
DA→∞

C
DA

DA+4

b = Cb,

lim
DA→∞

C
4

DA+4

v = 1,

lim
DA→∞

(
DA

4

) 4
DA+4

= 1,

∴ LOMSE(h∗, N,DA) = N
− 4

DA+4

(DA

4

) 4
DA+4

+

(
4

DA

) DA
DA+4

C
DA

DA+4

b C
4

DA+4

v

≈ Cb. (for DA ≫ 4).
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B.2 Proof of Theorem 1

We use the semi-definite programming solution presented in the work of Noh et al. [22] for
computing the metric matrix A∗(s) that minimizes the tr

(
A−1(s)B(s)

)2
for nearest neighbor

classification. We use the solution to minimize the squared trace term in Eq. (7). In our case, we use
B(s) := Ha E[r| s,a]|a=π(s) which comes from Eq. (7).

Theorem 1. (Adapted from Noh et al. [22]) Assume that the p(r| s,a) is twice differentiable w.r.t.
an action a. Let Λ+(s) and Λ−(s) be diagonal matrices of positive and negative eigenvalues of the
Hessian Ha E[r| s,a]|a=π(s), U+(s) and U−(s) be matrices of eigenvectors corresponding to Λ+(s)
and Λ−(s) respectively, and d+(s) and d−(s) be the numbers of positive and negative eigenvalues of
the Hessian. Then the metric A∗(s) that minimizes Ub,A is:

A∗(s) = α(s) [U+(s)U−(s)]

(
d+(s)Λ+(s) 0

0 −d−(s)Λ−(s)

)
︸ ︷︷ ︸

=:M(s)

[U+(s)U−(s)]
⊤ , (24)

where α(s) := |M(s)|−1/(d+(s)+d−(s)).

Proof. Define B(s) := Ha r(s,a)|π(s), then we want A(s) that,

min
A(s)

(
tr
(
A(s)−1B(s)

))2
(25)

s.t. |A(s)| = 1,

A(s) ≻ 0,

A(s) = A(s)⊤.

In the cases where some of the eigenvalues of B(s) are zero, the components along the directions of
the corresponding eigenvectors can be discarded.

Minimizing Ub,A is the same as minimizing Cb,A under the condition that there are not both sets of
states with positive and negative trace terms tr

(
A(s)−1B(s)

)
. The trace term is positive or negative

when the eigenvalues of B(s) other than zero are all positive or negative, respectively. And the trace
term becomes zero when there are both negative and positive eigenvalues in the eigenvalues of B(s).
In cases where all the states have both positive and negative eigenvalues in the eigenvalues of B(s),
Cb,A = Ub,A = 0.

When there are both positive and negative eigenvalues in the eigenvalues of B(s),

A∗(s) = α(s) [U+(s)U−(s)]

(
d+(s)Λ+(s) 0

0 −d−(s)Λ−(s)

)
[U+(s)U−(s)]

⊤
,

B(s) = [U+(s)U−(s)]

(
Λ+(s) 0

0 Λ−(s)

)
[U+(s)U−(s)]

⊤
,

tr
(
A∗(s)−1B(s)

)
=

1

α(s)
tr

[U+(s)U−(s)]

 Λ−1
+ (s)

d+(s) 0

0 −Λ−1
− (s)

d−(s)

( Λ+(s) 0
0 Λ−(s)

)
[U+(s)U−(s)]

⊤


=

1

α(s)

(
d+(s)

d+(s)
− d−(s)

d−(s)

)
= 0.

When the eigenvalues of B(s) other than zero are all negative or positive, then we can solve the
Lagrangian equation F (s) in Eq. (26). We first solve for the case when the eigenvalues of B(s) other
than zero are all positive,
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F (s) = tr
(
A(s)−1B(s)

)2 − c(s)(|A(s)| − 1), (26)
∂F (s)

∂c(s)
= |A(s)| − 1 = 0,

∂F (s)

∂A(s)
= −2 tr

(
A(s)−1B(s)

)
A(s)−⊤B(s)⊤A(s)−⊤ − c(s)|A(s)|A(s)−⊤ = 0. (27)

From Eq. (27),

c(s)I = −2 tr
(
A(s)−1B(s)

)
A(s)−1B(s). (28)(

since A(s) = A(s)⊤, B(s) = B(s)⊤, |A(s)| = 1
)

(i) Assume c(s) = 0 in Eq. (28),

Then either tr
(
A(s)−1B(s)

)
= 0, or, A(s)−1B(s) = 0.

We first check if tr
(
A(s)−1B(s)

)
= 0.

tr
(
A(s)−1B(s)

)
= tr

(
B(s)

1
2A(s)−1B(s)

⊤
2

)
. (29)

Since B(s) = U+(s)Λ+(s)U+(s)
⊤, B(s)

1
2 = B(s)

⊤
2 = U+(s)Λ+(s)

1
2U+(s)

⊤. And as
A(s) ≻ 0, its inverse is also positive definite A(s)−1 ≻ 0. Using these relations, we can
show that the term inside the trace in Eq. (29) is a positive definite matrix.

a⊤
[
B(s)

1
2A(s)−1B(s)

⊤
2

]
a =

(
B(s)

⊤
2 a
)⊤

A(s)−1
(
B(s)

⊤
2 a
)

> 0, ∀a ∈ RDA\{0}.

Therefore B(s)
1
2A(s)−1B(s)

⊤
2 ≻ 0 and tr

(
B(s)

1
2A(s)−1B(s)

⊤
2

)
> 0. Then, from

Eq. (29),

tr
(
A(s)−1B(s)

)
> 0,

A(s)−1B(s) ̸= 0, as it’s trace is positive.

Therefore, the assumption is wrong, and c(s) ̸= 0.

(ii) Assume c(s) ̸= 0,

Since the Lagrangian multiplier c(s) and tr
(
A(s)−1B(s)

)
in Eq. (28) are scalar values,

A(s) needs to be a scalar multiple of B(s) (which is symmetric) to match the scalar multiple
of identity matrix in the LHS of Eq. (28) while satisfying A(s) ≻ 0 and |A(s)| = 1.
Therefore the A∗(s) is,

∴ A∗(s) = α(s)U+(s) [d+(s)Λ+(s)]U+(s)
⊤. (30)

Similarly, we can also derive A∗(s) for the case where all eigenvalues of B(s) are negative.
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B.3 Proof of Theorem 2

Theorem 2. (Adapted from Kallus and Zhou [2]) Kernel-based IS estimator with the optimal metric
A∗(s) from Eq. (8) and the optimal bandwidth h∗ in Eq. (3) is a consistent estimator in which
convergence rate is faster than or equal to that of the isotropic kernel-based IS estimator with h∗.
When the Hessian Ha r(s,a)|a=π(s) has both positive and negative eigenvalues for all states, A∗(s)
applied estimator converges to the true policy value faster than the one without the metric by the rate
of O(D

− 1
2

A ) as the action dimension increases.

Proof. The MSE of a kernel-based IS estimation without a metric derived by Kallus and Zhou [2] in
terms of bandwidth h, data size of N , and action dimension DA is (derivation in Appendix A.1),

MSE(h,N,DA) = h4Cb +O
(
h6
)︸ ︷︷ ︸

Bias[ρ̂K ]2

+
Cv

NhDA
+O

(
1

NhDA−2

)
︸ ︷︷ ︸

Var[ρ̂K ]

, (31)

where the MSE consists of squared bias and the variance of the estimate ρ̂K . Since the optimal

bandwidth presented in Eq. (3) is h∗ = O
((

DA

N

) 1
DA+4

)
, and N ≫ DA, the MSE with h∗ and

without a metric is as follows:

MSE(h∗, N,DA) = O

((
DA

N

) 4
DA+4

)
+O

N−1

(
DA

N

) −DA
DA+4

 (32)

= O

((
DA

N

) 4
DA+4

)
+O

((
DA

N

) 4
DA+4 1

DA

)
(33)

= O

((
DA

N

) 4
DA+4

)
. (34)

Since the MSE of the kernel-based IS estimator with h∗ converges to zero by O
((

DA

N

) 4
DA+4

)
, The

estimation approaches to the true policy value by the rate of O
((

DA

N

) 2
DA+4

)
.

For the optimal metric applied kernel-based IS estimator, its convergence rate can be computed
similarly to that of the isotropic kernel-based IS when Cb,A∗ ̸= 0 (Cb,A∗ is Cb,A with A = A∗), then
the resulting convergence rate is the same as that of the isotropic kernel-based IS estimator.

However, in the best case where the Hessians Ha r(s,a)|a=π(s) contain both negative and positive
eigenvalues for all states, Cb,A∗ = 0. Then, the MSE with the optimal metric and the optimal
bandwidth MSE(h∗, A∗, N,DA) converges to zero by:

MSE(h∗, A∗, N,DA) = (h∗)4���Cb,A∗ +O
(
(h∗)6

)
+

Cv

N(h∗)DA
+O

(
1

N(h∗)DA−2

)
(35)

= O

((
DA

N

) 6
DA+4

)
+O

((
DA

N

) 4
DA+4 1

DA

)
(36)

= O

((
DA

N

) 4
DA+4 1

DA

)
, (37)

where Cv does not change by applying the optimal metric to a kernel due to the constraint |A∗(s)| = 1.
In the best case where there are both positive and negative eigenvalues for all states, the MSE of our

21



metric applied kernel-based IS estimation converges to zero faster than the one without the metric by
the rate of O(D−1

A ):

MSE(h∗, A∗, N,DA)

MSE(h∗, N,DA)
= O

(
1

DA

)
. (38)

Therefore, our algorithm converges to the true policy value faster than the one without the metric by
the rate of O(D

− 1
2

A ) in the best case.

C Algorithm Details

C.1 Regularizers for the KMIS Metric

To compute the regularizers β(s) and γ(s) in Eq. (10), we first compute Y (s) in Eq. (40) by adding a
small positive real coefficient ϵ(s) to X(s) in Eq. (39).

X(s) := [U+(s)U−(s)U0(s)]

 d+(s)Λ+(s) 0 0
0 −d−(s)Λ−(s) 0
0 0 0

 [U+(s)U−(s)U0(s)]
⊤ , (39)

Y (s) := X(s) + ϵ(s)I. (40)

We designed ϵ(s) to be relatively smaller than the eigenvalues of A∗(s)
α(s) (Eq. (8)). For the exper-

iments, ϵ(s) was assigned to be the maximum absolute value among eigenvalues of the Hessian
Ha r(s,a)|a=π(s) multiplied by 0.01.

When Y (s) is scaled to have determinant of one, then it becomes Â(s). We scale Y (s) by multiplying

β(s) = |Y (s)|
−1
DA . Then, γ(s) = β(s)ϵ(s).

D Additional Experiment

D.1 Experiment with Various Noise Levels in the Rewards

When the noise in the rewards of the quadratic reward domain increases, DM suffers the most as
the function estimation becomes more difficult as the noise increases. Other algorithms also show
an increase in MSEs as the noise increases. The KMIS metric applied kernel-based IS estimator
performs the best with the learned metric even though the DM, which the KMIS uses to estimate the
Hessians required for the metric learning, performs the worst.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Noise Std

4

2

0

2

4

lo
g(

M
SE

)

Kallus & Zhou
Kallus & Zhou + KMIS (ours)

SLOPE
SLOPE + KMIS (ours)

DM

Figure 5: Performance of OPE algorithms in the modified quadratic reward domain with various
standard deviations of the Gaussian noise in the rewards. Means and standard errors of squared errors
were obtained from 100 trials with 40k samples.
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E Experiment Details

For all experiments, we used a neural network reward regressor with 2 fully-connected layers of
128 hidden units with tanh activations, and a Gaussian output layer. The neural network was trained
with learning rate of 5e-4. The learning rate was chosen by conducting grid search over {1e-4, 5e-4,
1e-3}. The reward regressor was trained with early stopping rule where we stop training when the
validation error does not decrease for 20 training epochs. And we used the trained weights that
showed the lowest validation error during the training. For the train and validation split, 20% of the
available offline data was used as the validation data, and the rest of the data was used for the training.
For the estimation time, when we test our algorithm on the absolute error domain, our algorithm
takes 40 seconds on average to make an OPE estimate with 20k offline data on the i7 CPU with
32GB RAM. The experimental results were made with 100 C2-standard-4 instances on the Google
Cloud Platform where each instance has 4 virtual CPUs and 16GB of RAM. The code is available at
https://github.com/haanvid/kmis.

Self-Normalization All estimators in the experiments are self-normalized as in the work of Kallus
and Zhou [2]. Self-normalization is used because it reduces the estimation variance significantly
with the addition of a small bias and yields smaller MSE compared to the estimation without self-
normalization [2, 13]. The self-normalized kernel-based IS estimator without a metric is shown in
Eq. (41):

ρ̂Knorm =

∑N
i=1

ri
πb(ai | si)K

(
ai −π(si)

h

)
∑N

i=1
1

πb(ai | si)K
(

ai −π(si)
h

) . (41)

No Boundary Bias Correction Action space can be bounded, and the kernels used in importance
sampling can be extended past the bounds. As the actions of the offline data are only observed inside
the bounds, the kernels extending outside the bounds will induce bias. Previous works [2, 5] made a
correction for the induced bias by truncating the kernel by the action bounds of each dimension and
normalizing the kernel. However, we do not correct the boundary bias for all estimators in this work
since we regard the boundary bias as negligible compared to the bias reduced by our locally learned
metric. Removing the boundary bias correction makes kernel-based IS estimators simpler to use than
those with corrections, as the implementation of boundary bias correction requires information on the
action bounds, and the integration of the kernel within the action bounds.

Discretized OPE Estimator Discretized OPE estimator discretizes the action space bounded by
the minimum and maximum value of the behavior actions for each dimension with the given number
of bins assigned for each dimension. In our experiment, we discretized each action dimension by 10
intervals resulting in 100 discretized bins in 2D action space. The IS ratio of the discretized OPE
estimator is composed of the indicator function in the numerator and the behavior policy probability
density function integrated over the bin in the denominator.

E.1 Synthetic Domains Experiments

For synthetic domains, we used dropout after each hidden layer with dropout rate of 0.5. Behavior
policy density values were clipped below 0.1 for the quadratic reward domain as in the works of
Kallus and Zhou [2]. For absolute error domain and multi-modal reward domain, as their behavior
policy density is uniform density, we did not apply behavior density value clipping. Clipping the
behavior policy density value adds a small bias to the estimation but reduces a significant variance.
Therefore, clipping reduces MSEs [2]. For SLOPE, we select a bandwidth from geometrically spaced
bandwidths

{
2−i : i ∈ [1, 7], i ∈ N

}
as in the work of Su et al. [5].
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Quadratic Reward Domain The conditional reward distribution given a state s and an action a is:

p(r| s,a) = N
(
r(s,a), 0.52

)
, (42)

where r(s,a) := E[r| s,a]. The mean reward of a quadratic reward domain given a state s and an
action a is:

r(s,a) = −(s− a)⊤
[

11 9
9 11

]
(s− a). (43)

Absolute Error Domain Each dimension of actions and states is sampled uniform randomly in
the range of [−1, 1]. The absolute error which is only dependent on the first dimension of action is
designed as:

r(s,a) = − |0.5s1 − a1| , (44)

where the reward is not sampled from a distribution but determined by a state s and an action a.

Multi-Modal Reward Domain Each dimension of actions and states is sampled uniform randomly
in the range of [−1, 1]. The multi-modal reward with exponential functions is designed as:

f1(s,a) = exp

(
−

((
(s1 − a1)− 0.5

0.25

)2

+

(
(s2 − a2)

1

)2
))

,

f2(s,a) = exp

(
−

((
(s1 − a1) + 0.5

0.25

)2

+

(
(s2 − a2)

1

)2
))

,

f3(s,a) = exp

(
−

((
(s1 − a1)

1

)2

+

(
(s2 − a2) + 0.5

0.25

)2
))

,

f4(s,a) = exp

(
−

((
(s1 − a1)

1

)2

+

(
(s2 − a2)− 0.5

0.25

)2
))

,

r(s,a) = −max (f1(s,a), f2(s,a), f3(s,a), f4(s,a)) , (45)

where the reward is not sampled from a distribution but determined by a state s and an action a.

E.2 Warfarin Data Experiments

For the Warfarin data, we used L2 regularizer for the 2 hidden layers with the coefficient of 1e-1. The
L2 regularizer coefficient was chosen by conducting grid search over {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}.
We selected the L2 regularization coefficient that has a lowest validation error (the offline dataset
D was splitted into train and validation datasets) for the reward regressor. Behavior policy density
values less than 1e-1 were clipped as in the work of Kallus and Zhou [2]. For SLOPE, we selected a
bandwidth from

{
2−i : i ∈ [−2, 7], i ∈ N

}
similar to the work of Su et al. [5].

24



F Theoretical Analysis

F.1 Effect of the Hessian Estimation Error on the Estimation Error and the Convergence
Speed of the KMIS Metric Applied Kernel-Based IS Estimator

Error Analysis As Cv of the leading-order variance in Eq. (2) does not change by applying a
metric to a kernel due to the constraint |A(s)| = 1, the LOMSE of a kernel-based IS OPE estimator
with bandwidth h and metric A can be derived as in Eq. (46) by replacing Cb in Eq. (2) with Cb,A in
Eq. (6)).

LOMSE(h,A,N,DA) = h4Cb,A︸ ︷︷ ︸
=:LOBIAS(h,A)2

+
Cv

NhDA
, (46)

Cb,A :=
1

4
Es∼p(s)

[
tr
(
A(s)−1H(s)

)]2
,

Cv := R(K)Es∼p(s)

[
E[r2| s,a = π(s)]

πb(a = π(s)| s)

]
.

To reduce the LOMSE, our proposed method learns the metric that minimizes Ub,A (Eq. (7)), which
is the upper bound of Cb,A. For the minimization of Ub,A, we derived the optimal metric matrix
A∗(s) given the true Hessian H(s) := Ha E[r| s,a]|a=π(s) in Appendix B.2. However, since we
will be using the estimated Hessian matrix H̃(s) acquired from a reward regressor to compute the
estimated optimal metric matrix Ã(s), we analyze how the error in H̃(s) affects the LOMSE of the
KMIS metric applied IS estimation.

In Appendix B.2, we proved that when H(s) contains both positive and negative eigenvalues, the
optimal metric makes the squared leading-order bias LOBIAS(h,A∗)2 zero by making the the trace
term tr(A∗(s)−1H(s)) zero. In this section, we analyze the upper bound of LOBIAS(h, Ã)2 in a
similar setting where the H(s) has both positive and negative eigenvalues without zero eigenvalues.
For our analysis, we use the following notations regarding the true Hessian H(s), the optimal metric
matrix computed from the true Hessian A∗(s), estimated Hessian from the reward regressor H̃(s),
and the optimal metric matrix computed from the estimated Hessian Ã(s):

H(s) = [U+(s)U−(s)]

(
Λ+(s) 0

0 Λ−(s)

)
[U+(s)U−(s)]

⊤
, (47)

A∗(s) = α(s) [U+(s)U−(s)]

(
d+(s)Λ+(s) 0

0 −d−(s)Λ−(s)

)
[U+(s)U−(s)]

⊤
, (48)

Λ(s) =

(
Λ+(s) 0

0 Λ−(s)

)
,

Λ+(s) =

 λ+,1(s) 0 · · ·
0 λ+,2(s)
...

. . .

 ,

U+(s) =

( | |
u+,1(s) u+,2(s) · · ·

| |

)
,

α(s) =


d+(s)

d+(s)

d+(s)∏
i=1

λ+,i(s)

(−1)d−(s)d−(s)
d−(s)

d−(s)∏
i=1

λ−,i(s)


− 1

d+(s)+d−(s)

,

(49)
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H̃(s) =
[
Ũ+(s)Ũ−(s)

](
Λ̃+(s) 0

0 Λ̃−(s)

)[
Ũ+(s)Ũ−(s)

]⊤
, (50)

Ã(s) = α̃(s)
[
Ũ+(s)Ũ−(s)

](
d+(s)Λ̃+(s) 0

0 −d−(s)Λ̃−(s)

)[
Ũ+(s)Ũ−(s)

]⊤
, (51)

Λ̃(s) =

(
Λ̃+(s) 0

0 Λ̃−(s)

)
,

α̃(s) =


d+(s)

d+(s)

d+(s)∏
i=1

λ̃+,i(s)

(−1)d−(s)d−(s)
d−(s)

d−(s)∏
i=1

λ̃−,i(s)


− 1

d+(s)+d−(s)

(52)

=
(
(−1)d−(s)d+(s)

d+(s)d−(s)
d−(s)|H̃(s)|

)− 1
DA

> 0,

where we used eigendecomposition on H(s). Λ+(s) and Λ−(s) are diagonal matrices containing
positive and negative eigenvalues, respectively. U+(s) and U−(s) are matrices containing eigenvec-
tors corresponding to Λ+(s) and Λ−(s), respectively. Similarly, Λ̃+(s), Λ̃−(s), Ũ+(s), Ũ−(s) are
decomposed from H̃(s). We assume that H̃(s) correctly estimates the sign (positive, negative signs)
of the eigenvalues in H(s). Because of the assumption, there are d+(s) and d−(s) in Eq. (51) and
Eq. (52) instead of d̃+(s) and d̃−(s). We quantify the error in H̃(s) with constants ϵ and η (ϵ ≥ 0,
η > 0) by:

|ũa,i(s)
⊤ua,i(s)− 1| ≤ ϵ, (53)

|ũa,i(s)
⊤ub,j(s)| ≤ ϵ, if a ̸= b, or i ̸= j, (54)

∥Λ̃(s)−1Λ(s)− I∥ ≤ ϵ, (55)

0 <
λa,i(s)

λ̃a,j(s)
≤ η, if i ̸= j, (56)

−η ≤ λa,i(s)

λ̃b,j(s)
< 0, if a ̸= b, (57)

where a, b ∈ {+,−},
i, j ∈ {1, 2, 3, · · · }.

The trace term tr(Ã(s)−1H(s)) in the LOBIAS(h, Ã)2 is,

tr(Ã(s)−1H(s))

=
1

α̃(s)
tr
(
[d+(s)Ũ+Λ̃+Ũ

⊤
+ − d−Ũ−Λ̃−Ũ

⊤
− ]−1[U+Λ+U

⊤
+ + U−Λ−U

⊤
− ]
)

(58)

=
1

α̃(s)
tr

(
1

d+
Ũ+Λ̃

−1
+ Ũ⊤

+U+Λ+U
⊤
+ +

1

d+
Ũ+Λ̃

−1
+ Ũ⊤

+U−Λ−U
⊤
− (59)

− 1

d−
Ũ−Λ̃

−1
− Ũ⊤

−U+Λ+U
⊤
+ − 1

d−
Ũ−Λ̃

−1
− Ũ⊤

−U−Λ−U
⊤
−

)

=
1

α̃(s)d+(s)

d+(s)∑
j=1

d+(s)∑
i=1

λ+,i(s)

λ̃+,j(s)
(ũ+,j(s)

⊤u+,i(s))
2 +

d+(s)∑
j=1

d−(s)∑
i=1

λ−,i(s)

λ̃+,j(s)
(ũ+,j(s)

⊤u−,i(s))
2


︸ ︷︷ ︸

=:X(s)

− 1

α̃(s)d−(s)

d−(s)∑
j=1

d+(s)∑
i=1

λ+,i(s)

λ̃−,j(s)
(ũ−,j(s)

⊤u+,i(s))
2 +

d−(s)∑
j=1

d−(s)∑
i=1

λ−,i(s)

λ̃−,j(s)
(ũ−,j(s)

⊤u−,i(s))
2


︸ ︷︷ ︸

=:Y (s)

,

(60)

where in the third equality, we used:
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tr(ŨaΛ̃
−1
a Ũ⊤

a UbΛbU
⊤
b ) =

da(s)∑
j=1

db(s)∑
i=1

λb,i(s)

λ̃a,j(s)
(ũa,j(s)

⊤ub,i(s))
2,where a, b ∈ {+,−}. (61)

By expanding X(s),

X(s) =
1

α̃(s)d+(s)

d+(s)∑
i=1

λ+,i(s)

λ̃+,i(s)
(ũ+,i(s)

⊤u+,i(s))
2 +

(d+(s),d+(s))∑
i ̸=j

λ+,i(s)

λ̃+,j(s)
(ũ+,j(s)

⊤u+,i(s))
2

+

d+(s)∑
j=1

d−(s)∑
i=1

λ−,i(s)

λ̃+,j(s)
(ũ+,j(s)

⊤u−,i(s))
2

 . (62)

We get the following inequality for X(s) by applying Eq. (53-57):
1

α̃(s)

{
(1− ϵ)3 − d−(s)ηϵ

2
}

︸ ︷︷ ︸
=:Xl(s)

≤ X(s) ≤ 1

α̃(s)

{
(1 + ϵ)3 + (d+(s)− 1)ηϵ2

}
︸ ︷︷ ︸

=:Xu(s)

. (63)

Similarly, we get,
1

α̃(s)

{
(1− ϵ)3 − d+(s)ηϵ

2
}

︸ ︷︷ ︸
=:Yl(s)

≤ Y (s) ≤ 1

α̃(s)

{
(1 + ϵ)3 + (d−(s)− 1)ηϵ2

}
︸ ︷︷ ︸

=:Yu(s)

. (64)

The trace term tr(Ã(s)−1H(s)) (= X(s)− Y (s)) satisfies the following inequality:

Xl(s)− Yu(s) ≤ tr(Ã(s)−1H(s)) ≤ Xu(s)− Yl(s). (65)

Then the absolute value of the trace term satisfies the following inequality:

| tr(Ã(s)−1H(s))| ≤ max{|Xu(s)− Yl(s)|, |Xl(s)− Yu(s)|}, (66)

In Eq. (66), |Xu(s)− Yl(s)|, |Xl(s)− Yu(s)| are,

|Xu(s)− Yl(s)| =
1

α̃(s)

{
6ϵ+ 2ϵ3 + ηϵ2(2d+(s)− 1)

}
, (67)

|Xl(s)− Yu(s)| =
1

α̃(s)

{
6ϵ+ 2ϵ3 + ηϵ2(2d−(s)− 1)

}
, where d+(s), d−(s) ≥ 1, ϵ ≥ 0, η > 0.

(68)

By defining dmax(s) := max{d+(s), d−(s)}, we can rewrite Eq. (66):

| tr(Ã(s)−1H(s))| ≤ 1

α̃(s)

{
ηϵ2(2dmax(s)− 1) + 6ϵ+ 2ϵ3

}
. (69)

Then we get the following upper bound of LOBIAS(h, Ã(s))2:

LOBIAS(h, Ã)2 ≤ h4

4α̃(s)2
[
ηϵ2(2dmax(s)− 1) + 6ϵ+ 2ϵ3

]2
. (70)

When there is no error in the Hessian estimation acquired from the reward regressor (when ϵ = 0),
the upper bound of LOBIAS(h, Ã)2 in Eq. (70) is zero. Thus, LOBIAS(h, Ã)2 is zero, and this is
consistent with what we have derived in Appendix B.2 with H(s). But when there is an error in
the Hessian estimation (when ϵ > 0), the LOBIAS(h, Ã)2 of the KMIS estimator is upper bounded
by h4

4α̃(s)2

[
ηϵ2(2dmax(s)− 1) + 6ϵ+ 2ϵ3

]2
. Therefore, the LOMSE(h, Ã,N,DA) can be larger

than LOMSE(h,A∗, N,DA) up to h4

4α̃(s)2

[
ηϵ2(2dmax(s)− 1) + 6ϵ+ 2ϵ3

]2
due to the Hessian

estimation error when H(s) has both positive and negative eigenvalues without zero eigenvalues.
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Convergence Speed Analysis Now we analyze the convergence speed of the KMIS estimator with
H̃(s) with additional assumptions that |H̃(s)|, η, ϵ are bounded and the optimal bandwidth h∗ is
given since bandwidth is an input to our algorithm. MSE with bandwidth h and metric A can be
derived as in Eq. (71) by replacing Cb in Eq. (31) with Cb,A in Eq. (6).

MSE (h,A,N,DA) = h4Cb,A︸ ︷︷ ︸
=:LOBIAS(h,A)2

+O
(
h6)+ Cv

NhDA
+O

(
1

NhDA−2

)
, (71)

where Cv does not change by applying a metric to a kernel due to the constraint |A(s)| = 1. By using

the upper bound of LOBIAS(h, Ã)2 in Eq. (70), and also using h∗ = O
((

DA

N

) 1
DA+4

)
from Eq. (3)

on Eq. (71), we get:

MSE(h∗, Ã, N,DA)

= O

(
(h∗)4

(
dmax(s)

α̃(s)

)2

η2ϵ4
)

+O
(
(h∗)6

)
+O

(
Cv

N(h∗)DA

)
+O

(
1

N(h∗)DA−2

)
(72)

= O

((
DA

N

) 4
DA+4

(
dmax(s)

α̃(s)

)2

η2ϵ4
)

+O

((
DA

N

) 4
DA+4 1

DA

)
, where N ≫ DA.

(73)

As for the first term of Eq. (73),

O

((
DA

N

) 4
DA+4

(
dmax(s)

α̃(s)

)2

η2ϵ4
)

= O

(DA

N

) 4
DA+4

(dmax(s))
2
(
d+(s)

d+(s)d−(s)
d−(s)

) 2
DA︸ ︷︷ ︸

=:Q(s)

η2ϵ4

 , (74)

∵ |H̃(s)| is bounded.

Assuming that dmax(s) = d+(s), Q(s) monotonically increases w.r.t. d+(s).

Q(s) =
(
d+(s)

d+(s)(DA − d+(s))
(DA−d+(s))

) 2
DA ,

dQ(s)

d(d+(s))
=

2

DA
d+(s)

2d+(s)

DA (DA − d+(s))
2(DA−d+(s))

DA

(
ln

d+(s)

DA − d+(s)

)
≥ 0

(
∵ DA − 1 ≥ d+(s) = dmax(s) ≥

DA

2

)
. (75)

The maximum of Q(s) is (when d+(s) = DA − 1)

Q(s) = (DA − 1)
2− 2

DA . (76)

The minimum of Q(s) is (when d+(s) =
DA

2 )

Q(s) =

(
DA

2

)2

. (77)

We can assume dmax(s) = d−(s) and show that the maximum and minimum of Q(s) are the same.
Therefore,

Q(s) = O
(
(DA)

2
)
. (78)
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With Eq. (78) and using the relation DA − 1 ≥ dmax(s) ≥ DA

2 on Eq. (74),

O

((
DA

N

) 4
DA+4

(
dmax(s)

α̃(s)

)2

η2ϵ4

)
= O

((
DA

N

) 4
DA+4

(DA)
4η2ϵ4

)
. (79)

By plugging in Eq. (79) to Eq. (73),

MSE(h∗, Ã, N,DA) = O

((
DA

N

) 4
DA+4

(DA)
4η2ϵ4

)
+O

((
DA

N

) 4
DA+4 1

DA

)
. (80)

When the estimated Hessian H̃(s) has no error (when ϵ = 0), the convergence speed derived in
Eq. (80) matches the convergence speed of the KMIS estimator with a true Hessian derived in
Appendix B.3.

However, when there is an error in the estimated Hessian (when ϵ > 0), MSE of a KMIS estimator
with the estimated Hessian converges to zero slower by rate of O((DA)

5) compared to the KMIS
with a true Hessian:

MSE(h∗, Ã, N,DA)

MSE(h∗, A∗, N,DA)
= O

(
(DA)

5
)
. (81)

Therefore, the KMIS estimator with the estimated Hessian has a slower convergence rate to a true
policy value than the KMIS estimator with a true Hessian by the rate of O((DA)

5
2 ).
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