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Abstract

We investigate how shallow ReLU networks interpolate between known regions1

as the number of data points and parameters tends to infinity. Our analysis yields2

convergence to a minimum norm interpolant when a weight decay regularizer is3

penalized with a coefficient which vanishes at a precise rate as the network width4

and the number of data points grow. With and without explicit regularization, we5

numerically study the implicit bias of common optimization algorithms towards6

known minimum norm interpolants.7

1 Introduction8

Modern neural networks mostly operate in an overparametrized regime, i.e. they possess more tunable9

parameters than the number of data points contributing to the loss function. Safran and Shamir10

[2018a], E et al. [2019b], Du et al. [2018], Chizat and Bach [2018] associate overparametrization with11

better training properties, and Belkin et al. [2019, 2020] find it to enhance statistical generalization12

(see also [Loog et al., 2020] for historical context). For many architectures, overparametrization13

leads to the ability to fit any values yi at a given set of data points {x1, . . . , xn}, and Cooper [2018]14

shows that generically, the set of weights for which the neural network interpolates prescribed values15

is a submanifold of high dimension and co-dimension in parameter space. Which solution on the16

manifold is dynamically chosen by an optimization algorithm, and which solutions have favorable17

generalization properties, is an active area of research in theoretical machine learning.18

Current practice is to estimate a model’s generalization to previously unseen data by assessing its19

performance on a hold-out set (a posteriori error estimate) or by using uniform estimates on the20

generalization of all elements of a function class (a priori estimate if the function class is encoded21

ahead of time by explicit regularization, a posteriori if membership is determined after optimization).22

Neither approach yields information on what a neural network does outside the support of the data23

distribution, a topic of great interest for the study of distributional shift and adversarial stability.24

There are two complementary contributions of this work:25

1. We prove that minimizers of regularized risk functionals converge to minimum norm26

interpolants of a given target function in an infinite parameter limit.27

2. We study the performance of optimization algorithms by comparing numerical solutions to28

the minimum norm interpolant in cases where the latter is known explicitly. We believe this29

to be a useful benchmark problem for a better understanding of explicit regularization and30

implicit bias in optimization.31

Minimum norm interpolants are the regression analogue to maximum margin classifiers. They are32

associated with favorable generalization properties and relative stability even against adversarial33

perturbations.34
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1.1 Previous work35

Minimum norm interpolation. In classes of linear functions, minimum norm interpolation has a36

long history as ridge regression (minimal ℓ2-norm) or as the least absolute shrinkage selection and37

operator (LASSO, minimal ℓ1-norm). To the best of our knowledge, minimum norm interpolation by38

neural networks has only been studied for shallow neural networks in one dimension by Hanin [2021]39

and in odd dimension for certain radially symmetric data by Wojtowytsch [2022]. For classification40

problems, minimum norm/maximum margin classifiers were considered by E and Wojtowytsch41

[2022]. For finite datasets, the set of minimum norm interpolants was characterized by Parhi and42

Nowak [2021]. A parametrization of the same function class by neural networks with multiple linear43

layers and a single ReLU layer induces different concepts of minimum norm interpolation as studied44

by Ongie and Willett [2022].45

Implicit bias. The implicit bias of parameter optimization algorithms has been studied for gradient46

flows with infinitely wide, but shallow ReLU networks by Chizat et al. [2019] and for stochastic47

gradient descent and diagonal linear networks by Pesme et al. [2021]. Chizat and Bach [2020] prove48

convergence to a maximum margin classifier for infinitely wide ReLU networks with one hidden layer49

if the parameters follow the gradient flow of an (unregularized) logistic loss risk functional. Many50

authors, including Damian et al. [2021], Li et al. [2021], Wu et al. [2022] and Wojtowytsch [2020],51

study the bias of SGD towards solutions at which the loss landscape is ‘flat’ in the parameter space.52

Hochreiter and Schmidhuber [1997] conjectured such minimizers to have favorable generalization53

properties. In many cases, minimizers tend to be flatter if the parameters associated to them are not54

excessively large. Yang et al. [2021] describe several phase-transitions in parameter space for the55

relation between flatness in parameter space and generalization. Zhou et al. [2020] compare the56

implicit bias of SGD and ADAM.57

Barron space. The Barron class is adapted to ReLU networks with a single hidden layer and58

weights of bounded average magnitude. Slightly different versions of the same function space have59

been studied by Bach [2017], E et al. [2019a,c], Ongie et al. [2019], E and Wojtowytsch [2020, 2021],60

Caragea et al. [2020], Parhi and Nowak [2021], Wojtowytsch [2022], Siegel and Xu [2022, 2023]61

under various names such as F1, Radon-BV or the variation space of the ReLU dictionary.62

1.2 Preliminaries63

Conventions. µ always denotes a σ2-sub-Gaussian probability measure on the data domain Rd, i.e.64

∃ C, σ > 0 s.t. EX∼µ

[
exp (λ{∥X∥ − E∥X∥})

]
≤ C exp

(
λ2σ2

2

)
∀ λ > 0.

All norms are Frobenius norms (ℓ2-norm for vectors). For n ∈ N, Sn = {xn,1, . . . , xn,n} is a set of65

n iid samples from the distribution µ, independent of Sn′ for n′ ̸= n. When unambiguous, we denote66

xn,i = xi. We take ℓ(f, y) = |f − y|2 as the mean squared error/ℓ2-loss function, but we remark that67

the theoretical analysis remains valid if ℓMSE is replaced by ℓ1-loss or a Huber or pseudo-Huber loss68

ℓHub(f, y) =

{
|f − y|2 if |y − f | < 1

2|y − f | − 1 if |y − f | ≥ 1
, ℓpH(y, h) =

√
1 + |y − f |2 − 1.

For m ∈ N and (a,W, b) ∈ Rm × Rm×d × Rm+1, let69

f(a,W,b) : Rd → R, f(a,W,b)(x) = b0+

m∑
i=1

ai σ(wi · x+ bi), σ(z) = ReLU(z) = max{z, 0},

i.e. f(a,W,b) is a ReLU network with a single hidden layer and weights a,W and biases b. The vector70

wi ∈ Rd is the i-th row of the matrix W . For m,n ∈ N and λ ≥ 0, we denote the regularized71

empirical risk functional as R̂n,m,λ : Rm × Rm×d × Rm+1 → [0,∞):72

R̂n,m,λ(a,W, b) =
1

2n

n∑
i=1

ℓ
(
f(a,W,b)(xi), yi

)
+

λ

2

(
∥a∥22 + ∥W∥2Frob

)
.
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Concepts. We introduce what we dub ‘homogeneous Barron space’ B heuristically here, and in73

greater detail in Appendix C. As a measure of magnitude of the function, we consider the weight74

decay (or Tikhonov) regularizer 1
2

(
∥a∥22 + ∥W∥2Frob

)
of the parametrized function f(a,W,b) which75

does not control the magnitude of the bias vector.76

Note that the function class f(a,W,b) and its complexity do not change when we consider representa-77

tions of the form fm(x) = 1
m

∑m
i=1 ai σ(wi · x+ bi) with a regularizer 1

2m

(
∥a∥22 + ∥W∥2Frob

)
=78

1
2m

∑m
i=1

(
a2i + ∥wi∥22

)
. A continuum analogue to these functions represented as an ‘empirical aver-79

age’ over individual neurons is a general expectation representation fπ(x) = E(a,w,b)∼π

[
a σ(wTx+80

b)
]

for some probability distribution π on parameter space and a regularizer 1
2E(a,w,b)∼π[a

2 + ∥w∥22].81

As the parametrization of a function by a neural network is generally non-unique, we define the82

Barron semi-norm [f ]B = inf{π:fπ≡f} E(a,w,b)∼π[a
2 + ∥w∥22] as the lowest value attained by the83

regularizer over all possible parametrizations. For a more comprehensive understanding, interested84

readers may refer to Appendix C.85

2 General convergence result86

We first state a general convergence result to a minimum norm interpolant of given data generated by87

functions in the homogeneous Barron class B.88

Theorem 2.1. Take µ, Sn, R̂n,m,λ as in Section 1.2, f∗ ∈ B, and let yi = f∗(xi) for i = 1, . . . , n.89

Assume that m,λ are parameters which scale with n as mn, λn such that90

lim
n→∞

(
λn +

1

mn

)
= 0, lim

n→∞

(
1

λn mn
+

log n

λn
√
n

)
= 0. (1)

Then almost surely over the random selection of data points in Sn, the following holds: If91

(a,W, b)n ∈ argmin R̂n,mn,λn for all n ∈ N, then every subsequence of fn := f(a,W,b)n has a92

further subsequence which converges to some limit f̂∗ ∈ B with f̂∗ = f∗ µ-almost everywhere and93

[f̂∗]B ≤ [f∗]B. Convergence holds in Lp(µ) for all p < ∞ and uniformly on compact subsets of Rd.94

If Eµ∥x∥+ σ2 ≥ 1, then for all n ≥ 2, the following explicit bound holds up to higher order terms in95

n,m = mn, λ = λn with probability at least 1− 1/n2:96

∥f(a,W,b)n − f∗∥2L2(µ) ≤ C

(
[f∗]2B
m

Eµ

[
∥x∥2

]
+ [f∗]2B

(
Eµ∥x∥+ σ2

) log n√
n

+ λ [f∗]B

)
. (2)

If the data-distribuion µ is supported on the entire space Rd (e.g. a non-degenerate Gaussian), then97

f̂∗ ≡ f∗. In many cases, however, µ is supported on a small, potentially compact and generally98

low-dimensional subset M of the data space. In this case, the function f∗ is only known on the closed99

set M ⊊ Rd. As a result, there are many f ∈ B such that f ≡ f∗ on M while f ̸≡ f∗ on Rd in100

general. The subsequential limit is one of these functions which has a minimal semi-norm [f ]B.101

Thus, beyond knowing that fn asymptotically fits the function f∗ perfectly at known data, Theorem102

2.1 provides information about how it may interpolate at points where µ has no information. Such103

knowledge is of interest when a population may naturally evolve in time (distributional shift) of if fn104

is applied to a new problem with similar features but distinct geometry (transfer learning).105

An analogous statement holds with a simpler proof for a fixed data-set S of n data points if λ is106

coupled to m such that 1
mλm

→ 0. In this case, we take the empirical distribution µ = 1
n

∑
x∈S δx107

as the population and do not need to bound the generalization gap. This model can be considered108

appropriate when n ≪ m (heavy overparametrization). A precise statement is given in Appendix F.109

The proof of Theorem 2.1 is given in Appendix E. It remains valid if we only assume that110

limn→∞ R̂n,mn,λn
(an,Wn, bn) = 0, i.e. if (a,W, b)n parametrizes a function of low excess risk. In111

the proof, we obtain a more precise version of (2). By interpolation using an a priori Lipschitz-bound,112

convergence at a given rate can be obtained in Lp(µ). For uniform convergence on compact sets113

outside the support of µ, we do not obtain a rate in this work.114

All results can easily be generalized to any more general function class which admits the three key115

ingredients: A bound on its Rademacher complexity, a compact embedding theorem, and a direct116

approximation theorem.117
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3 Minimum norm interpolants118

3.1 One-dimensional example119

In one dimension, [Wojtowytsch, 2022, Proposition 2.5] shows that [f ]B =
∫∞
−∞ |f ′′(x)|dx for any120

smooth function f : R → R which satisfies f ′(x) = 0 at some point x ∈ R – see also previous work121

by Li et al. [2020], E and Wojtowytsch [2020]. This one-dimensional case is, in fact, the simplest122

case of a general characterization of Barron functions in any dimension by Ongie et al. [2019].123

Consider the task of minimizing [f ]B under the condition that f(x) = |x| if |x| ≥ 1. Then the124

minimum is attained for any smooth convex function f which satisfies the constraint since125

2 = f ′(1)− f ′(−1) =

∫ 1

−1

f ′′(x) dx ≤
∫ 1

−1

|f ′′(x)|dx = [f ]B

with equality if and only if f ′′ ≥ 0. The same estimate holds for non-smooth Barron functions if the126

second derivative is interpreted as a Radon measure. For piecewise linear functions, this corresponds127

to summing |f ′(x+
i )− f ′(x−

i )| over the non-smooth points xi. More generally, the set of minimum128

norm interpolants of one-dimensional convex data is characterized as follows.129

Proposition 3.1. Let x0 < · · · < xn and yi = f∗(xi) for a convex function f∗ and i = 0, . . . , n. If130

y1 < y0 and yn > yn−1, then f is a minimum Barron norm interpolant of the dataset {(xi, yi)}ni=0131

if and only if f is convex, f(xi) = yi for all i = 0, . . . , n and132

f ′(x) =
y1 − y0
x1 − x0

for x < x1 and f ′(x) =
yn − yn−1

xn − xn−1
for x > xn−1.

The two given slopes are the largest values that are required for derivatives at any point. We give133

a proof of Proposition 3.1 in Appendix G. In full generality, minimum norm solutions have been134

characterized by Hanin [2021] using matching convexities to achieve minimal total curvature.135

3.2 Radially symmetric bump function136

Another setting where we have explicit minimum norm interpolant is when we fit a bump function for137

radially symmetric data. Recall a result of Wojtowytsch [2022] on minimum norm fitting of certain138

radially symmetric data.139

Proposition 3.2. [Wojtowytsch, 2022, Theorem 3.1] Let d ≥ 3 be an odd integer and140

F =
{
f ∈ Cc(Rd) : f(0) = 1 and f(x) = 0 if ∥x∥ ≥ 1

}
.

Then there exists a unique radially symmetric function f∗
d : Rd → R such that f∗

d ∈ argminf∈F [f ]B.141

The norm of minimizers grows as limd→∞[f∗
d ]B/d ≈ 3.7.142

We note that the existence of minimum norm interpolants which are not radially symmetric is not143

excluded, but if f̂ ∈ argminf∈F [f ]B is any other minimum norm interpolant, then its radial average144

Av f̂ coincides with f∗
d : Av f̂ ≡ f∗

d . Here145

Av f(x) :=

∫
SO(d)

f(Ox) dHO =

∫
Sd−1

f
(
|x| · ν

)
dπ0

ν (3)

where H is the uniform distribution (Haar measure) on the group of rotations and π0 is the uniform146

distribution on the d−1-dimensional sphere in Rd. In [Wojtowytsch, 2022, Section 6], an algorithm is147

given to find the minimum norm interpolant f∗
d by numerically solving a one-dimensional polynomial148

approximation problem and a linear system of moment conditions.149

The uniqueness statement allows us to strengthen the result of Theorem 2.1 in this case. A natural150

setting is to use a sub-Gaussian data distribution µ which gives positive mass to the origin, but has151

no mass elsewhere in the unit ball. It should have mass everywhere outside the unit ball. Under this152

natural setting, we have a stronger result of Theorem 2.1.153

Theorem 3.3. Take µ, Sn, R̂n,m,λ as in Section 1.2, and assume in addition that154

1. µ({0}) > 0 (positive mass at the origin).155
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2. µ(B1(0) \ {0}) = 0 (no mass elsewhere in the unit ball).156

3. µ(U) > 0 for any open set U ⊆ Rd \B1(0) (mass everywhere outside the unit ball).157

Assume that m,λ scale with n as in (1). Almost surely over the random selection of data points in158

Sn, the following holds: If (a,W, b)n ∈ argmin R̂n,mn,λn
for all n ∈ N, then sequence of radial159

averages Av fn of fn := f(a,W,b)n converges to f∗
d as in Proposition 3.2. Convergence holds in160

L2(µ) for MSE loss (with an explicit rate) and uniformly on compact subsets of Rd (without a rate in161

this work).162

In Theorem 3.3, we guarantee convergence to the unique radial minimum norm interpolant f∗
d (at163

least for the radial average), while in Theorem 2.1 we may have different subsequences that converge164

to different minimum norm interpolants. The proof is given in Appendix E.165

4 Relating Interpolation, Optimization and Generalization166

For a given bounded set K ⊆ Rd, Theorem 2.1 states that for a large number of neurons m ∈ N,167

a large number of data points n ∈ N, and a small penalty λ > 0, minimizers of the empirical risk168

functional R̂n,m,λ resemble a minimum norm interpolant everywhere in K. As the Barron semi-norm169

controls the generalization gap (see Appendix D) and a minimum norm interpolant has minimal170

Barron norm by definition, this suggests that minimum norm interpolants are optimal in terms of171

generalization, at least when arguing from this upper bound.172

Many authors, including Safran and Shamir [2018b], Venturi et al. [2018], demonstrate that neural173

network training is a non-convex optimization problem. As such, it is not guaranteed that numerical174

optimizers (1) converge to interpolants at all, and (2) select minimum norm interpolants out of the175

large set of different neural networks which interpolate given data, even when a regularizer is included176

in the training loss functional.177

On the other hand, there are settings where an optimization algorithm selects a minimum norm178

solution even without explicit regularization. This is easily proved for gradient descent on the179

overparametrized least squares regression problem Rn(a) = 1
n

∑n
i=1 |aTxi − yi|2 with initial180

condition a = 0 and n < m = d. Using entirely different methods, Chizat and Bach [2020] prove a181

similar result for binary classification by shallow neural networks with logistic loss. For regression182

problems using neural networks, analogous results are not available to the best of our knowledge.183

This in part motivates the following numerical investigation. Namely, we are interested in exploring184

the effects of explicit regularization and the implicit bias of optimization algorithms toward minimum185

norm interpolants. Knowing the analytically optimal solution in between given data provides us the186

opportunity to compare optimizers on a deeper level than merely testing their performance on unseen187

data generated from the same distribution.188

As seen in Figure 1, the radial profile r 7→ f∗
d (re1) of Wojtowytsch [2022]’s minimum norm189

interpolant f∗
d is so close to 0 on [rd,∞) as to be virtually indistinguishable from zero numerically190

for some rd < 1 which decreases in d. Indeed, the first (d − 1)/2 derivatives of vanish at r = 1191

due to [Wojtowytsch, 2022, Lemma 4.1] and 0 ≤ f∗
d (x) ≤ Cd3/2((1 − ∥x∥2)/∥x∥)(d−3)/2) due192

to [Wojtowytsch, 2022, Appendix D.1] for a universal constant C > 0. In particular, if d is large,193

∥f∗
d ∥L∞(Rd\Brd

(0)) is negligible compared to the approximation error d2/m for any reasonable194

dimension d and network width m. Consequently, the rescaled function h∗
d(x) := f∗

d (rdx) meets195

the constraint h∗
d ≡ 0 outside B1(0) almost exactly and has the smaller Barron semi-norm [h∗

d]B =196

rd [f
∗
d ]B. For this reason, we compare numerical solutions to the interpolation problem in Theorem197

3.3 to rescaled versions of f∗
d rather than f∗

d itself, at least in high dimension. For r below the198

threshold value rd, there is no noticable trade-off between rescaling f∗
d (rx) and data-fitting. For199

larger values of r, the Barron semi-norm is reduced more significantly, but the data fit becomes200

appreciably worse.201

5 Numerical Experiments202

Our main goal in this section is to gain a more precise understanding of different optimization203

algorithms by comparing numerical solutions to a known minimum norm interpolant. We consider204
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Figure 1: Left: In Dimension d = 31, the minimum Barron norm solution f∗
d satisfies f∗

d ≡ 0 on
Rd \ Brd(0) for rd = 0.4 to high precision, albeit not exactly. The rescaled function f∗

d (rdx) is a
suitable candidate for a minimum norm almost-interpolant to high accuracy. Right: For later use, we
consider more aggressively rescaled functions f∗

d (rdx) for d = 15, d = 31 with lower semi-norm,
but worse data fitting properties. We note that the rescalings of these functions which have essentially
the same slope as f∗

3 at r = 0 appear to coincide. We conjecture that this statement allows for a more
rigorous formulation.

the two settings in which minimum norm interpolation by Barron functions is best understood: One-205

dimensional and radially symmetric functions. As a benefit, we can easily visualize the numerical206

results in both settings. We focus on three questions of interest.207

1. Explicit regularization. If λ > 0 is moderately small and m,n are large, then a global208

minimizer of R̂n,m,λ resembles a minimum norm interpolant between known data points209

due to Theorem 2.1. Is the minimizer which we find numerically close to to a minimum210

norm interpolant, or does it merely fit the function at known data points?211

2. Implicit bias. If m,n are large, does a training algorithm select a minimum norm interpolant212

out of potentially many possible solutions without explicit regularization (i.e. for λ = 0)?213

3. Learning symmetries: The optimal minimum norm interpolant f∗
d described in Proposition214

3.2 is radially symmetric and satisfies 0 ≤ f∗
d ≤ 1. Proposition 3.2 does not rule out the215

existence of other minimum norm interpolants which are not radially symmetric. Does216

an optimization algorithm generally find solutions which are (approximately) radially217

symmetric and confined to the interval [0, 1]? A similar consideration applies in a one-218

dimensional investigation with reflection symmetry.219

The third question is of particular interest for algorithms like ADAM, which operate coordinate-by-220

coordinate and do not respect Euclidean isometries. By comparison, we expect that SGD, initialized221

at a radially symmetric configuration, preserves Euclidean isometries. More experiments in similar222

settings can be found in Appendix A.223

5.1 One-dimensional experiments224

We consider the classical interpolation problem of numerical analysis: Fit values f∗(xi) ∈ R at points225

xi ∈ R for i ∈ {1, . . . , n}. In contrast to classical numerical analysis, we consider overparametrized226

ReLU-networks with a single hidden layer as our model class. As in Section 3, we select f∗(x) = |x|227

for simplicity.228

In Figure 2, a ReLU network with a single hidden layer of width m = 200 was trained to fit229

f∗(x) = |x| at a symmetric set containing 15 equi-spaced points in (1, 2). Optimizers included230

SGD (with learning rate η = 5 · 10−5 and momentum µ = 0.99), SGD (η = 10−2, µ = 0), ADAM231

(η = 5 ·10−5 and default parameters) and the quasi-Newton L-BFGS method. Deterministic gradients232

based on the n = 30 sample points were used. The final training loss was below 10−4 on average.233

The network weights were initialized by a scaled uniform Xavier initialization, i.e. uniformly in234

a symmetric interval of length 2α ·
√
6/(nin + nout) where nin and nout denote the number of235

input- and output-units to a layer respectively. The ‘gain’ factor was selected as α ∈ {0.5, 1, 5}.236

Without weight decay and for small gain, the optimizers find a solution close to the smallest possible237

minimum norm interpolant f(x) = |x|. The larger the parameters for initialization gain and weight238

decay penalty, the closer numerical solutions are to the largest possible minimum norm interpolant239

f(x) = max{|x|, 1}.240

6



Figure 2: We compare numerical approximations of a target function for Momentum-GD (red), GD
(magenta), ADAM (purple) and L-BFGS (brown). The target function is drawn in blue and the natural
cubic spline in green. For each algorithm, we plot one representative solution to study symmetry
selection properties. Vertical grey lines indicate known training data points. The initialization
has gain α ∈ {0.5, 1.0, 5.0} in the left, middle and right column. The weight decay penalty is
λ ∈ {0, 0.002, 0.005} (top, middle, bottom row). For all optimization algorithms, the final loss is
approximately 0, 2 · 10−4 and 10−3 respectively.
For small gain, the optimizer selects a minimum norm interpolant/convex function. For large gain, the
interpolant is often non-convex for any one of the optimization algorithms, unless the weight decay
is given a positive value. A specific type of minimum norm interpolant in the large set of possible
solutions seems to be selected by specifying optimization algorithm, weight decay and initialization.
Evidently, initialization and weight decay have far greater influence than the choice of the optimizer.
With larger weight decay, the solutions become more convex and more symmetric, but the accuracy
of data fitting decreases. Visually, the second order L-BFGS method appears to be the least affected
by different choices in initialization.

We observe that a higher gain factor α corresponds to faster initial training, but a high gain like241

α = 5 produces interpolants which are non-convex without regularization, while a lower gain factor242

produces convex interpolants in longer time. This observation agrees with the findings of Chizat243

et al. [2019], who dub the large α setting the ‘lazy training’ regime and associate it with worse244

generalization performance. As Pesme et al. [2021] eloquently put it: “there is a tension between245

generalisation and optimisation: a longer training time might improve generalisation but comes at the246

cost of. . . a longer training time.”247

If m is large and α is not too big, the variation of solutions produced by a training algorithm vary248

less over different stochastic realizations – see Appendix A for experiments for m = 1, 000. The249

dynamics are close to those of a limiting ‘mean field’ model studied by Chizat and Bach [2018],250

Rotskoff and Vanden-Eijnden [2018], Mei et al. [2018], Sirignano and Spiliopoulos [2020a] and251

Wojtowytsch [2020]. In these works, the limiting model is typically derived with a factor 1/m outside252

the function definition, which is implicit in the initialization here since nin + nout ≈ m for both253

layers and the ReLU activation is positively one-homogeneous. Global convergence to a minimizer254

(but not necessarily a minimum norm solution) is guaranteed (up to certain technical assumptions) by255

Chizat and Bach [2018] and Wojtowytsch [2020].256

For comparison, we also present the natural cubic spline interpolant, i.e. the function f which257

minimizes the stronger curvature energy
∫ 2

−2
|f ′′(x)|2 dx under the condition that f(xi) = |xi| for258

all i = 1, . . . , n. Unlike the minimum Barron norm interpolants, the natural cubic spline may not be259

convex (and in fact, it is not if f∗ is replaced by h∗(x) = |x− 0.5|).260
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Figure 3: A neural network with a single hidden layer of width m = 12, 000 was trained by gradient
descent with learning rate η = 10−3 and momentum µ = 0.99 in the setting of Section 5.2. The radial
average is sketched by a solid red line. One radial standard deviation around the average, computed
over 500 random directions, is shaded.z Top row: Experiment in dimension 3 (left) and dimension
15 (right). The numerical solutions are compared to f∗

d (rdx) with r3 = 1/1.05 and r15 = 1/2.55.
In both cases, the ‘minimum norm interpolant’ shape is attained to high accuracy. Both solutions
are approximately symmetric, more so in low dimension. Bottom row: Numerical approximations
to f∗

15(r15·) for neural networks of constant width m = 12, 000, trained on data sets of different
size (but for an identical number of 200, 000 training steps with stochastic estimates computed over
a batch of 50 data points). The shape of the radial average is comparable across different dataset
sizes, but the fit of the radial average with data is improved and the radial variance reduced for larger
datasets. Note that the first two simulations are set in the overparametrized regime, whereas the last
experiment on the largest dataset is underparametrized.

5.2 Radially symmetric data261

We explore the performance of numerical optimization algorithms in the setting of Theorem 3.3 with262

and without explicit regularization λ ∈ {0, 10−5} in dimensions d = 3, d = 15 and d = 31. The263

numerical solution is then compared to (a rescaled version of) the analytic minimum norm interpolant264

f∗
d described in Proposition 3.2, which we compute by the algorithm described in [Wojtowytsch,265

2022, Section 6]. The rescaling factor rd is chosen heuristically for an accurate match.266

Data is generated from a distribution µ = µ1 + µ2 + µ3 where µ1 is a point mass of magnitude m1267

at the origin, µ2 is a uniform measure on the unit sphere Sd−1 with mass m2 and µ3 is the radially268

symmetric measure of mass 1 − m1 − m2 such that ∥x∥2 is distributed uniformly in [1, 7]. We269

numerically explored various values for m1 ∈ [0.1, 0.4] and m2 ∈ [0.0, 0.4] and found simulations270

to be relatively stable under a number of choices.271

Results are presented in Figures 3, 4 and Appendix A. We find that all algorithms find a solution with272

radial average similar to f∗
d (rdx), albeit for rescaling factors rd which depend on dimension d and273

(to a lesser extent) the optimizer. In high dimension, solutions are not perfectly radially symmetric,274

but the larger amount of variation over a sphere of fixed radius is observed in the domain where275

f∗
d ≈ 0 rather than in the transition area (0, rd). Larger datasets improve the compliance with the276

optimal interface and reduce the radial standard deviation. Solutions do not remain non-negative and277

drop below zero before leveling off as the radius increases. The drop becomes more noticeable as the278

dimension increases and less pronounced for wider networks.279

The results are essentially identical for normal Xavier initialization and (not radially symmetric)280

uniform Xavier initialization. In accordance with our expectations, the radial standard deviation is281

higher for Adam compared to optimizers based in Euclidean geometry. While the neural network282

function found by Adam resembles a minimum norm interpolant, the weight decay regularizer takes283

significantly higher values compared to other optimization algorithms.284
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Figure 4: Top line: We compare different optimizers (SGD, Adam and Momentum-SGD) in the
setting of Section 5.2 in dimension 31. All minimizers attain the minimum norm interpolant shape
(left column) – curiously for Adam, the correct shape is attained despite the fact that the weight decay
regularizer is an order of magnitude higher than for the other optimizers (right column). The high
regularizer value goes hand in hand with a higher radial standard deviation (middle column). The
initialization is uniform Xavier (in particular, not radially symmetric). Essentially identical results
are observed for the radially symmetric normal Xavier initialization with the same degree of radial
symmetry in Figure 8. Bottom line: If we include an explicit weight-decay regularizer with weight
λ = 10−5, solutions resemble an optimal interpolant for a smaller rescaling factor r31,λ = 1/3.8
compared to r31 = 1/3.5 without regularization. This is expected since the norm is weighted more
heavily compared to data compliance. Notably, the radial standard deviation does not decrease, even
for the (heavily affected) ADAM optimizer.

6 Conclusion285

Shallow ReLU networks converge to minimum norm interpolants of given data: Provably if explicit286

regularization is included and empirically if it is not. We conclude with a summary of our empirical287

insight into the implicit bias of neural network optimizers.288

1. With reasonable (not too large) initialization, all algorithms studied here are biased towards289

minimum norm interpolant profiles.290

2. At least in the case of Adam, this bias is visible on the function level, but not on the parameter291

level, as the weight decay regularizer increases rapidly to large magnitude. Despite this,292

ADAM solutions often appear ‘flatter’ in high dimension with a lower rescaling factor rd.293

3. Explicit regularization stabilizes towards a minimum norm interpolant shape, but at the cost294

of a decreased fit with the target values. Its impact is most significant for poorly chosen295

initial conditions.296

4. When the minimum norm interpolant is non-unique, different types of minimum norm297

interpolants are found depending on the choice of initialization scheme and optimization298

algorithm. The impact of initialization scale appears more significant.299

5. Optimization algorithms which are rooted in Euclidean geometry (such as SGD and300

momentum-SGD) more successfully preserve Euclidean symmetries compared to the301

‘coordinate-wise’ Adam algorithm.302

The last observation is not surprising for radially symmetric initialization laws as radially symmetric303

parameter distributions induce radially symmetric functions. It is, however, observed also for a304

uniform initialization scheme which only obeys coordinate symmetries.305

We believe minimum norm interpolation to be a useful testbed to study the implicit bias of optimizers306

and the impact of initialization and regularization. While minimum norm interpolation by deeper307

networks has not been characterized yet, we anticipate no obstructions to implementing a similar308

program there in the future.309
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A Numerical Experiments504

A.1 Hyperparameter settings and computation effort505

In all experiments in Dimensions 3 and 15, the following hyperparameter settings were used unless506

otherwise indicated:507

1. Normal Xavier initialization with gain α =
√
2508

2. SGD: Learning rate = 10−2 (Dimension 15), 10−3 (Dimension 3).509

3. Momentum-SGD: Learning rate = 10−3 and momentum µ = 0.99510

4. ADAM: Learning rate = 10−3 and PyTorch default hyperparameters for β1 = 0.9, β2 =511

0.999, ε = 10−8.512

For experiments in Dimension 31, we drop the learning rate for ADAM after 50 of 150 epochs by a513

factor of 10 and for Momentum-SGD by a factor of 10 after 100 epochs.514

In Dimension 3, a learning rate of 10−2 was found numerically unstable for SGD without momentum.515

To compensate for the smaller learning rate and provide a fair comparison, the number of time steps516

was increased.517

All experiments were performed on a free version of google colab or the experimenters’ personal518

computers. One run of the model takes below fifteen minutes on a single graphics processing unit.519

A.2 Summary and interpretation of additional simulations520

In this Section, we present additional numerical experiments in various situations complementary521

to those presented in the main body of the text. These include: Wider neural networks (Appendix522

A.3), experiments with different optimizers (Appendix A.4), experiments with different initialization523

to explore effects of scale and symmetry and the role of explicit regularization (Appendices A.8524

and A.5), experiments with ℓ1-loss instead of ℓ2-loss (Appendix A.7) and repeated experiments to525

visualize the stochastic variation between runs (Appendix A.6).526

Additionally, we present and investigation into related settings where our theoretical understanding527

does not apply: In Appendix A.10, we consider linearized (random feature) dynamics to explore528

how close we are to a (truly non-linear) neural network model. In Appendix A.11, we consider529

neural networks with a single hidden layer and leaky ReLU activation instead of ReLU activation. In530

Appendix A.12, we consider ReLU networks with multiple hidden layers. For a detailed list, see the531

table of contents below.532
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Our goal is not to explore questions of loss function, initialization, optimization algorithm and543

the impact of hyperparameters in a systematic fashion, but rather to establish problems in which544

a minimum norm interpolant can be found in an explicit fashion as instructive benchmarks to545

numerically study such questions. As a proof of concept, we provide a partial exploration of the546

parameter space. For the moment, we find ourselves confined to ReLU networks with a single hidden547

layer, as this is the only case in which explicit minimum norm interpolants are available. Minimum548

norm interpolation describes the shape of functions between known data clusters and is thus more549

expressive than a study of generalization error which is naturally confined to data clusters.550

The additional experiments corroborate our findings in the main text. Before the detailed presentation,551

let us briefly summarize the conclusions.552

1. Across a variety of different optimizers, Xavier type (= Glorot type) initialization schemes553

and loss functions, a minimum Barron norm interpolant-like shape was attained, to varying554

degrees of accuracy and with different rescaling factors.555

2. Solutions are fairly radially symmetric with standard deviation in radial direction at most556

0.1 (SGD) and 0.2 (Adam).557

3. A geometrically distinct shape is observed for random feature models in the same regime.558

4. Explicit regularization has little effect, even for poorly chosen initializations of Xavier type559

with high gain. We conjecture that the uniqueness of the radially symmetric minimum norm560

interpolant induces a higher degree of rigidity and bias, compared to the one-dimensional561

case where the set of minimum norm solutions was diverse (and infinite).562

5. Functions display larger variation in the radial direction for He initialization. In this regime,563

explicit regularization has more apparent and beneficial effects on both solution shape and564

radial symmetry. The solution does not reduce to the random feature model in this case565

either.566

A.3 Wide neural networks in one dimension567

In Figure 5, we present the same experiment as in Figure 2 for wider neural networks with m = 1, 000568

neurons in the hidden layer.569

A.4 SGD and ADAM: Dimensions 3 and 15570

We repeat the experiment on Figure 3 for Stochastic Gradient Descent (SGD) optimizer without571

momentum and for the Adam optimizer of Kingma and Ba [2014]. The results are displayed in572

Figure 6 and 7 respectively. The results strongly resemble those obtained for the SGD optimizer with573

momentum in Figure 3.574

A.5 Radial symmetry in Dimension 31575

As indicated in Figure 4, we present computational results with the radially symmetric normal Xavier576

initialization in Figure 8.577
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Figure 5: For wider neural networks, we observe less stochastic variation between runs, as the
empirical distribution of neurons is closer to a continuum limit. Solutions are generally more convex
and symmetric than their narrow counterparts. The gradient descent optimizer without momentum
stands out for its tendency to select solutions with highly localized second derivatives and a preference
for piecewise linear functions with few linear regions, while other training algorithms select ‘smoother’
solutions with curvatures which are dispersed more evenly throughout the domain.

Figure 6: We perform the same experiments as for Figure 3, but with the SGD without momentum
optimizer. Learning rate was adjusted to 10−2 for dimension 15, but for dimension 3 we just used
10−3 learning rate and runned 10 times more epochs, due to stability of neural network training in
dimension 3 case. The results are comparable, but the rescaling factors were chosen as 1/1.15 in
dimension 3 and 1/2.65 in dimension 15.
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Figure 7: We repeat the experiments of Figure 3, but with Adam. The numerical solutions resemble
those found by Momentum-SGD, but better rescaling factors for numerical solutions are 1/1.2 in
dimension 3 and 1/2.75 rather than 1/1.05 and 1/2.55, i.e. the functions are ‘flatter’.

Figure 8: Results between normal and uniform Xavier initialization are essentially identical in this
experiment – compare Figure 4. (Approximate) radial symmetry is attained even when parameters
are initialized in a fashion which is not radially symmetric.

A.6 Gradient descent with Momentum578

In Figure 9, we present additional runs in the setting of Figure 3. Despite quantitative variation,579

the geometric shapes of solutions are stable over multiple runs and resemble the minimum norm580

interpolant f∗
15 in all cases.581

A.7 ℓ1-loss and Huber loss582

We repeat the experiment of Figure 3 with the ℓ1-loss function in the place of ℓ2-loss. To compensate583

for the lack of smoothness in the loss function, we reduce the learning rate by a factor of 10 to 10−4584

and increase the number of epochs by 50% to compensate. Results are reported in Figure 10.585

Figure 9: Three realizations of numerical interpolations in the setting of Section 5.2, computed
by SGD with learning rate η = 10−3 and momentum µ = 0.99. In all cases, the minimum norm
interpolant shape is attained approximately, but the radial averages briefly dip below zero and exhibit
a local minimum which is not found in f∗

d . The variation between runs is notable, but not large.
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Figure 10: ℓ1-loss leads to similar numerical results with a smaller rescaling factor of 1/2.8 rather
than 1/2.5 for ℓ2-loss. Curiously, f(0) > 1 for these algorithms, while f(0) ≤ 1 when optimizing
ℓ2-loss. In Dimension d = 3, the non-smoothness leads to a minimization problem that is not well
resolved by the numerical optimization algorithm.

Similarly, we repeated experiments with the Huber loss function. Since |f(xi)− f∗(xi)| < 1 over586

the data set during the final stages of training, the loss function coincides with ℓ2-loss in the long run587

and all experiments are identical to ℓ2-loss. We therefore do not present additional plots.588

In the initial stages of training, Huber loss is more stable numerically than ℓ2-loss, especially for589

large gain or He initialization (compare Section A.9).590

A.8 Initialization scaling and explicit regularization: high-dimensional radial data591

As noted in Section 5.1 and previously by Chizat et al. [2019], the choice of initialization affects the592

optimization process of neural networks. Motivated by our observations in the one-dimensional case,593

we consider the effects of initialization and explicit regularization in the radially symmetric setting594

(Section 5.2). Our results support the earlier claim that the effects of regularization are advantageous595

for poorly chosen initialization with high gain.596

The experiments were performed in higher dimension 31 and with uniform Xavier initialization for the597

scenario in which it is most challenging to obtain radially symmetric solutions. As in Appendix A.7,598

we used ℓ1-loss rather than ℓ2-loss. To compensate for the non-smoothness of the loss function, we599

drop the learning rate by a factor of 10 twice during the training process. Similar results were observed600

for ℓ2-loss, but the effects of initialization and regularization were less pronounced compared to the601

ℓ1-case.602

Plots for a single representative run are displayed in Figure 11. The explicit regularizer has the603

clearest effect in the high gain regime, where explicit regularization helps to achieve a better fit with604

the optimal transition curve and reduces the radial standard variation. Results were less sensitive to605

poor initialization than the corresponding experiments in one dimension. We conjecture that a higher606

degree of rigidity is introduced in this setting by the fact that there exists a unique minimum norm607

interpolant.608

A.9 He initialization609

All experiments so far were performed with the initialization scaling of Glorot and Bengio [2010].610

Especially for deeper neural networks, the initialization scheme of He et al. [2015] is very popular.611

Hanin and Rolnick [2018] proves in particular that He et al. [2015]’s normalization avoids the vanish-612

ing and exploding gradients phenomenon at initialization in expectation. While this consideration613

does not apply to our shallow networks, we find it informative to compare the two schemes.614
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Figure 11: We vary initialization scale (α ∈ {0.25,
√
2, 10} from left to right) and consider training

without weight decay (top row) and with weight decay λ = 10−4 (bottom row). The rescaling factors
are chosen to be 1/3.9 for α = 0.25, 1/3.8 for α =

√
2, and 1/4 for α = 10.

For shallow neural networks615

fm : Rd → R, fm(x) =

m∑
i=1

ai σ(wi · x+ bi)

the effect of initialization is as follows:616

1. According to Glorot and Bengio [2010], the parameters ai and wij , 1 ≤ i ≤ m and617

1 ≤ j ≤ d are chosen as random variables with mean 0 and standard deviation
√
2/(m+ 1)618

for ai and
√
2/(m+ d) for wi,j . In particular, if m is much larger than d, then the619

|ai| ∥wi∥ = O(1/m). As we add m terms of magnitude ∼ 1/m, we consider this the ‘law620

of large numbers’ scaling.621

2. According to He et al. [2015], the parameters ai and wij , 1 ≤ i ≤ m and 1 ≤ j ≤ d are622

chosen as random variables with mean 0 and standard deviation
√

2/m for ai and
√

2/d for623

wi,j . In particular, if m is much larger than d, then the |ai| ∥wi∥ = O(1/
√
m). As we add624

m terms of mean zero and magnitude ∼ 1/
√
m, we consider this the ‘central limit theorem’625

scaling.626

Many authors, such as Sirignano and Spiliopoulos [2020a,b, 2019], present the factor 1/m or627

1/
√
m explicitly outside the neural network. As observed above, the effect of initialization can be628

significant. Unsurprisingly, results in the central limit regime, where all neurons contribute similarly629

at initialization, are more consistent and predictable. Experimental results are presented in Figure630

12 in the one-dimensional setting and in Figures 13 and 14 in the case of radial symmetry. Notably,631

in high dimension, explicit regularization not only reduced radial variation, but also increased data632

compliance by reducing the rescaling factor rd. In this setting, we observe the benefits of explicit633

regularization over relying on implicit bias only.634

A.10 Linearized dynamics635

Parameter optimization in neural networks depends heavily on the choice of initialization. While636

the dynamics are truly non-linear in the regime studied by Chizat and Bach [2018], Rotskoff and637

Vanden-Eijnden [2018], Mei et al. [2018], Sirignano and Spiliopoulos [2020a] and Wojtowytsch638

[2020], there are scalings for which the directions wi remain close to their initialization for all time639

– see e.g. [E et al., 2019b] for a derivation. In this case, the solution produced by a neural network640

is similar to that of a random feature model. In this section, we numerically find the minimum641

norm interpolant of a random feature model by ‘freezing’ the inner layer coefficients at their random642

initialization. We find that the random feature solution differs geometrically from the Barron space643

solution, e.g. in that it is smooth at the origin, where the Barron space solution has a cone-like644

singularity of the form f(x) = 1− cd∥x∥2 for small x. In particular, we find that our experiments645

were set appropriately in the non-linear training regime. See Figure 15.646
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Figure 12: Experiments for He initialization in one Dimension in the same setting as Figure 2 with
Xavier initialization. Left: No explicit regularization, right: Weight decay regularization λ = 0.002.
Even for Glorot initialization with large gain, this regularizer was sufficient to induce convexity. For
He initialization, it has a notable regularizing effect, but it is insufficient to impose convexity. We
observe greater deviation from a linear function in the small intervals between known data points on
either side of the big ‘gap’.

Figure 13: Top row: Experiments for He initialization in dimension 31 in the same setting as
Appendix A.8. Left: No explicit regularization with a rescaling factor rd = 1/4.9, Right: Weight
decay regularization with λ = 10−4 and rescaling factor rd = 1/4.2. We observe that under
He initialization the effects of the explicit regularizer is even more pronounced. Unlike in other
experiments, the presence of regularization increases the rescaling factor and thus improves the fit to
training data (for the radial profile).
Bottom row: We repeat the same as above with MSE loss rather than ℓ1-loss, using the Adam
optimizer with learning rate 10−5 instead of SGD with momentum, and using an overparametrized
rather than underparametrized neural network. Without explicit regularization (left), the radial
standard deviation is substantial, while explicit regularization leads to a more radially symmetric
function, albeit at the price of a higher rescaling factor. For easy comparison to Figure 3, we present
the optimal profile as rescaled in the main document as well. Both functions achieve training loss
< 10−3, but clearly generalization is poor without regularization: While the radial average is close to
the target function f∗ ≡ 0 for inputs with ∥x∥ ≥ 1, the radial variation is high.
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Figure 14: We examine the effects of the explicit regularizer (weight decay penalty λ = 0 for the top
row and λ = 10−4 for the bottom row) while varying dimensions (d = 3, 15, 31 from left to right)
in the He initialization scheme. Optimizer settings were identical to the top row in Figure 13. The
rescaling factors were r3 = 1/1.15, r15 = 1/2.1, and r31 = 1/4.2. As dimension grows implicit
bias may be insufficient to find a minimum norm interpolant shape with reasonable scaling factor and
may not enforce radial symmetry. In this case explicit regularizer may have an advantage.

Figure 15: A random feature model trained on the same dataset as the neural networks. The solutions
produced this way are geometrically distinct from neural network solutions as they are ‘flat’ at the
origin. The left two figures correspond to different initializations: Gain α =

√
2 (left) and gain α = 5

(right). Notably, the variation is higher in radial direction in high dimension and higher than for
the comparable neural network model. Perhaps surprisingly, higher gain appears to induce a better
implicit bias in this case. No explicit regularization was used. Here we initialized the random feature
by the same law as the neural network rather than initializing the outer layer at zero, since our goal is
to study neural network dynamics, not find the optimal random feature solution. For the right plot,
the initialization was random normal with gain 5 in the inner layer and zero in the outer layer with
unsurprisingly better results.

A.11 Leaky ReLU activation647

As noted by Wojtowytsch [2022], minimum norm interpolation is not stable when passing to an648

equivalent norm. A Barron space theory can be developed in perfect analogy for networks with the649

leaky ReLU activation function, and it is easy to see that the ‘Barron’ spaces for both activation650

functions coincide with equivalent norms, depending on the negative slope of the leaky ReLU651

function. However, the minimum norm interpolant f∗
d with respect to the ReLU-based Barron-norm652

is not guaranteed to coincide with the minimum interpolant for the leaky-ReLU-based Barron norm.653

Experimentally, however, we observe strong agreement between the geometry of numerical solutions654

here.655

A.12 Deeper neural networks656

We train neural networks of depth L > 2 to fit the same radially symmetric data as in Section 5.2.657

We see in Figure 17 that for depth L ≥ 3, weight decay-regularized networks strongly resemble the658

interpolant fLip(x) = max{1−∥x∥2, 0} with minimal (Euclidean) Lipschitz constant. This function659

can be written as a composition of two Barron functions f = fbump ◦ fnorm660

fbump(z) = max{1− z, 0} = σ(1− z), fnorm(x) = ∥x∥2 = cd Eν∼π0

[
σ(ν · x)

]
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Figure 16: Neural networks with a single hidden layer and leaky ReLU activation σ(z) = max{z, 0}+
0.1 min{z, 0} trained in the setting of Section 5.2. Without theoretical foundation, we observe that
the shape of f∗

d is attained to high accuracy also in this setting with the same rescaling factors as in
the ReLU setting. Left: Momentum-SGD, Middle: Adam, Right: Momentum-SGD for a wider
network with m = 25, 000.

Figure 17: Neural networks of width 250 and varying depth were trained to fit data generated as in
Section 5.2 with weight decay regularizers 10−2, 10−3, 10−4 and 0 (left to right). The initialization
gain variable was chosen as α =

√
2 as required to avoid exploding and vanishing gradients in deeper

networks. Evidently, a small amount of weight decay regularization provides useful geometric prior
without diminishing the quality of data fit.
Unlike networks with one hidden layer, deeper networks have positive (or nearly positive) outputs
everywhere. While two-layer networks follow the minimum norm interpolation shape closely by the
origin and have radial variances which increase outside the unit ball, deeper networks have positive
radial variance inside the unit ball, but are essentially radially symmetric outside – compare e.g.
Figure 9.

where π0 denotes the uniform distribution on the unit sphere and cd ∼
√
d is a dimension-dependent661

constant. We can thus approximate fLip efficiently by neural networks of depth L ≥ 3 as long as the662

first layer is sufficiently wide.663

Unlike their shallow counterparts, neural networks with multiple hidden layers have no strong664

geometric prior without weight decay regularization. With weight decay, the observed behavior was665

relatively stable over a range of dimensions, initializations scalings and optimization algorithms. We666

are led to conjecture that fLip is a minimum norm interpolant in this setting. The statement remains667

imprecise at this point as no function space theory for deeper networks with weight decay regularizer668

has been developed to the same extent as Barron space theory.669

B Γ-convergence670

In this appendix, we recall the definition and a few properties of Γ-convergence, a popular notion671

of the convergence of functionals introduced by De Giorgi and Franzoni [1975] in the calculus of672

variations to study the convergence of minimization problems. Braides [2002], Dal Maso [2012]673

provide introductions to the theory and its applications. As the notion is likely not familiar to readers674

from the machine learning community, we provide some full proofs as well.675

Definition B.1. Let (X, d) be a metric space and Fn, F : X → R ∪ {−∞,∞} be functions. We say676

that Fn converges to F in the sense of Γ-convergence if two conditions are met:677

1. (lim inf-inquality) If xn is a sequence in X and xn → x, then lim infn→∞ Fn(xn) ≥ F (x).678

2. (lim sup-inequality) For every x ∈ X , there exists a sequence x∗
n ∈ X such that x∗

n → x679

and lim supn→∞ Fn(x
∗
n) ≤ F (x).680

Intuitively, the first condition means that F (x) is (almost) a lower bound for Fn(xn) if n is ‘large’681

and xn is ‘close’ to x, while the second condition means that there is no larger lower bound that682

we could choose. The sequence x∗
n is often referred to as a ‘recovery sequence’. Of course,683

22



combining the liminf- and limsup-inequalities, we find that in fact Fn(x
∗
n) → F (x). We employ684

Γ-convergence when dealing with minimization problems where uniform convergence fails, but we685

hope for convergence of minimizers to minimizers.686

Often, Γ-convergence is considered as a continuous parameter ε approaches 0+ rather than as the687

discrete parameter n approaches infinity. The definitions remain largely identical (with obvious688

substitutions).689

To get a feeling for Γ-convergence, we consider a particularly simple situation by looking at two690

constant sequences of functions. Note that the sequence is constant, not the functions.691

Example B.2. Let X = R and consider the constant sequences692

Fn(x) = f(x) =

{
1 x ̸= 0

0 x = 0
, Gn(x) = g(x) =

{
0 x ̸= 0

1 x = 0
.

We claim that693 (
Γ− lim

n→∞
Fn

)
(x) = f(x),

(
Γ− lim

n→∞
Gn

)
(x) = 0 ∀ x ∈ R.

If xn → x and x ̸= 0, then Fn(xn) = 1 and Gn(xn) = 0 for all but finitely many n ∈ N, meaning694

that Fn(xn) → 1 = f(x) and Gn(xn) → 0. It remains to consider the case xn → 0.695

We see immediately that Fn(xn) ≥ 0 = f(0) for all n ∈ N. Conversely, if we take x∗
n = 0 for all n,696

then x∗
n → 0 and Fn(x

∗
n) = f(0) → f(0). In total, we conclude that Γ− limFn = f .697

For Gn, we find that Gn(xn) ≥ 0 for all n ∈ N. Additionally, we can choose the sequence xn = 1/n698

such that Gn(xn) = 0 for all n ∈ N. Altogether, we find that Γ− limGn = 0.699

More generally, if Fn = F for all n ∈ N and some F : X → R, then Γ− limn→∞ Fn = F is the700

lower semi-continuous envelope of F . In particular, Γ− limn→∞ F = F if and only if F is lower701

semi-continuous. The main useful properties of Γ-convergence are summarized in the following702

lemma.703

Lemma B.3. Assume that Fn → F in the sense of Γ-convergence, εn → 0+ and xn ∈ X is a704

sequence such that705

Fn(xn) ≤ inf
x∈X

Fn(x) + εn.

Assume that xn → x∗. Then F (x∗) = infx∈X F (x). In particular, if xn is a minimizer of Fn and706

the sequence xn converges, then the limit point is a minimizer of F .707

Clearly, this is most useful if we can guarantee that the sequence xn converges. For many useful se-708

quences of functionals, the existence of a convergent subsequence can be established by compactness.709

This is easily sufficient, as we can also pass to a subsequence in Fn.710

Proof. Due to the liminf-inequality, we have711

F (x∗) ≤ lim inf
n→∞

Fn(xn) = lim inf
n→∞

inf
x∈X

Fn(x).

On the other hand, let x ∈ X be any point. Then, due to the limsup-inequality, there exists some712

sequence x′
n such that713

x′
n → x, F (x) = lim

n→∞
Fn(x

′
n) ≥ lim inf

n→∞
inf
x∈X

Fn(x).

In particular infx∈X F (x) ≥ lim infn→∞ infx∈X Fn(x). Combining the two estimates, we find that714

F (x∗) ≤ infx∈X F (x), which means that x∗ is a minimizer of F .715

For completeness, a few observations are in order.716

1. The notion of Γ-convergence relies on the notion of convergence on the underlying space X ,717

and Γ-limits can change when keeping the set X fixed, but passing to a different topology718

(e.g. a weak topology in infinite-dimensional spaces).719

2. Γ-convergence is made for minimization problems, and it does not behave well under720

multiplication by negative real numbers: In general Γ− lim(−Fn) ̸= −(Γ− limFn), even721

if both limits exist. The reason is the asymmetry between the lim inf- and the lim sup-722

condition. To see this, consider for instance Fn and Gn − 1 in Example B.2.723
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3. If Fn → F and Gn → G, it is not necessarily true that Fn + Gn → F + G. While it724

remains true that lim infn→∞(Fn +Gn)(xn) ≥ (F +G)(x) if xn → x, it may no longer725

be possible to find a recovery sequence xn for Fn + Gn. For example, if Fn = 1Q and726

Gn = 1R\Q for all n ∈ N, then Fn
Γ−→ 0 and Gn

Γ−→ 0, but Fn + Gn = 1 for all n and727

Fn +Gn
Γ−→ 1.728

However, if Fn
Γ−→ F and Gn converges to a continuous limit G uniformly, then (Fn +729

Gn)
Γ−→ F + G. In particular, uniform convergence implies Γ-convergence. Namely, if730

Gn → G uniformly, G is continuous and xn → x, then for given ε > 0, we can choose731

N ∈ N so large that732

(a) |G(xn)−G(x)| < ε/2 for all n ≥ N since G is continuous at x and733

(b) |Gn(xn)−G(xn)| < ε/2 for all n ≥ N due to uniform convergence.734

Then735 ∣∣Gn(xn)−G(x)
∣∣ ≤ ∣∣Gn(xn)−G(xn)

∣∣+ ∣∣G(xn)−G(x)
∣∣ < ε.

In particular Gn(xn) → G(x). Recall that G is guaranteed to be continuous if Gn is736

continuous for all n ∈ N.737

4. Γ-convergence is unrelated to pointwise convergence of functions: Neither does it imply738

pointwise convergence, nor is it implied by it. Namely, the sequence Gn in Example B.2739

has the function g as a pointwise limit and the constant function 0 as a Γ-limit.740

5. Γ-convergence is not a notion of convergence derived from a topology. Indeed, even if Fn is741

a constant sequence, i.e. if Fn = G for all n, it may happen that Γ− limn→∞ Fn ̸= G (see742

Gn in Example B.2). The Γ-limit is related to G, though: It is the lower semi-continuous743

envelope of the function G. In fact, every Γ-limit is lower semi-continuous.744

Despite its somewhat counterintuitive properties, Γ-convergence has proved invaluable in many areas745

of the calculus of variations. It has been applied to homogenization by Bach et al. [2021], dimension746

reduction for thin sheets and shells by Friesecke et al. [2002a, 2003, 2002b], Bhattacharya et al.747

[2016], Lewicka et al. [2010] and the study of phase boundaries by Modica and Mortola [1977],748

Modica [1987]. While the Γ-convergence of functionals does not imply the convergence of their749

gradient flows even in situations of practical significance (see e.g. the example of Dondl et al. [2019]),750

Serfaty [2011], Sandier and Serfaty [2004], Mugnai and Röger [2011], Ilmanen [1993], Alikakos751

et al. [1994] provide important examples of situations where this can be established in a suitable752

sense. Even more, Bronsard and Kohn [1990] use Γ-convergence to gain insight into PDE dynamics.753

C Homogeneous Barron spaces754

In this section, we introduce the abstract framework which is used to prove our main theoretical755

result, Theorem 3.3. A neural network with m neurons in a single hidden layer can be represented as756

fm(x) = b0 +

m∑
i=1

ai σ(w
T
i x+ bi) or fm(x) = b0 +

1

m

m∑
i=1

ai σ(w
T
i x+ bi). (4)

The network weights and biases are (a,W, b) ∈ Rm × Rm×d × Rm+1. The normalization depends757

on personal preference, with the former being more common in practice and the latter more common758

in theoretic analyses. We define the weight decay regularizer by759

RWD(a,W, b) =
∥a∥2ℓ2 + ∥W∥2F

2
=

1

2

 m∑
i=1

a2i +

m∑
i=1

d∑
j=1

w2
ij


or RWD(a,W, b) = 1

2m

∑m
i=1

(
a2i +∥wi∥2ℓ2

)
respectively. Here ∥·∥2 denotes the Euclidean ℓ2-norm760

of a vector and ∥W∥F denotes the Frobenius norm of the matrix W whose rows are the vectors wT
i .761

Note that we do not control the magnitude of the biases bi in the regularizer. This is a common762

approach, as the bias does not influence the Lipschitz-constant of the function represented by the763

neural network, which is useful in studying the generalization of the neural network.764
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We study function classes corresponding to arbitrarily wide neural networks with a single hidden765

layer, where the norm corresponds to the weight decay regularizer. We dub these function spaces766

‘homogeneous Barron spaces’ in analogy to the more classical Barron spaces studied by E et al.767

[2019c], Ma et al. [2020], E and Wojtowytsch [2020], which correspond to a weight decay regularizer768

which also controls the bias. For homogeneous Barron spaces, coordinate transformations by769

Euclidean motions induce an isometry of the function class, while the origin plays a special role in770

classical Barron spaces. This justifies our terminology, as the data space is treated as isotropic and771

homogeneous by this function class. Homogeneous Barron spaces have also been studied by Ongie772

et al. [2019], Parhi and Nowak [2021, 2022] under the name Radon-BV spaces. A closely related773

class of spaces has been considered as the ‘variation spaces of the ReLU dictionary’ by Siegel and774

Xu [2020, 2022, 2023].775

Heuristically, (homogeneous) Barron spaces are a function class tailored to replacing the finite776

superposition of ReLU ridges in (4) by an arbitrary superposition while keeping the weight decay777

regularizer finite. Due to the lack of control over the bias term, we will see that a slightly awkward778

technical definition is needed. Let π be a probability distribution on the parameter space R×Rd ×R.779

We would like to define780

fπ,b0 : Rd → R, fπ,b0(x) = b0+E(a,w,b)∼π

[
a σ(wTx+b)

]
=

∫
R×Rd×R

a σ(wTx+b) dπ(a,w,b)

and781

RWD(π) =
1

2

∫
R×Rd×R

|a|2 + ∥w∥22 dπ(a,w,b).

fπ,b0 is an analogue of neural networks with a single hidden layer, but of arbitrary and possibly782

uncountably infinite width. Every finite neural network can be expressed in this fashion for the783

empirical measure πm = 1
m

∑m
i=1 δ(ai,wi,bi), in which case RWD(πm) = RWD(a,W, b).784

Unfortunately, even if RWD(π) < ∞, it is not clear that the integral defining fπ exists in a meaningful785

sense. We do however note that formally786

|fπ(x)− fπ(y)| = E
[
a
{
σ(wTx+ b)− σ(wT y + b)

}
] ≤ E

[
|a|
∣∣|wTx+ b| − |wT y + b|

∣∣]
≤ ∥x− y∥E

[
|a| ∥w∥

]
≤ ∥x− y∥

2
E
[
|a|2 + ∥w∥2

]
= ∥x− y∥RWD(π).

Thus, the integral defining fπ(x) exists for all x if and only if it exists for, say, x = 0. We exploit787

this in the following modified definition. Let π be a probability distribution on the parameter space788

R× Rd × R and y ∈ R. We denote789

fπ,y(x) = y + E(a,w,b)∼π

[
a
(
σ(wTx+ b)− σ(b)

)]
By the same argument as before, we observe that790

1. fπ,y(0) = y and791

2. |fπ,y(x)− fπ,y(x
′)| ≤ RWD(π) ∥x− x′∥.792

The class of functions of the form fπ,y forms the homogeneous Barron space. Still, every finite793

neural network fm can be represented in this fashion with b0 = y −
∑m

i=1 aiσ(bi) or b0 = y −794
1
m

∑m
i=1 aiσ(bi).795

Definition C.1 (Homogeneous Barron space). Let f : Rd → R be a function. We define the796

semi-norms797

[f ]B = inf
f≡fπ,y

RWD(π), [f ]0 = |f(0)|.

The homogeneous Barron space is the function class B(Rd) = {f : Rd → R : [f ]B < ∞}. By the798

definition of a function [f ]0 < ∞ is automatically true.799

We note a few important properties. First, we consider two function classes:800

FQ = conv
{
a
(
σ(w · x+ b)− σ(b)

)
: a2 + ∥w∥2 ≤ 2Q

}
FQ(R) = conv

{
a
(
σ(w · x+ b)− σ(b)

)
: a2 + ∥w∥2 ≤ 2Q, |b| ≤

√
QR

}
.
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Note that FQ(R) ⊆ FQ ⊆ {f ∈ B : f(0) = 0, [f ]B ≤ Q}. The closure is taken with respect to801

locally uniform convergence, i.e. pointwise convergence which is uniform on all compact sets.1 Due802

to the homogeneity of ReLU activation, we may prove the following.803

Lemma C.2. The identity FQ = {f ∈ B : f(0) = 0, [f ]B ≤ Q} holds.804

While the claim is natural, its proof is surprisingly technical and postponed until the end of the section.805

The class FQ(R) will be used below for technical purposes. Of major importance below are the806

compact embedding theorem and the direct approximation theorem.807

Theorem C.3 (Compact embedding). Let fn ∈ B be a sequence such that lim infn→∞[fn]0 +808

[fn]B < +∞. Then there exists f in B such that809

1. fn → f in C0(K) for all compact sets K ⊆ Rd.810

2. fn → f in Lp(µ) for all measures µ with finite p-th moments, p ∈ [1,∞).811

3. [f ]B ≤ lim infn→∞[fn]B.812

Proof. It is sufficient to show that the set F̃Q = {a
(
σ(w · x + b) − σ(b)

)
| a2 + |w|2 ≤ 2Q} is813

compact in C0(K) and L2(µ) for all K and µ as above, in which case also its closed convex hull is814

compact [Rudin, 1991, Theorem 3.20.]. To this end, observe that the map815

F : R× Rd × R → C0(K), (a,w, b) 7→ a
(
σ(w· + b)− σ(b)

)
is continuous for any compact set K. Since K is compact, we have K ⊆ BR(0) for some R > 0 and816

thus |w · x| ≤
√
2QR for all x ∈ K. In particular,817

σ(w · x+ b)− σ(b) =

{
w · x if b >

√
2QR

0 if b <
√
2QR

.

Hence F̃Q = F ({(a,w, b) : a2 + |w|2 ≤ 2Q, b ≤
√
2QR}) is the continuous image of a compact818

set, hence compact. We have thus proved a compact embedding into C0(K) for any compact set K.819

Exhausting Rd by the sequence of compact sets Bm(0), m ∈ N and using a diagonal sequence820

argument, we see that under the conditions of Theorem C.3, there exists f ∈ B such that fn → f821

pointwise everywhere on Rd and uniformly on compact subsets. Additionally, we observe that822

f(0) = 0 and there exists a uniform upper bound on the Lipschitz constants of the sequence fn.823

We conclude that fn → f in Lp(µ) from the Dominated Convergence Theorem using Q∥x∥ as a824

dominating function.825

As a consequence, we find the following.826

Corollary C.4. 1. B is a Banach space.827

2. C∞
c (Rd) ⊆ B(Rd).828

Proof. The first claim follows as in [Siegel and Xu, 2021, Lemma 1], where it is proved in a more829

general context for dictionaries which are compact in a Hilbert space – in our case, the dictionary830

x 7→ a
{
σ(wTx+ b)− σ(b)

}
. The second claim follows from [Ongie et al., 2019, Corollary 1].831

We conclude with a theorem which establishes a rate of approximation for Barron functions in a832

weaker topology.833

Theorem C.5 (Direct approximation). Let f ∈ B and µ a measure on Rd with finite second moments.834

Then for any m ∈ N there exist c ∈ R and (ai, wi, bi) ∈ R× Rd × R such that835

m∑
i=1

a2i +∥wi∥2 ≤ [f ]B,

∥∥∥∥∥f − c−
m∑
i=1

aiσ(w
T
i x+ bi)

∥∥∥∥∥
L2(µ)

≤ 2 [f ]B√
m

sup
∥w∥=1

√∫
Rd

|wTx|2 dµx.

1 This notion of convergence is generated by a topology, but not a metric. Other notions of convergence can
be considered and induce the same function class.
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Proof. A proof of this result can be found in [Wojtowytsch, 2022, Appendix C] in the proof of836

Proposition 2.6.837

Proof of Lemma C.2. Step 1. Assume that f ∈ B such that f(0) = 0 and [f ]B ≤ Q. By the Direct838

Approximation Theorem (which is proved in [Wojtowytsch, 2022, Appendix C] without using Lemma839

C.2), we find that for every m ∈ N and every measure µ on Rd with finite second moments, there840

exists841

fm(x) =
1

m

m∑
i=1

ai{σ(wi · x+ bi)− σ(bi)} ∈ FQ

such that ∥fm − f∥L2(µ) ≤ Cµ∥f∥Bm−1/2. In particular, f is in the closed convex hull of842

{a
(
σ(wTx + b) − σ(b)

)
: a2 + |w|2 ≤ 2Q} if the closure is taken with respect to the L2(µ)843

topology. Additionally, the sequence fm has a uniformly bounded Lipschitz constant and is therefore844

compact in C0(K) for all compact K by a corollary to the Arzela-Ascoli theorem [Dobrowolski,845

2010, Satz 2.42]. In particular, fm → f uniformly and thus f ∈ FQ.846

Step 2. Denote f(a,w,b)(x) = a {σ(wTx+ b)− σ(b)}. Since f(a,w,b)(0) = a{σ(b)− σ(b)} = 0 for847

all a,w, b, we conclude that f(0) = 0 for all f ∈ FQ. If f ∈ FQ, then there exists a sequence848

fn(x) =

Nn∑
i=1

λi,nai,n
{
σ(wi,n · x+ bi,n)− σ(bi,n)}

such that fn → f locally uniformly. If the biases remain uniformly bounded, the sequence of849

empirical distributions850

πn =
1

Nn

Nn∑
i=1

λi,n δ(ai,n,wi,n,bi,n)

has a convergent subsequence by Prokhorov’s Theorem [Klenke, 2006, Satz 13.29]. We denote the851

limiting distribution as π. The convergence of Radon measures implies the convergence of fn to852

fπ(x) = E(a,w,b)∼π

[
a {σ(wTx+ b)− σ(b)}

]
by definition. Since fn converges locally uniformly853

by assumption, f = fπ ∈ B and [f ]B ≤ Q.854

If the biases do not remain bounded, we note that for every compact set K ⊆ Rd we can extract a855

convergent subsequence of the measures by the same argument used to prove Theorem C.3, effectively856

making the sequence of biases bounded. We can extend the argument to the entire space exploiting857

that858

lim
b→∞

(
σ(w · x+ b)− σ(b)

)
→ σ(b/|b|)w · x

locally uniformly.859

D Rademacher complexity of homogeneous Barron space860

Following a classical strategy implemented e.g. by E et al. [2019a] in a similar context, we estimate861

the Rademacher complexity of homogeneous Barron space and use it to bound the generalization gap862

(i.e. the discrepancy between empirical risk and population risk). In our setting, we face additional863

technical obstacles:864

1. We deal with general sub-Gaussian data distributions µ rather than data distributions with865

compact support.866

2. We do not control the magnitude of the bias variables.867

3. We consider ℓ2-loss, which is neither globally Lipschitz-continuous nor bounded.868

In combination, these complications require a refined technical analysis similar to Appendix C. Let869

us summarize several notations which will be needed below.870

• R̂ad – the empirical Rademacher complexity of a function class over a given dataset.871

• Radn – the expected Rademacher complexity of a function class over a data set composed872

of n iid samples from the data distribution µ.873
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• R – the population risk R(f) = ∥f − f∗∥2L2(µ) = Ex∼µ[|f(x)− f∗(x)|2]. We generally874

take this to operate on the level of functions, parametrized or not. By an abuse of notation,875

we identify R(a,W, b) := R(f(a,W,b)).876

• R̂n – the empirical risk R̂n(f) = ∥f −f∗∥2L2(µn)
= 1

n

∑n
i=1 |f(xi)−f∗(xi)|2 over a data877

set {x1, . . . , xn} where µn = 1
n

∑n
i=1 δxi

is the empirical measure. Equally, R̂n can be878

considered for functions or parameters with the natural identification.879

• R̂n,m,λ. The regularized empirical risk880

R̂n,m,λ(a,W, b) = R̂n(a,W, b) +
λ

2

(
∥a∥2 + ∥W∥2

)
.

We only consider this quantity on the parameter level, where it is computable. While the881

weight decay regularizer is an upper bound for [f(a,W,b)]B, the two are generally not the882

same since the parameter-to-function map of a neural network is generally not injective.883

• RWD – the weight decay regularizer.884

• FQ – the set of functions for which [f ]B ≤ Q and f(0) = 0.885

• FA,Q – the set of functions for which [f ]B ≤ Q and |f(0)| ≤ A.886

As is common in the mathematics community, C will generally denote a constant which does not887

depend on quantities (unless specified otherwise) and which may change value from line to line.888

Some facts about sub-Gaussian distributions, which we believe to be well-known to the experts, are889

collected in Appendix H.890

Definition D.1 (Rademacher Complexity). Let S = {x1, . . . , xn} be a set of points in Rd (a data891

sample) and F a real-valued function class. We define the empirical Rademacher complexity of F on892

the data sample as893

R̂ad(F ;S) = Eε

[
sup
f∈F

1

n

n∑
i=1

εif(xi)

]
where εi are iid random variables which take the values ±1 with equal probability 1

2 . The population894

Rademacher complexity is defined as895

Radn(F) = ES∼µn

[
R̂ad(F ;S)

]
,

i.e. as the expected empirical Rademacher complexity over a set of n iid data points.896

In this section, we will find a upper bound of Rademacher Complexity of B. We will denote by Sn897

the set of n samples, and R̂ad(F , Sn) the sample Rademacher Complexity of F given the samples898

Sn. We furthermore denote R := max{∥x1∥, . . . , ∥xn∥} and consider the function classes FQ and899

FQ(R) as in Appendix C:900

FQ = conv
{
a
(
σ(w · x+ b)− σ(b)

)
: a2 + ∥w∥2 ≤ 2Q

}
FQ(R) = conv

{
a
(
σ(w · x+ b)− σ(b)

)
: a2 + ∥w∥2 ≤ 2Q, |b| ≤

√
QR

}
.

Lemma D.2. Let Sn = {x1, . . . , xn} be a data set in Rd. Then901

R̂ad(FQ, Sn) ≤
(
1 + 3

√
2
)
Q

√
n

max
1≤i≤n

∥xi∥.

Assume µ is a σ2 sub-Gaussian distribution in Rd. Then902

Rad(FQ) ≤
(
1 + 3

√
2
)
Q

(
Ex∼µ

[
∥x∥
]

√
n

+ σ

√
2
log n

n

)
for all n ≥ 2.903
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Proof. Initially, we fix a set S = {x2, . . . , xn} of n points. We will later take the expectation over904

S, using the sub-Gaussian property of µ for an explicit norm bound. Define R := max1≤i≤n ∥xi∥.905

To this end, we first prove the following claim, which enables us to focus on only single neuron906

functions instead of entire FQ:907

Claim: Let ε1, . . . , εn ∈ R. Then908

sup
FQ

∑
i

ϵif(xi) = sup
a2+∥w∥2≤2Q

∑
i

ϵi a
{
σ(wTxi + b)− σ(b)

}
Proof of Claim. Note that FQ is the closed convex hull of single neuron ridge functions, i.e. single909

neuron ridge functions are the extreme points of the closed convex set FQ.910

To verify the claim, first note that f 7→
∑n

i=1 εif(xi) is a continuous linear functional on C0(K) for911

any compact K ⊆ Rd containing the finite set S. It is well known that C0(K) is a Banach Space.912

Therefore, if {a
(
σ(w · x+ b)− σ(b)

)
| a2 + |w|2 ≤ 2Q} is compact in C0(K), then [Rudin, 1991,913

Theorem 3.20.] implies that FQ, a closed convex hull of the compact set, is also compact. Then, from914

the compactness of FQ, we can use Bauer [1958]’s maximum principle and see that the supremum915

is attained at an extreme point. Compactness follows from the compact embedding Theorem, see916

Theorem C.3 above.917

Over the next steps, we will bound R̂ad(FQ, Sn).918

Step 1. In this step, we prove that919

R̂ad(FQ;Sn) = R̂ad
(
FQ(R);Sn

)
.

To show this, we first observe that if |b| ≥ ∥w∥R, then σ(w · x+ b)− σ(b) = σ
(
sgn(b)

)
w · x since920

|wTxi| ≤ ∥w∥ ∥xi∥ ≤ |b|R for all 1 ≤ i ≤ n. This means for ∀|b| ≥ ∥w∥R, the precise value of b921

does not change the value of σ(w · x+ b)− σ(b).922

Now, we compute the R̂ad(FQ, Sn):923

n R̂ad(FQ, Sn) = Eϵ

[
sup
FQ

∑
i

ϵif(xi)

]

= Eϵ

[
sup

a2+∥w∥2≤2Q

∑
i

ϵia
{
σ(w · xi + b)− σ(b)

}]

= Eϵ

[
sup

a2+∥w∥2≤2Q,|b|≤∥w∥R

∑
i

ϵia
{
σ(w · xi + b)− σ(b)

}]
= n R̂ad

(
FQ(R), Sn

)
For the first line, we used the claim.924

Step 2. Using the uniform bound on the magnitude of the bias from the previous step, in this step we925

bound the Rademacher complexity by926

R̂ad(FQ;S) = R̂ad
(
FQ(R);S

)
≤ Eε

[
sup

|w|≤Q, |b|≤QR

∣∣∣∣∣ 1n
n∑

i=1

εi σ(w · xi + b)

∣∣∣∣∣
]
+

QR√
n

We verify this from the definition of Rademacher Complexity of FQ(R). Note that aσ(wx+ b) =927

(λa)σ
(
(w/λ)x+b/λ). In particular, we may assume without loss of generality that |a|2 = ∥w∥2 ≤ Q928

for optimal balance which makes a2 + ∥w∥2 minimal without changing the neuron output.929

nRad
(
FQ(R), Sn

)
= Eϵ

[
sup
FQ

ϵif(xi)

]
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= Eϵ

[
sup

a2+∥w∥2≤Q, |b|≤∥w∥R

n∑
i=1

ϵia
(
σ(w · xi + b)− σ(b)

)]

≤ Eϵ

[
sup

|a|=∥w∥≤
√
Q, |b|≤

√
QR

(∣∣∣∣∣∑
i

ϵiaσ(w · xi + b)

∣∣∣∣∣+
∣∣∣∣∣∑

i

ϵiaσ(b)

∣∣∣∣∣
)]

.

In this step, we only consider the first term.:930

Eε

[
sup

|a|=∥w∥≤
√
Q, |b|≤

√
QR

∣∣∣∣∣∑
i

ϵiaσ(b)

∣∣∣∣∣
]
≤ Eϵ

[
sup

|a|≤
√
Q, |b|≤

√
QR

∣∣∣∣∣∑
i

ϵiaσ(b)

∣∣∣∣∣
]

≤ sup
|a|≤

√
Q, |b|≤

√
QR

|a|σ(b)Eϵ

∣∣∣∣∣∑
i

ϵi

∣∣∣∣∣ ≤ QR
√
n.

The first line is again by applying the claim to FQ(R). In the last line, we used two facts:931

1. σ is ReLU, so |a|σ(b) ≤ |ab| ≤
√
Q ·

√
QR = QR and932

2. the observation that933

Eϵ

∣∣∣∣∣
n∑
i

ϵi

∣∣∣∣∣ ≤
√√√√Eϵ

∣∣∣∣∣
n∑
i

ϵi

∣∣∣∣∣
2

=

√√√√ n∑
i,j=1

Eε[εiεj ] =

√√√√ n∑
i=1

Eε[ε2i ] =
√
n

since E[εi] = 0, εi and εj are independent if i ̸= j and ε2i ≡ 1.934

Step 3. In this step, we prove that935

1

n
Eε

[
sup

|a|=∥w∥≤
√
Q, |b|≤

√
QR

∣∣∣∣∣
n∑

i=1

εiaσ(w · xi + b)

∣∣∣∣∣
]
≤ 3

√
2QR√
n

To this end, we modify the data points as x̃i = (xi, R) and the parameters as w̃ = (wT , b
R ). Then,936

observe that w·xi+b = w̃·x̃i, ∥x̃i∥ =
√
∥xi∥2 +R2 ≤

√
2R, and a2+∥w̃∥2 = a2+∥w∥2+( b

R )2 ≤937

3Q. Therefore, we can write the above by the following:938

1

n
Eε

[
sup

a2=∥w∥2≤Q, |b|≤Q

∣∣∣∣∣
n∑

i=1

εiaσ(w · xi + b)

∣∣∣∣∣
]
≤ 1

n
Eε

[
sup

a2+∥w̃∥2≤3Q

∣∣∣∣∣
n∑

i=1

εiaσ (w̃ · x̃i)

∣∣∣∣∣
]

=
1

n
Eε

[
sup

a2+∥w̃∥2≤3Q

|a| ∥w̃∥

∣∣∣∣∣
n∑

i=1

εiσ

(
w̃

∥w̃∥
· x̃i

)∣∣∣∣∣
]

≤ 1

n
Eε

[
sup

a2+∥w̃∥2≤3Q,∥u∥2≤1

a2 + ∥w̃∥2

2

∣∣∣∣∣
n∑

i=1

εiσ(u · x̃i)

∣∣∣∣∣
]

≤ 3Q

2n
Eε

[
sup

∥u∥2≤1

∣∣∣∣∣
n∑

i=1

εiσ(u · x̃i)

∣∣∣∣∣
]

≤ 3Q

n
Eε

[
sup

∥u∥2≤1

n∑
i=1

εiσ(u · x̃i)

]

= 3Q R̂ad(σ ◦ H2, S̃n) ≤ 3Q R̂ad(H2, S̃n) ≤
3Q√
n
max

i
∥x̃i∥2 ≤ 3

√
2QR√
n

Here, H2 := {u ∈ Rd | ∥u∥2 ≤ 1} and S̃n = {x̃1, . . . , x̃n}. When removing the absolute value, we939

used that the sum is always non-negative and that it is symmetric when replacing ε by −ε. When940

removing σ, we make use of the Contraction Lemma for Rademacher complexity [Shalev-Shwartz941

and Ben-David, 2014, Lemma 26.9]. Finally, for Rad(H2, S̃n) we used the expression for the942

Rademacher complexity of the class of linear functions on Hilbert space. [Shalev-Shwartz and943

Ben-David, 2014, Lemma 26.10]. This concludes Step 3.944
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Step 4. In this step, we finally consider sets S which are sampled from the product measure µn, i.e.945

sets where x1, . . . , xn are independent data samples with law µ. From steps 1 – 3, we know that946

Rad(FQ) = ESn∼µn

[
R̂ad(F , Sn)

]
≤
(
1 + 3

√
2
)
Q

√
n

E(x1,...,xn)∼µn

[
max
1≤i≤n

∥xi∥
]
.

We bound E(x1,...,xn)∼µn

[
max1≤i≤n ∥xi∥

]
by Lemma H.1 to obtain947

Rad(FQ) ≤
(
1 + 3

√
2
)
Q

(
Ex∼µ

[
∥x∥
]

√
n

+ σ

√
2
log n

n

)

A similar result follows immediately for the more general function class948

FA,Q := {f ∈ B : [f ]B ≤ Q, |f(0)| ≤ A}. (5)

Corollary D.3. Under the same conditions as Lemma D.2, we have949

Rad(FA,Q) ≤
(
1 + 3

√
2
)
Q

(
Ex∼µ

[
∥x∥
]

√
n

+ σ

√
2
log n

n

)
+

A√
n

Proof. We note that f ∈ FA,Q if and only if f = f̃ + α with f ∈ FQ and |α| ≤ A. Hence, for any950

fixed dataset S, we have951

n R̂adn(FA,Q) = Eε

[
sup

f∈FA,Q

n∑
i=1

εif(xi)

]
= Eε

[
sup

f∈FQ,|α|≤A

n∑
i=1

εi
(
α+ f(xi)

)]

≤ Eε

[
sup
f∈FQ

n∑
i=1

εif(xi)

]
+ Eε

[
sup

|α|≤A

n∑
i=1

εiα

]
≤ R̂adn(FQ) +

A√
n

by the argument of Step 2 in the proof of Lemma D.2.952

A bound on the Rademacher complexity, together with the sub-Gaussian property of the distribution953

µ, allows us to control the ‘generalization gap’ in homogeneous Barron spaces.954

Corollary D.4. Assume that µ is a σ2-sub-Gaussian distribution on Rd. Let (X1, . . . , Xn) be iid955

random variables with law µ and f∗ a µ-measurable function such that956

|f∗(x)− f∗(0)| ≤ B1 +B2∥x∥

µ-almost everywhere. Let957

R̂n(f) =
1

n

n∑
i=1

∣∣f(Xi)− f∗(Xi)
∣∣2, R(f) = Ex∼µ

[
|f(x)− f∗(x)|2

]
.

Then with probability at least 1− 2δ over the random draw of X1, . . . , Xn, the bound958

sup
f−f∗(0)∈FA,Q

(
R(f)− R̂n(f)

)
≤ C∗ ((Q+B2

) (
Ex∼µ∥x∥+ σ2 + 1

)
+A+B1

)2 log(n/δ)√
n

holds for a constant C∗ > 0 which does not depend on δ,Q, d, µ or n.959

Proof. Step 1. From Lemma H.2, with probability at least 1− δ we have960

max
1≤i≤n

∥Xi∥ ≤ Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ).

We denote Rn := Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ) for simplicity.961

Step 2. Consider the modified loss function962

ℓξ(f) = min
{
f2, ξ2

}
,
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which is bounded by ξ2 and satisfies |∂f ℓξ| ≤ 2R, i.e. ℓξ is 2ξ-Lipschitz continuous. We thus observe963

that, with probability at least 1− δ over the choice of random set S = {x1, . . . , xn}, we have964

Ex∼µ

[
ℓξ
(
f(x)− f∗(x)

)]
− 1

n

n∑
i=1

ℓξ
(
f(xi)− f∗(xi)

)
≤ 4ξ E

[
R̂ad(FQ, Sn)

]
+ ξ2

√
2 log(2/δ)

n

by [Shalev-Shwartz and Ben-David, 2014, Theorem 26.5] and the Contraction Lemma for965

Rademacher complexities, [Shalev-Shwartz and Ben-David, 2014, Lemma 26.9]. In particular966

Ex∼µ

[
ℓξ
(
f(x)− f∗(x)

)]
≤ 1

n

n∑
i=1

ℓξ
(
f(xi)− f∗(xi)

)
+ ξ2

√
2 log(2/δ)

n

+ 4(1 + 3
√
2)Qξ

(
Ex∼µ∥x∥√

n
+ σ

√
2 log n

n

)
+

Aξ√
n
.

Step 3. By the union bound, with probability at least 1− 2δ, both the norm bound of Step 1 and the967

generalization bound of Step 2 hold. In the following, we assume that both bounds hold. Note that968

|f(x)− f∗(x)| ≤
∣∣f(x)− f∗(0)|+ |f∗(x)− f∗(0)| ≤ (A+B1) + (Q+B2)∥x∥.

In particular, if ξ ≥ (A + B1) + (Q + B2)R , then |f(x) − f∗(x)| ≤ ξ on BR(0), so969

ℓξ(f(x)− f∗(x)) ≡ ℓ(f(x)− f∗(x)). Applying the generalization bound with Rn = Ex∼µ∥x∥+970

σ
√

2 log(n/δ) and ξn = (Q + B2)Rn + (A + B1), we find that ℓξn(f(xi) − f∗(xi)) =971

ℓ(f(xi)− f∗(xi)) for all i by assumption and thus, with probability at least 1− 2δ, we have972

Ex∼µ

[
ℓξ
(
f(x)−f∗(x)

)]
≤ 1

n

n∑
i=1

(
f(xi)− f∗(xi)

)2
+
(
(Q+B2)Rn +A+B1

)2√2 log(2/δ)

n

+ 4(1 + 3
√
2)Q

(
(Q+B2)Rn +A+B1

)(Ex∼µ∥x∥√
n

+ σ

√
2 log n

n

)
.

Step 4. Finally, we bound the population risk with the true loss function rather than ℓξ . Thus we find973

that for BR := BR(0) we have974

Ex∼µ

[(
f(x)−f∗(x)

)2]
= Ex∼µ

[(
f(x)− f∗(x)

)2
1BR

]
+ Ex∼µ

[(
f(x)− f∗(x)

)2
1Rd\BR

]
≤ Ex∼µ

[
ℓξ
(
f(x)− f∗(x)

)]
+ Ex∼µ

[
(A+B1 + (Q+B2)∥x∥)2 1Rd\BR

]
for R ≥ 3. From Lemma H.3 with Rn = E∥x∥+ σ

√
2 log(n/δ), we have975

Ex∼µ

[
∥x∥2 1BRn (0)c(x)

]
≤

√
2π exp

(
− log(n/δ)

2

)(
(E∥x∥)2 + 2σ2

)
=

√
2π

(E∥x∥)2 + 2σ2√
n/δ

.

976

Remark D.5. In particular, Corollary D.4 applies if the target function f∗ is Lipschitz-continuous977

with B1 = 0 and B2 = [f∗]Lip ≤ [f∗]B. However, continuity is not necessary, and even noisy labels978

would be admissible. We do not pursue this generality here.979

E Proofs of the convergence theorems980

In this appendix, we present the proofs of Theorems 2.1 and 3.3. In these, we combine the upper981

bound of the Rademacher complexity of the unit ball in homogeneous Barron space in form of the982

generalization bound of Corollary D.4 with a Γ-convergence argument (to guarantee the convergence983

of minimizers to minimizers). The main ingredients in the proof of Γ-convergence are984

• the compact embedding theorem for homogeneous Barron space (to guarantee that every985

subsequence of fn has a convergent subsequence) and986

• the direct approximation theorem for homogeneous Barron space (to obtain a bound on the987

lowest achievable energy using a neural network with m neurons).988

We first present convergence proofs in Lp(µ) in Section E.1, followed by proofs of Γ-convergence in989

Section E.2. We combine the arguments to prove the statements from the main body of the document990

in Section E.3.991
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E.1 Convergence in Lp(µ)992

We start by establishing convergence in L2(µ) at an explicit convergence rate. Then, using this L2(µ)993

convergence we will extend this result to general Lp(µ).994

We introduce one of our main theorem of this section, which gives us an explicit bound of L2(µ)-loss.995

For convenience, we denote θ := (a,W, b) for the rest of the section.996

Theorem E.1 (L2-convergence). Let θ̂ ∈ argminθ R̂n,m,λ(θ). If δ ≥ e−n, and f∗ ∈ FQ∗ , then with997

probability at least 1− 4δ over the choice of random points x1, . . . , xn we have998

R(fθ̂) ≤ C

(
(Q∗)2

m

(
E
[
∥x∥2

])
+ λQ∗ +Q∗ (E∥x∥+ σ2 + [f∗]B

) log(n/δ)√
n

)
up to higher order terms in the small quantities (λm)−1,m−1, n−1/2 log n.999

Proof. Outline. We use Theorem C.5 for L2(µn) with f = f∗ to obtain a function for which1000

R̂n,m,λ is low. The empirical risk minimizer (ERM) has even lower risk. The weight decay penalty1001

additionally provides a norm-bound in homogeneous Barron space for the ERM, and we use Corollary1002

D.4 to control the generalization gap.1003

Step 1. Due to Theorem C.5, there exists a θ̃ := (ã, w̃, b̃) ∈ Rm × Rm×d × Rm+1 such that1004

RWD(θ̃) ≤ [f∗]B (6)

and1005

R̂n(fθ̃) = [fθ̃ − f∗]2L2(µn)
≤ 4[f∗]2

m
sup

∥w∥=1

∫
Rd

|wTx|2dµn ≤ 4[f∗]2

m

(
1

n

n∑
i=1

∥xi∥2
)
.

We will always consider δ such that log(1/δ) ≤ n. In this regime, plugging-in the bound on the1006

second moments of µn from Lemma H.4 gives the corresponding bound1007

R̂n(fθ̃) ≤
4[f∗]2

m

(
E[∥x∥2] + 8σ2

√
log(1/δ)

n

)
(7)

with probability 1− δ. We will assume that this estimate is valid for the remainder of the proof. In1008

particular, since θ̂ minimizes R̂n,m,λ, we find that1009

R̂n,m,λ(θ̂) ≤ R̂n,m,λ(θ̃) ≤
4[f∗]2

m

(
E[∥x∥2] + 8σ2

√
log(1/δ)

n

)
+ λ [f∗]B. (8)

Step 2. Next, we bound [fθ̂]B and |fθ̂(0)− f∗(0)| (Q and A in Corollary D.4). We first bound the1010

Barron semi-norm by1011

[fθ̂]B ≤ 1

λ
R̂n,m,λ(θ̂) ≤

1

λ
R̂n,m,λ(θ̃).

Moving on to bounding A, we find from the empirical risk bound1012

min
1≤i≤n

|f − f∗|(xi) =
√

min
1≤i≤n

|f − f∗|2(xi) ≤

√√√√ 1

n

n∑
i=1

|f − f∗|(xi) ≤
√

R̂n(f)

and in particular1013

min
1≤i≤n

|fθ̂ − f∗|(xi) ≤
√
R̂n,m,λ(θ̃).

With probability at least 1− δ, we have1014

max
1≤i≤n

∥xi∥ ≤ Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ).

by Lemma H.2. Again, we assume that the estimate holds in the following. Hence, the index i for1015

which the minimum is attained in (8) satisfies the bound1016

∥xi∥ ≤ Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ).
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Combining the bounds on |fθ̂(xi)− f∗(xi)| and the Lipschitz constants of fθ̂, f
∗, we find that1017

|fθ̂ − f∗|(0) ≤ |fθ̂ − f∗|(xi) +
(
[fθ̂]B + [f∗]B

)
∥xi∥

≤
√

R̂n,m,λ(θ̃) +

(
[f∗]B +

1

λ
R̂n,m,λ(θ̃)

)(
Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ)

)
.

Step 3. Comparing θ̂ to θ̃, we observe that1018

R(fθ̂) = R̂n(fθ̂) +R(fθ̂)− R̂n(fθ̂)

≤ R̂n,m,λ(θ̂) +R(fθ̂)− R̂(fθ̂)

≤ R̂n,m,λ(θ̃) +R(fθ̂)− R̂n(fθ̂)

where we used the fact that θ̂ is a minimizer of R̂n,m,λ(θ) and (6). In the following, we use the1019

bound on [fθ̂]B to control the generalization gap.1020

Step 4. Recall that [fθ̂]B ≤ [f∗]B + 1
λ R̂n,m,λ(fθ̃) = [f∗]B +O((λm)−1). Thus, with probability1021

at least 1− 2δ, we obtain the bound1022 (
R− R̂n

)
(fθ̂) ≤

(
[f∗]B +

1

λ
R̂n,m,λ(θ̂)

)(
E∥x∥+ σ2 + [f∗]B

) log(n/δ)√
n

from Corollary D.4 for a slightly modified constant C > 0 (with B1 = 0) and up to higher order1023

terms in (λm)−1 and n.1024

Step 5. By the union bound, all probabilistic bounds hold simultaneously with probability at least1025

1− 4δ. In this case1026

R(fθ̂) ≤ C

(
Q2

m

(
E
[
∥x∥2

]
+ σ2

√
log(1/δ)

n

)
+ λQ+ [f∗]B

(
E∥x∥+ σ2 + [f∗]B

) log(n/δ)√
n

)
up to higher order terms in m−1, log n/

√
n, (λm)−1 etc.1027

Since R(θ) = ∥fθ − f∗∥2L2(µ), we can interpret Theorem E.1 as a convergence statement in L2(µ)1028

at a suitable rate. The statement generalizes to Lp-convergence at a rate.1029

Corollary E.2 (Lp-convergence). Let p ∈ [1,∞] and θ̂ as in Theorem E.1. Then there exists a1030

constant C̃ > 0 depending on E∥x∥,E[∥x∥2], σ2 and p such that1031

∥fθ̂ − f∗∥Lp(µ) ≤ C̃
(
R̂n,m,λ(θ̂)

1/2 + [f∗]B

)1−1/p

∥fθ̂ − f∗∥1/pL2(µ).

Proof. Since µ is sub-Gaussian, we note that all moments of µ are finite: E[(1 + ∥x∥)q] < ∞ for1032

all q ∈ [1,∞). In particular, if g is a measurable function which satisfies |g(x)| ≤ Cg(1 + ∥x∥) for1033

some C)g > 0, then1034

∥g∥pLp(µ) = E
[
g · gp−1

]
≤ E

[
g2
]1/2 E[g2(p−1)

]1/2
= ∥g∥L2∥g∥p−1

L2(p−1) .

If g = fθ̂ − f∗ ∈ B, then by the continuous embedding B ↪→ Lq(µ) we find that1035

∥fθ̂ − f∗∥L2(p−1)(µ) ≤ C
(
|fθ̂ − f∗|(0) + [fθ̂ − f∗]B

)
.

Recall that |fθ̂ − f∗|(0) ≤ R̂n,m,λ(θ̂)
1/2 + C[f∗]B.1036

We note that Corollary E.2 is generally suboptimal. Indeed, for p ≤ 2, the stronger bound1037

∥fθ̂ − f∗∥Lp(µ) ≤ ∥fθ̂ − f∗∥L2(µ) = O

((
1

m
+ λ+

log n√
n

)1/2
)

holds as L2(µ) embeds continuously into Lp(µ).1038
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E.2 Gamma-expansion of regularized risk functionals1039

As before, we denote θn = (a,W, b)n ∈ Rmn ×Rmn×d ×Rmn+1. Since R(fθ) = ∥fθ − f∗∥2L2(µ),1040

Theorem E.1 can be taken as a statement that fθ̂n → f∗ as n → ∞ in L2(µ). However, this does1041

not tell us about the behavior of fθ̂n in a µ-null set, i.e. where the distribution µ provides us no1042

information. This interpolation between known values can be deduced from our next result. We first1043

present a simplified version, in which we assume that we have already taken the limits m,n → ∞1044

before taking λ → 0. We couple the limits n,mn, λn below.1045

We use the notion of Γ-convergence from the calculus of variations. For a brief introduction, see1046

Appendix B. Γ-convergence depends on the underlying topology of the space, and we make the1047

following convention: We say that fλ
good−−−→ f if fλ → f locally uniformly (uniformly on compact1048

sets) and in L2(µ). Other definitions are admissible and lead to the same general theory. Since1049

Barron functions grow at most linearly at ∞ due to Lipschitz-continuity, we note that this is notion1050

of convergence is generated by a metric1051

d(f, g) = max
x∈Rd

|f(x)− g(x)|
1 + ∥x∥2

at least on bounded subsets of Barron space. This suffices for all applications below and spares us1052

from considering Γ-convergence on more general topological spaces – which is also possible.1053

Theorem E.3. Let1054

Rλ : B → [0,∞), Rλ(f) = ∥f − f∗∥2L2(µ) + λ [f ]B.

We denote1055

Fλ : B → [0,∞) Fλ(f) =
Rλ(f)

λ
=

∥f − f∗
d ∥2L2(µ)

λ
+ [f ]B

F : B → [0,∞] F (f) =

{
[f ]B if f = f∗ µ-a.e.
+∞ else

.

Then Γ− limλ→0 Fλ = F with respect to the notion of convergence
good−−−→ defined above.1056

Notably, the Γ-limit of Rλ itself would be zero at all points of interest. Rescaling to consider Fλ1057

instead has fits into the framework of Γ-expansions considered by Braides and Truskinovsky [2008].1058

Denote1059

F = {f ∈ B : f ≡ f∗ µ-a.e.} (9)

Proof. Step 1. liminf-inequality. First consider f ∈ F and assume that {fλ}λ>0 is a family of1060

functions such that fλ
good−−−→ f .2 Then by the compactness theorem for Barron functions in coarser1061

topologies (Theorem C.3) we have the following:1062

lim inf
λ→0+

Fλ(fλ) ≥ lim inf
λ→0+

[fλ]B ≥ [f ]B = F (f).

Now assume that f /∈ F and that fλ
good−−−→ f . We need to show that Fλ(fλ) → +∞. Since f /∈ F ,1063

we see that R(f) = ∥f − f∗
d ∥2L2(µ) > 0. Denote ε =

√
R(f) and observe that there exists Λ > 01064

such that ∥fλ − f∥L2(µ) < ε/2 for all λ < Λ by the definition of the notion of convergence.1065

In particular, we find that1066

∥fλ − f∗∥L2(µ) ≥ ∥f − f∗∥L2(µ) − ∥fλ − f∥L2(µ) ≥ ε/2

for all λ < Λ by the inverse triangle inequality and thus1067

lim inf
λ→0+

Fλ(fλ) ≥ lim inf
λ→0+

(ε/2)2

λ
= +∞.

2 It is easy to generalize this to continuous limits, but if preferred, then λ = λn can be taken to be a discrete
sequence converging to zero.
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Step 2. limsup-inequality. Again, we first consider the case f ∈ F . Set fλ = f for all λ > 0 and1068

observe that fλ → f as λ → 0+ (trivially). By the same argument Fλ(fλ) = F (f) = [f ]B for all λ,1069

i.e. the constant sequence is a recovery sequence since Fλ(fλ) → F (f).1070

On the other hand, if f /∈ F , then R(f) > 0 and thus Fλ(f) → +∞ = F (f). Again, we can use1071

the constant sequence as a recovery sequence, somewhat trivially.1072

Corollary E.4. Assume that fλ ∈ argminf∈B Rλ, i.e. fλ minimizes Rλ. Then there exists f̂ ∈ B1073

such that fλ
good−−−→ f̂ .1074

Proof. Clearly fλ minimizes Rλ if and only if it minimizes Fλ = λ−1 Rλ. We note that1075

[fλ]B ≤ λ−1Rλ(fλ) ≤ λ−1R(f∗) + [f∗]B = [f∗]B.

In particular, by the compact embedding of Theorem C.3, there exists f̂ ∈ B such that fλ
good−−−→ f̂ up1076

to subsequence. By the properties of Γ-convergence, we conclude that f̂ is a minimizer of F .1077

We present a special case of Corollary E.4 in the setting of Proposition 3.2 which exploits the1078

uniqueness of the minimizer. Recall the definition of the radial average in (3) and f∗
d from Proposition1079

3.2.1080

Corollary E.5. Assume that f∗(0) = 1, f∗(x) = 0 if ∥x∥ ≥ 1 and µ satisfies the conditons1081

of Theorem 3.3. Assume additionally that fλ ∈ argminf∈B Rλ, i.e. fλ minimizes Rλ. Then1082

Av fλ
good−−−→ f∗

d .1083

Proof. Step 1. Clearly fλ minimizes Rλ if and only if it minimizes Fλ = λ−1 Rλ. Av fλ is also a1084

minimizer of Fλ since the functional is convex and rotationally symmetric, so by averaging in radial1085

direction, we are taking a (continuous) convex combination of minimizers, which is a minimizer1086

again.1087

Step 2. We find that1088

[Av fλ]B ≤ Fλ(Av fλ) ≤ Fλ(fλ) ≤ Fλ(f
∗
d ) = [f∗

d ]B.

By the compactness theorem for Barron functions, Theorem C.3, there exists f ∈ B such that1089

Av fλ
good−−−→ f (up to a subsequence). Since Fλ → F in the sense of Γ-convergence, we find that f1090

is a minimizer of F . Since f is also radially symmetric, we find by Proposition 3.2 that f ≡ f∗
d .1091

Step 3. By the exact same logic, we could show that every subsequence of {Av fλ} has a further1092

subsequence which converges to f∗
d . By a standard argument in topology, the whole sequence1093

converges.1094

A similar statement can be proved in the more complicated case where fλ is a neural network with1095

finitely many neurons and Fλ uses a finite data set rather than a continuous expectation. In this case,1096

the parameter λ must be coupled to the number of parameters m and the number of data points n,1097

such that λ → 0, but not too quickly. The proof is a more technically challenging variant of those of1098

Theorem E.3 and Corollaries E.4 and E.5, which utilizes the generalization bound of D.4. To this end,1099

we first introduce a new notion of convergence. That is, we define a notion of convergence from the1100

parameter to function. We define a notion of convergence by saying that θk := (ak,Wk, bk)
good−−−→ f1101

iff fθk
good−−−→ f as k → ∞.1102

Theorem E.6. Consider the parameter space Θm ⊆ Rm × Rm×d × Rm+1 of neural networks with1103

a single hidden layer of width m and the associated functions1104

fθ(x) := b0 +

m∑
i=1

aiσ(wi · x+ bi)

Let mn, λn scale with n according to (1). We denote1105

Fn : Θmn
→ [0,∞) Fn(θ) =

R̂n,mn,λn
(θ)

λn
=

R̂n(fθ)

λn
+RWD(θ)
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F : B → [0,∞] F (f) =

{
[f ]B if f = f∗ µ-a.e.
+∞ else

.

Then almost surely over the choice of data points, we have Γ− limn→∞ Fn = F almost surely with1106

respect to the notion of convergence θk
good−−−→ f defined above.1107

Proof. We use F as in (9) throughout. In the proof we assume that all stochastic quantities in1108

Corollary D.4 and Theorem E.1 are satisfied with probability at least 1 − δn for δn = n−2. The1109

quantity log(δn) therefore becomes comparable to log n/n ≪ λn. Since
∑∞

n=1 n
−2 < ∞, we find1110

that all conditions are met for all but finitely many n ∈ N by the Borel-Cantelli Lemma. For questions1111

of asymptotic convergence, we may therefore assume that the statements of both Theorems apply1112

without qualifying for high probability. Note that n−2 ≥ e−n for all n ≥ 2 as needed for Theorem1113

E.1.1114

Step 1. liminf-inequality. Again, we consider the cases f ∈ F and f /∈ F separately. First,1115

when f ∈ F , we apply the same method we did in Theorem E.3. For any sequence of parameters1116

θn
good−−−→ f , by Theorem C.3 the following holds:1117

lim inf
n→∞

Fn(θn) ≥ lim inf
n→∞

RWD(θn) ≥ lim inf
n→∞

[fθn ]B ≥ [f ]B = F (f).

The second inequality comes from [fθn ]B being an infimum of weight decay regularizers with any1118

arbitrary probability measure on parameter space.1119

Second, when f /∈ F , we need to show lim infn→∞ Fn(θn) = ∞ for any θn
good−−−→ f . We distinguish1120

two prototypical cases:1121

1. [fθn ]B → +∞ as n → ∞. In this case F (θn) ≥ [fθn ]B → +∞ as well by the same logic1122

as above.1123

2. lim supn→∞[fθn ]B < +∞. In this case, we take ε := ∥f − f∗∥L2(µ)/2 > 0. Then there1124

exists N ∈ N such that for all n ≥ N we have1125

∥fθn − f∗∥L2(µ) ≥ ∥f − f∗∥L2(µ) − ∥fθn − f∥L2(µ) ≥ ε

for all n ≥ N by definition. Additionally1126

Fn(θn) ≥
R̂n(fθn)−R(fθn)

λn
+

R(fθn)

λn
+ [fθn ]B

≥ R̂n(fθn)−R(fθn)

λn
+

ε2

λn
+ [fθn ]B.

Due to Corollary D.4 and the arguments of Theorem E.1 to control the discrepancy at 0, we1127

have1128

R̂n(fθn)−R(fθn) = O

(
log n√

n

)
.

in this case. Since log n/
√
n ≪ λn by assumption, we note that1129

lim
n→∞

R̂n(fθ̂n)−R(fθ̂n)

λn
= 0

and thus1130

lim
n→∞

Fn(θn) ≥ lim inf
n→∞

(
0 +

ε2

λn
+ 0

)
= +∞.

The same holds in the general case by passing to subsequences.1131

Step 2. limsup-inequality. As in Theorem C.5, the case f /∈ F follows from the lim inf-ineuality in1132

an essentially trivial fashion. We therefore only consider the case f ∈ F . An approximating sequence1133

in this case is constructed from Theorem C.5 as in Theorem E.1 or Theorem E.3. Namely, we find θ̃n1134

such that1135

Fn(θ̃n) ≤
C

λnmn

(
1 +

log n√
n

)
+ [f∗]B ⇒ lim sup

n→∞
Fn(θ̃n) ≤ [f∗]B.
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Remark E.7. The key ingredients for the proofs of both Theorem E.1 and Theorem E.6 are Theorem1136

C.5 and Corollary D.4, but they are combined differently. While they are paired in Theorem E.1 to1137

obtain a precise rate, they occur separately in Theorem E.6: Theorem C.5 is used for the lim sup-1138

inequality while Corollary D.4 enters in the proof of the lim inf-inequality. Analogously, the condition1139

λn ≪ log n/
√
n is used in the proof of the lim inf-condition while the fact that 1

mn
≪ λn is used in1140

the proof of the lim sup-inequality.1141

E.3 Proofs of the main theorems1142

The statements of the Theorems in the main body of the text can easily be deduced from the statements1143

proved in this Appendix.1144

Proof of Theorem 2.1. Convergence in Lp holds by Theorem E.1 for 1 ≤ p ≤ 2 and Corollary E.21145

(general p). The proof of uniform convergence follows from Theorem E.6 in the same fashion that1146

Corollary E.4 follows from Theorem E.3. The explicit bound is obtained from Theorem E.1 with1147

δn = 1
4n2 .1148

Proof of Theorem 3.3. This follows in the same way as the proof of Theorem 2.1 with modifications1149

as in Corollary E.5.1150

F Theorem 2.1 for finite data sets1151

Finally, we note that a version of Theorem 2.1 holds if the data set S = {x1, . . . , xn} is kept fixed.1152

The proof is a combination of those of Theorems E.3 and E.6, as we deal with a finite approximating1153

neural network, but do not require generalization bounds. The details are left to the reader.1154

Theorem F.1. We make the following assumptions.1155

1. Let S = {(x1, y1), . . . , (xn, yn)} be a fixed dataset of n data points in xi ∈ Rd and labels1156

yi ∈ R.1157

2. Let the loss function ℓ(f, y) be the mean squared error ℓMSE(f, y) = |f − y|2.1158

3. Assume that λm is a sequence of parameters such that λm → 0, 1/m ≪ λm as m → ∞.1159

Consider the regularized empirical risk functional R̂m : Rm × Rm×d × Rm → [0,∞),1160

R̂m(a,W, b) =
1

2n

n∑
i=1

ℓ
(
f(a,W,b)(xi), yi

)
+

λm

2

(
∥a∥22 + ∥W∥2Frob

)
.

Then if (a,W, b)m ∈ argmin R̂m for all m ∈ N, then every subsequence of fm := f(a,W,b)m has a1161

further subsequence which converges to some limit f̂∗ ∈ B uniformly on compact subset of Rd. The1162

limiting function satisfies1163

f̂∗ ∈ argmin
{f∈B:f(xi)=yi ∀i}

[f ]B.

G Minimum norm interpolation in one dimension1164

Proof of Proposition 3.1. Any Barron function f is also Lipschitz-continuous, in particular differen-1165

tiable almost everywhere and f(b)− f(a) =
∫ b

a
f ′(x) dx for all a, b ∈ R by Rademacher’s Theorem1166

(see e.g. [Evans and Gariepy, 2015, Section 3.1]). In particular, there exist points x+, x− ∈ (a, b)1167

such that1168

f ′(x−) ≤ f(b)− f(a)

b− a
=

1

b− a

∫ b

a

f ′(x) dx ≤ f ′(x+).

If f ′ is not constant, both inequalities are satisfied strictly. Under the assumptions, there exists1169

a ∈ (x0, x1) and b ∈ (xn−1, xn) such that1170

f ′(a) ≤ f(x1)− f(x0)

x1 − x0
≤ 0 ≤ f(xn)− f(xn−1)

xn − xn−1
≤ f ′(b). (10)
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Since the derivative f ′ changes sign, we conclude by [Wojtowytsch, 2022, Proposition 2.5] that1171

[f ]B =
∫∞
−∞ d|µ| where the Radon measure µ is the distributional derivative of f ′ and |µ| denotes1172

the total variation measure of µ. Since f ′ is differentiable at a, b, neither point is an atom of µ and1173

thus1174

f(xn)− f(xn−1)

xn − xn−1
− f(x1)− f(x0)

x1 − x0
≤ f ′(b)− f ′(a) ≤

∫ b

a

dµ ≤
∫ b

a

d|µ| ≤ [f ]B.

Equality holds if and only if |µ| = µ, i.e. if µ ≥ 0 in the sense of signed measures and if and only1175

if the inequality in (10) can only be satisfied with equality. The first condition means that f must1176

be convex, the second implies that the derivative of f must be constant in the intervals (x0, x1) and1177

(xn−1, xn). The same can easily be seen for the larger intervals (−∞, x1) and (xn−1,∞).1178

H Sub-Gaussian random variables1179

In this Appendix we quickly gather some facts about sub-Gaussian random variables. For the reader’s1180

convenience, we provide full proofs. Experts are encouraged to skip ahead to Appendix D.1181

The first property we observe is a bound of expected maximum value of sub-Gaussian.1182

Lemma H.1. Let µ be σ2-sub-Gaussian, and for i = 1, . . . , n, let xi be a iid random samples from1183

a law µ. Then, the following holds:1184

E
[
max
1≤i≤n

∥xi∥
]
≤ Ex∼µ

[
∥x∥
]
+
√

2 log nσ.

Proof. From the sub-Gaussian assumption we have1185

log
(
Ex∼µ

[
exp

(
λ
(
∥X∥ − E

[
∥X∥

]) ])
≤ σ2λ2

2

for some fixed σ > 0 and all λ > 0. In particular, Jensen’s inequality implies the sub-Gaussian1186

maximal inequality1187

E
[
max
1≤i≤n

∥xi∥
]
= Ex∼µ

[
∥x∥
]
+ E

[
max
1≤i≤n

(
∥xi∥ − E∥xi∥

)]
≤ Ex∼µ

[
∥x∥
]
+

1

λ
log

(
E
[
exp

(
λ max

1≤i≤n

(
∥xi∥ − E∥xi∥

))])
≤ Ex∼µ

[
∥x∥
]
+

1

λ
log

(
E

[
n∑

i=1

exp
(
λ
(
∥xi∥ − E∥xi∥

))])

≤ Ex∼µ

[
∥x∥
]
+

1

λ
log

(
n∑

i=1

E
[
exp

(
λ
(
∥xi∥ − E∥xi∥

))])

= Ex∼µ

[
∥x∥
]
+

1

λ
log

(
n exp

(
λ2σ2

2

))
≤ Ex∼µ

[
∥x∥
]
+

log n

λ
+

σ2

2
λ

for all λ > 0. We specifically select λ =
√

2 logn
σ2 , making the bound1188

E
[
max
1≤i≤n

∥xi∥
]
≤ Ex∼µ

[
∥x∥
]
+
√

2 log nσ.

Next, we observe the concentration of maximum values among samples of sub-Gaussian distribution.1189

Lemma H.2. Let µ be σ2-sub-Gaussian, and for i = 1, . . . , n, let xi be a iid random samples from1190

a law µ. Then, with probability at least 1− δ, the following holds:1191

max
1≤i≤n

∥xi∥ ≤ Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ).
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Proof. For all t > 0, we observe that1192

µn

(
max
1≤i≤n

∥xi∥ ≥ Ex∼µ

[
∥x∥] + t

)
= µn

(
max
1≤i≤n

exp
(
λ(∥xi∥ − E∥xi∥)

)
≥ exp(λt)

)
≤ e−λtE

[
max
1≤i≤n

exp
(
(λ(∥xi∥ − E∥xi∥)

)]
≤ e−λt

n∑
i=1

E
[
exp

(
(λ(∥xi∥ − E∥xi∥)

)]
≤ n exp

(
−λt+

λ2σ2

2

)
.

For fixed t, the bound becomes tightest for λ = t/σ2 with1193

µn

(
max
1≤i≤n

∥xi∥ ≥ Ex∼µ

[
∥x∥] + t

)
≤ n exp

(
− t2

2σ2

)
≤ δ

if1194

− t2

2σ2
≤ log

(
δ

n

)
⇔ t ≥ σ

√
2 log(n/δ).

Thus with probability at least 1− δ, we have1195

max
1≤i≤n

∥Xi∥ ≤ Rn := Ex∼µ

[
∥x∥
]
+ σ

√
2 log(n/δ).

In the following Lemma, we investigate expectation of squared norm of sub-Gaussian near the tail.1196

Lemma H.3. Let µ be σ2-sub-Gaussian distribution in Rd. For any R > Ex∼µ∥x∥, we have the1197

following:1198

Ex∼µ

[
∥x∥2 1BR(0)c(x)

]
≤ exp

(
−
(
R− E∥x∥

)2
4σ2

)
√
2π
(
(E∥x∥)2 + 2σ2

)
.

Proof. Recall that1199

µ
({

x : ∥x∥ ≥
(
Ex′∼µ∥x′∥+ t

)})
≤ exp

(
− t2

2σ2

)
as demonstrated in the proof of Lemma H.1 (consider n = 1). Thus1200

Ex∼µ

[
∥x∥2 1BR(0)c(x)

]
≤
∫ ∞

R

s2µ
(
{∥x∥ ≥ s}

)
ds ≤

∫ ∞

R

s2 exp

(
−
(
s− E∥x∥

)2
2σ2

)
ds

≤ exp

(
−
(
R− E∥x∥

)2
4σ2

)∫ ∞

R

exp

(
−
(
s− E∥x∥

)2
4σ2

)
ds

≤ exp

(
−
(
R− E∥x∥

)2
4σ2

)∫ ∞

R

exp

(
−
(
s− E∥x∥

)2
4σ2

)
ds

= exp

(
−
(
R− E∥x∥

)2
4σ2

)
√
2π
(
(E∥x∥)2 + 2σ2

)
.

1201

In next Lemma we introduce how the mean of squared norm of sub-Gaussian is concentrated.1202

Lemma H.4. Assume µ is a σ2-sub-Gaussian distribution in Rd. Let x1, . . . , xn be iid random1203

samples from law µ. Then, with probability at least 1− δ,1204

1

n

n∑
i=1

∥xi∥2 ≤ Ex∼µ

[
∥x∥2

]
+ 8σ2 max

(
log(1/δ)

n
,

√
log(1/δ)

n

)
.
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In particular, if δ ≥ e−n then1205

1

n

n∑
i=1

∥xi∥2 ≤ E
[
∥x∥2

]
+ 8σ2

√
log(1/δ)

n

with probability at least 1− δ.1206

Proof. Firstly since ∥xi∥ is σ2-sub-Gaussian, from [Honorio and Jaakkola, 2014, Appendix B] we1207

observe that ∥xi∥2 is (4
√
2σ2, 4σ2)-sub-exponential. Next, by independence, for all λ > 0 and for1208

all |t| ≤ 1
4σ2 we have the following:1209

E

[
exp

(
λ
( n∑
i=1

∥xi∥2 − E
[ n∑
i=1

∥xi∥2
]))]

=

n∏
i=1

E
[
exp

(
λ
(
∥xi∥2 − E

[
∥xi∥2

]))]
≤

n∏
i=1

exp

(
32σ4λ2

2

)
= exp

(
32nσ4λ2

2

)
which implies that

∑n
i=1 ∥xi∥2 is (4

√
2nσ2, 4σ2)-sub-exponential. Thus the tail bound of sub-1210

exponential [Adams, 2022, Proposition 2.38] applied to
∑n

i=1 ∥xi∥2 yields1211

µn

(
|

n∑
i=1

∥xi∥2 − E
[ n∑
i=1

∥xi∥2
]
≥ s

)
≤ exp

(
−1

2
min

(
s2

32nσ4
,

s

4σ2

))
Plugging-in s = nt, we have the following:1212

µn

(
1

n

n∑
i=1

∥xi∥2 − Ex∼µ∥x∥2 ≥ t

)
≤ exp

(
−1

2
nmin

(
t2

32σ4
,

t

4σ2

))

Lastly, take δ = exp
(
− 1

2nmin( t2

32σ4 ,
t

4σ2 )
)

. By rearranging the t with respect to δ, we have the1213

following:1214

µn

(
1

n

n∑
i=1

∥xi∥2 − Ex∼µ∥x∥2 ≥ 8σ2 max

(√
log(1/δ)

n
,
log(1/δ)

n

))
≤ δ.

This proves the first part of the Lemma. Specifically, we have the following:1215

µn

(
1

n

n∑
i=1

∥xi∥2 − Ex∼µ∥x∥2 ≥ 8σ2 log(1/δ)

n

)
≤ δ if δ ≤ e−n

µn

(
1

n

n∑
i=1

∥xi∥2 − Ex∼µ∥x∥2 ≥ 8σ2

√
log(1/δ)

n

)
≤ δ if δ ≥ e−n

The second inequality proves the last part of the Lemma.1216
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