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We include here all the model configurations and hyperparameters used in the experiments presented in
the main paper, together with ablations and qualitative visualisations of results for the point tracking task
(section 5.3) and the long video memorisation task (section 5.4). Videos showing point tracks are also
attached.

A Model configurations

Table 8 includes the model configurations used in our experiments.

Model Layers Hidden size D ViT MLP size ViT Heads
TRecViT-Small 12 384 1536 6
TRecViT-Base 12 768 3072 12
TRecViT-Large 24 1024 4096 16

Table 8: Model Configurations used in our experiments

B Training hyperparameters

B.1 Supervised video classification

Hyperparameter Kinetics400 SSv2
Peak learning rate 1e-4 1e-4
Weight decay 0.03 0.03
Label smoothing 0.1 0.1
Scale jitter (0.875, 1.33) (0.875, 1.33)
Num frames 32 32, 64
Stride 2 2
Cls dropout - 0.1
Rand augment - yes
Epochs 30 35
Spatial crops eval 3 3
Temporal clips eval 4 4

Table 9: Hyperparameter values used in the supervised classification experiments. These are mainly the
hyperparameters used in previous works, e.g. ViViT Arnab et al. (2021). For both datasets, we use cosine
decay for the learning rate schedule with linear warmup.

B.2 Self-supervised masked autoencoding and fine-tuning

C E!ciency comparison against ViViT variants and other hybrid baselines

Figure 5 complements Figure 3 from the main paper and includes the memory footprint and FLOP counts
for other hybrid baselines that use other types of temporal modules (Conv1D, LSTM) instead of the gated
LRU used in our proposed architecture. As expected, these hybrid architectures scale linearly in the number
of frames, similarly to our model. However, they are outperformed by our model, as mentioned in Table 2
in the main paper.

D Ablations

We include here ablations for di!erent hyperparameters used in our model by running supervised classification
experiments on SSv2. We sweep the following hyperparameters: temporal size of the video patches (Table 13),
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Hyperparameter Kinetics400
Learning rate 3e-4
Weight decay 0.05
Num frames 16
Stride 2
Epochs 1600
Mask ratio 0.9

Table 10: Hyperparameter values used in the self-supervised masked auto-encoding experiment on Kinet-
ics400. We use AdamW optimizer. We apply patch-wise normalisation of the inputs as done in Video-
MAE Tong et al. (2022)

Hyperparameter Kinetics400 SSv2
Learning rate 3e-4 3e-4
Scale jitter (0.9, 1.33) (0.9, 1.33)
Num frames 16 16
Stride 2 2
Epochs 30 6
Spatial crops eval 3 3
Temporal clips eval 4 4

Table 11: Hyperparameter values used in the fine-tuning classification experiments. We use cosine decay for
the learning rate schedule with 1k steps of linear warmup.

Hyperparameter DAVIS Perception Test
Learning rate 3e-4 3e-4
Num frames 8 16
Num steps 200k 40k

Table 12: Hyperparameter values used in the point tracking fine-tuning experiments. We use cosine decay
for the learning rate schedule with 1k steps of linear warmup.

Patch temporal size Top-1 (%)
1 66.8
2 64.5
4 61.5
8 57.7

Table 13: Performance when using di!erent temporal sizes for the video patches for supervised classification
on SSv2, using 32 frames per clip. Our model performs best when the input is fed as spatial patches t = 1,
with accuracy dropping significantly when using t > 1. We hypothesise that an increased temporal size leads
to a less continuous signal fed into the LRUs, a!ecting its performance.

window of the 1D convolution kernel applied in LRU (Table 14), value of the minimal radius when initialising
the eigenvalues of the recurrence matrix (Table 15). Finally, we run an experiment using five seeds on SSv2
classification using 32 frames, obtaining 66.6 ± 0.2; we include the best seed result (seed=0) in our SOTA
comparison as done in other works as well (Yang et al., 2022; Arnab et al., 2021), and use this seed for the
other experiments.
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Figure 5: Left: Memory comparison; Right: FLOPs comparison. Our model has similar e"ciency to
other factorised architectures, like ViViT factorised self-attention, ViViT factorised encoder, ViT-Conv1D,
ViT-LSTM, but it outperforms these baselines in accuracy and generality.

Window size Top-1 (%)
2 66.4
4 66.8
8 65.7

Table 14: Performance when using di!erent window sizes for the conv 1D kernel in the LRU, for supervised
classification on SSv2, using 32 frames per clip. As found in Gri"n as well, the best window size is 4.

Min rad eigenvalues Top-1 (%)
0.6 66.8
0.7 66.6
0.8 66.5
0.9 66.2

Table 15: Performance when using di!erent values for the minimal radius when initialising the eigenvalues
of the recurrence matrix for supervised classification on SSv2, using 32 frames per clip. Compared to Gri"n
where ωmin = 0.9 was found to give the best results, for video it is important to lower this value to 0.6,
to allow for faster decay of information for some frequencies. We plan to conduct more investigations on
this aspect to better understand the connection between ωmin and the temporal context of the task being
performed.

E Point tracking qualitative results

In Figure 6, we include more visualisations for the point tracking task using frozen MAE representations
pre-trained on Kinetics400, using TRecViT as backbone. Videos showing point tracks are also attached.

F Long video memorisation task

We run multiple experiments where the model is tasked to reconstruct the (T → k)th frame from the past,
with increasing value for k ↑ {16, 48, 80, 112, 144, 164} frames. For easier visual comparison, we increase the
distance k to the frame to reconstruct while also increasing the video length T , so the frame to reconstruct
is always the same.

We show quantitative and qualitative results in Figure 7 and Figure 8, respectively. We can observe that
there is a performance–e"ciency trade-o! at play for TRecViT: its performance is slightly below ViViT’s
for shorter memory spans (16, 48, 80), with the high frequencies being less well reconstructed as k increases,
but its e"ciency (steps-per-second) is significantly higher. However, beyond 80 frames, ViViT-L goes out of
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Figure 6: Qualitative results obtained by TRecViT for point tracking on DAVIS dataset (rows 1-2) and
Perception Test (rows 3-4) compared to VideoMAE. The leftmost image indicates the point to track in the
original frame, and the images towards the right show zoom-ins on subsequent frames. Green plus (+)
marker indicates the ground truth, yellow circle indicates TRecViT’s predictions and red circles indicate
VideoMAE’s predictions.
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memory being unusable, whilst TRecViT continues to give decent results up to T = 160, k = 144, i.e. it is
able to learn with sequences of up to 5.3s long at 30FPS, and remember a frame seen about 4.8s before.

Figure 7: Long video memorisation task. Left: PSNR comparison; Right: Step-per-second comparison.
At time T , the model has to reconstruct the (T → k)th frame seen in the past. The plots show PSNR and
throughput (steps-per-second) for increasing time o!set k. For both models, the data points with 0 value on
the y-axis correspond to OOM.
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Figure 8: Qualitative results for the task of reconstructing a frame from the past, for increasing distance
k to the frame to reconstruct from left to right. First row: last frame seen by the model. Second row:
TRecViT output. Third row: ViViT-L output; ViViT-L goes OOM for k > 80, so no predictions are
shown.

Figure 9: Generalisation to longer sequences. Both models are trained using Imagenet pre-trained weights,
on video sequences of T = 64 frames to reconstruct the 16th frame; during evaluation, the models receive
sequences of T = 96 frames.
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