
The Nature of Temporal Difference Errors in
Multi-step Distributional Reinforcement Learning:

Appendices

A Extension of distributional Retrace to n-step truncated trajectories
The n-step truncated version of distributional Retrace is defined as

Rπ,µ
n η(x, a) = η(x, a) + Eµ

[
n∑

t=0

c1:t∆̃
π
0:t

]
,

which sums the path-dependent distributional TD errors up to time n. Compared to the original
definition of distributional Retrace, this n-step operator is more practical to implement. This operator
enjoys all the theoretical properties of the original distributional Retrace, with a slight difference on
the contraction rate. Intuitively, the operator bootstraps with at most n steps, which limits the effective
horizon of the operator to be ≤ n. It is straightforward to show that the operator is βn-contractive
under W p with βn ∈ (β, γ]. As n→∞, βn → β.

B Distance metrics
We provide a brief review on the distance metrics used in this work. We refer readers to [10] for a
complete background.

B.1 Wasserstein distance
Let η1, η2 ∈ P∞(R) be two distribution measures. Let Fη be the CDF of η. The p-Wasserstein
distance can be computed as

Wp(η1, η2) :=

(∫
[0,1]

|F−1
η1

(z)− F−1
η2

(z)|pdz

)1/p

.

Note that the above definition is equivalent to the more traditional definition based on optimal
transport; indeed, F−1

ηi
(z), z ∼ Uniform(0, 1), i ∈ {1, 2} can be understood as the optimal coupling

between the two distributions. The above definition is a proper distance metric if p ≥ 1.

For any distribution vector η1, η2 ∈ P∞(R)X×A, we can define the supremum p-Wasserstein
distance as

W p(η1, η2) := max
x,a

Wp(η1(x, a), η2(x, a)).

B.2 Lp distance
Let η1, η2 ∈ P∞(R) be two distribution measures. Let Fη be the CDF of η. The Lp distance is
defined as

Lp(η1, η2) :=

(∫
R
|Fη1(z)− Fη2(z)|

p
dz

)1/p

.

The above definition is a proper distance metric when p ≥ 1.

For any distribution vector η1, η2 ∈P∞(R)X×A or signed measure vector η1, η2 ∈M(R)X×A, we
can define the supremum Cramér-p distance as

Lp(η1, η2) := max
x,a

Lp(η1(x, a), η2(x, a)).

C Numerically non-convergent behavior of alternative multi-step operators
We consider another alternative definition of path-independent alternative to the path-dependent
TD error γt∆π

t . The primary motivation for such a path-dependent TD error is that the discounted
value-based TD error takes the form δ̃πt = γtδπt . The resulting multi-step operator is

R̃π,µη(x, a) = η(x, a) + Eµ

[ ∞∑
t=0

c1:tγ
t∆π

t

]
.
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(a) Full results for all operators
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(b) Comparing two alternatives

Figure 5: Illustration of non-convergent behavior of alternative multi-step operators: for both plots,
we show the mean and per-run results across 10 different initial Dirac distributions η0. (a) the full
comparison between all operators. Two alternative operators do not converge while one-step Bellman
operator and distributional Retrace both converge; (b) we zoom in on the difference between the two
alternative operators.

With the same toy example as in the paper: an one-state one-action MDP with a deterministic
reward Rt = 1 and discount factor γ = 0.5. The target distribution ηπ is a Dirac distribution
centering at 2. Let ηk = (R)kη0 be the k-th distribution iterate by applying the operator R ∈
{Rπ,µ, R̃π,µ, R̃π,µ, T π}, we show the Lp distance between the iterates and ηπ in Figure 5. It is clear
that alternative multi-step operators do not converge to the correct fixed point.

D Backward-view algorithm for multi-step distributional RL
We now describe a backward-view algorithm for multi-step distributional RL with quantile represen-
tations. For simplicity, we consider the on-policy case π = µ and ct = λ. To implement Rπ,µ in
the backward-view, at each time step t and a past time step t′ ≤ t, the algorithm needs to maintain
two novel traces distinct from the classic eligibility traces [2]: (1) partial return traces Gt′:t, which
correspond to the partial sum of rewards between two time steps t′ ≤ t; (2) modified eligibility traces,
defined as et′,t := λt−t′ , which measures the trace decay between two time steps t′ ≤ t. At a new
time step t+ 1, the new traces are computed recursively: Gt′:t+1 = Rt+1 + γGt′,t, et′,t+1 = λet′,t.

We assume the algorithm maintains a table of quantile distributions with m atoms: η(x, a) =
1
m

∑m
i=1 δzi(x,a),∀(x, a) ∈ X × A. For any fixed (x, a), define Tt(x, a) := {s|Xs = x,As =

a, 0 ≤ s ≤ t} be the set of time steps before time t at which (x, a) is visited. Now, upon arriving at
Xt+1, we observe the TD error ∆π

t . Recall that Lτ
θ (η) denote the QR loss of parameter θ at quantile

level τ and against the distrbution η. To more conveniently describe the update, we define the QR
loss against the path-dependent TD error(

bGs:t−1,γt−s

)
#
∆̃π

0:t =
(
bGs:t,γt+1−s

)
#
η(Xt+1, A

π
t+1)−

(
bGs:t−1,γt−s

)
#
η(Xt, At)

as the difference of the QR losses against the individual distributions,

Lτ
θ

((
bGs:t−1,γt−s

)
#
∆̃π

0:t

)
:= Lτ

θ

((
bGs:t,γt+1−s

)
#
η(Xt+1, A

π
t+1)

)
− Lτ

θ

((
bGs:t−1,γt−s

)
#
η(Xt, At)

)
.

Note that the QR loss can be computed using the transition data we have seen so far. We now perform
the a gradient update for all entries in the table (x, a) ∈ X × A and 1 ≤ i ≤ m (in practice, we
update entries that correspond to visited state-action pairs):

zi(x, a)← zi(x, a)− α
∑

s∈Tt(x,a)

es,t∇zi(x,a)L
τi
θ

((
bGs:t−1,γt−s

)
#
∆̃π

0:t

)
,
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where τi =
2i−1
2m . For any fixed (x, a), the above algorithm effectively aggregates updates from time

steps s ∈ Tt(x, a) at which (x, a) is visited.

D.1 Simplifications for value-based RL
We now discuss how the path-independent value-based TD errors greatly simplify the value-based
backward-view algorithm. Following the above notations, assume the algorithm maintains a table of
Q-function Q(x, a), we can construct incremental backward-view update for all (x, a) ∈ X ×A as
follows, by replacing the path-dependent distributional TD error ∆̃π

0:t by the discounted TD error δ̃πt

Q(x, a)← Q(x, a)− α
∑

s∈Tt(x,a)

es,tδ̃
π
t .

Since δπt does not depend on the past rewards and is state-action dependent, we can simplify the
summation over s ∈ Tt(x, a) by defining the state-depedent eligibility traces [2] as a replacement to
es,t,

ẽ(x, a)← γλẽ(x, a) + I[Xt = x,At = a].

As a result, the above update reduces to
Q(x, a)← Q(x, a)− αẽ(x, a)δπt ,

which recovers the classic backward-view update.

D.2 Non-equivalence of forward-view and backward-view algorithms
In value-based RL, forward-view and backward-view algorithms are equivalent given that the tra-
jectory does not visit the same state twice [2]. However, such an equivalence does not generally
hold in distributional RL. Indeed, consider the following counterexample in the case of the quantile
representation.

Consider a three-step MDP with deterministic transition x1 → x2 → x3. There is no action and
no reward on the transition. The state x3 is terminal with a deterministic terminal value r3 = 1.
We consider m = 1 atom and let the quantile parameters be θ1 = 0 and θ2 = 1 at states x1, x2

respectively. In this case, the quantile representation learns the median of the target distribution with
τ = 0.5.

Now, we consider the update at θ1 with both forward-view and backward-view implementation of the
two-step Bellman operator T π

2 η(x) = E
[
(b0,γ2)#η(X2, π(X2))|X0 = x

]
, which can be obtained

from distributional Retrace by setting ct = ρt. The target distribution at x1 is a Dirac distribution
centering at γ2.

Forward-view update. Below, we use δx to denote a Dirac distribution at x. In the forward-view,
the back-up distribution is

E
[
(b0,γ2)#η(X2, π(X2))

]
= δγ2 .

The gradient update to θ1 is thus

θ(fwd)
1 = θ1 − α∇θ1L

0.5
θ1

(
δγ2

)
= θ1 + α

(
0.5− I

[
γ2 < θ1

])
.

Backward-view update. To implement the backward-view update, we make clear of the two
path-dependent distributional TD errors at two consecutive time steps

∆̃π
0 = δγ − δ0, ∆̃π

1 = (b0,γ)# (δγθ2 − δθ1) = δγ2 − δγ

The update consists of two steps:
θ′1 = θ1 − α∇θ1L

0.5
θ1 (δγ) = θ1 + α (0.5− I [γ < θ1]) ,

θ(bwd)
1 = θ′1 − α

(
∇θ′

1
L0.5
θ′
1

(
δ2γ
)
−∇θ′

1
L0.5
θ′
1
(δγ)

)
= θ′1 + α

(
0.5− I[γ2 < θ′1]

)
− α (0.5− I[γ < θ′1]) .

Overall, we have
θ(bwd)
1 = θ1 + α (0.5− I [γ < θ1]) + α

(
0.5− I[γ2 < θ′1]

)
− α (0.5− I[γ < θ′1])

= 0.5α− αI[γ2 < 0.5α] + I[γ < 0.5α].

Now, let α ∈ (2γ2, 2γ) such that 0.5α ∈ (γ2, γ), we have θbwd
1 = 0.5α− α = −0.5α ̸= θ

(fwd)
1 .
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D.3 Discussion on memory complexity
The return traces Gt′,t and modified eligibility traces et′,t are time-dependent, which is a direct
implication from the fact that distributional TD errors are path-dependent. Indeed, to calculate the
distributional TD error ∆̃π

t′:t, it is necessary to keep track Gt′,t in the backward-view algorithm. This
differs from the classic eligibility traces, which are state-action-dependent [2, 18]. We remark that the
state-action-dependency of eligibility traces result from the fact that value-based TD errors ∆π

t are
path-independent. The time-dependency greatly influences the memory complexity of the algorithm:
when an episode is of length T , value-based backward-view algorithm requires memory of size
min(|X ||A|, T ) to store all eligibility traces. On the other hand, the distributional backward-view
algorithm requires O(T ).

E Distributional Retrace with categorical representations

We start by showing that the distributional Retrace operator is βLp
-contractive under the Lp distance

for p ≥ 1. As a comparison, the one-step distributional Bellman operator T π is γ1/p-contractive
under Lp [17].

Lemma E.1. (Contraction in Lp)Rπ,µ is βLp -contractive under supremum Lp distance for p ≥ 1,

where βLp
∈ [0, γ]. Specifically, we have βLp

= maxx∈X ,a∈A (
∑∞

t=1 Eµ [c1...ct−1(1− ct)] γ
t)

1/p.

Proof. The proof is similar to the proof of Proposition 3.2: the result follows by combining the
convex combination property of distributional Retrace in Lemma 3.1 with the p-convexity of Lp

distance [10].

E.1 Categorical representation
In categorical representations [23], we consider parametric distributions of the form for a fixed
m ≥ 1,

∑m
i=1 piδzi , where (zi)

m
i=1 ∈ R are a fixed set of atoms and (pi)

m
i=1 is a categorical

distribution such that
∑m

i=1 pi = 1 and pi ≥ 0. Denote the class of such distributions as PC(R) :=
{
∑m

i=1 piδzi |
∑m

i=1 pi = 1, pi ≥ 0}. For simplicity, we assume that the target return is supported on
the set of atoms [RMIN/(1− γ), RMAX/(1− γ)] ⊂ [z1, zm].

We introduce the projection that maps from an initial back-up distribution to the categorical parametric
class: ΠC : P∞(R) → PC(R) defined as ΠCη := argminν∈PC(R) L2 (ν, η) ,∀ν ∈ P∞(R).
The projection can be easily calculated as described in [6, 17]. For any distribution vector η ∈
P∞(R)X×A, define ΠCη as the component-wise projection. Now, given the composed operator
ΠCRπ,µ : P∞(R)X×A →PC(R)X×A, we characterize the convergence of the seququence ηk =

(ΠCRπ,µ)
k
η0.

Theorem E.2. (Convergence of categorical distributions) The projected distributional Retrace
operator ΠCRπ,µ is βL2

-contractive under L2 distance in PQ(R). As a result, the above ηk converges
to a limiting distribution ηπR in L2, such that L2(ηk, η

π
R) ≤ (βL2

)kL2(η0, η
π
R). Further, the quality

of the fixed point is characterized as L2(η
π
R, ηπ) ≤ (1− βL2)

−1L2(ΠCη
π, ηπ).

Proof. The above theorem follows from Lemma E.1. Indeed, since ΠQ is a non-expansion in
supremum Cramér distance L2 [17], the composed operator ΠQRπ,µ is βL2-contractive in L2.
Following the same argument as the proof of Theorem 5.1, we obtain the remaining desired results.

The distributional Retrace operator also improves over one-step distributional Bellman operator in
two aspects: (1) the bound on the contraction rate βL2

≤ √γ is smaller, usually leading to faster
contraction to the fixed point; (2) the bound on the quality of the fixed point is improved.

E.2 Cross-entropy update and C51-Retrace
Unlike in the quantile projection case, where calculating ΠQη requires solving a quantile regression
minimization problem, the categorical projection can be calculated in an analytic way [17, 10].
Assume the categorical distribution is parameterized as ηw(x, a) =

∑m
i=1 pi(x, a;w)δzi . After
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computing the back-up target distribution ΠCRπ,µη(x, a) for a given distribution vector η, the
algorithm carries out a gradient-based incremental update

w ← w − α∇wCE [ΠCRπ,µη(x, a)|ηw(x, a)] ,
where CE(p|q) := −

∑
i pi log qi denotes the cross-entropy between distribution p and q. For

simplicity, we adopt a short-hand notation CE(η|ηw) = CEw(η). Note also that in practice, η can
be a slowly updated copy of ηw [33]. As such, the gradient-based update can be understood as
approximating the iteration ηk+1 = Rπ,µηk. We propose the following unbiased estimate to the
cross-entropy ĈEw [ΠCRπ,µη(x, a)], calculated as follows

CEw (η(x, a)) +

∞∑
t=0

c1:t

(
CEw

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
− CEw

(
(bt)# η(Xt, At)

))
.

Lemma E.3. (Unbiased stochastic estimate for categorical update) Assume that the trajec-
tory terminates within H < ∞ steps almost surely, then we have Eµ

[
ĈEw (ΠCRπ,µη(x, a))

]
=

CEw (ΠCRπ,µη(x, a)). Without loss of generality, assume w is a scalar parameter. If there exists
a constant M > 0 such that |∇wCEw (η)| ≤ M,∀η ∈ P∞(R), then the gradient estimate is also
unbiased Eµ

[
∇wĈEw (ΠCRπ,µη(x, a))

]
= ∇wCEw (ΠCRπ,µη(x, a)).

Proof. The cross-entropy is defined for any distribution CEw(η). For any signed measure ν =∑m
i=1 wiηi with ηi ∈P∞(R), we define the generalized cross-entropy as

CEw (ν) :=

m∑
i=1

wiCEw (ηi) ,

Next, we note the cross-entropy is linear in the input distribution (or signed measure). In particular,
for a set of N (potentially infinite) coefficients and distributions (signed measures) (ai, ηi),

CEw

(
N∑
i=1

aiηi

)
:=

m∑
i=1

aiCEw (ηi) .

When ai denotes a distribution, the above rewrites as CEw (E[ηi]) = E[CE(ηi)]. Finally, combining
everything together, we have Eµ

[
ĈEw (ΠCRπ,µη(x, a))

]
evaluate to

= Eµ

[
CEw (η(x, a)) +

∞∑
t=0

c1:t

(
CEw

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
− CEw

(
(bt)# η(Xt, At)

))]
=(a) Eµ

[
CE
(
R̂π,µη(x, a)

)]
=(b) Eµ [CE (Rπ,µη(x, a))] .

In the above, (a) follows from the definition of the cross-entropy with signed measure R̂π,µη(x, a)
and (b) follows from the linearity property of cross-entropy.

Next, to show that the gradient estimate is unbiased too, the high level idea is to apply dominated
convergence theorem (DCT) to justify the exhchange of gradient and expectation [34]. This is similar
to the quantile representation case (see proof for Lemma 5.2). To this end, consider the absolute value
of the gradient estimate

∣∣∣∇wĈEw (Rπ,µη(x, a))
∣∣∣, which serves as an upper bound to the gradient

estimate. In order to apply DCT, we need to show the expectation of the absolute gradient is finite.
Note we have

Eµ

[∣∣∣∇wĈEw (Rπ,µη(x, a))
∣∣∣]

= Eµ

[∣∣∣∣∣∇wCEw (η(x, a)) +

H∑
t=0

c1:t

(
∇wCEw

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
−∇wCEw

(
(bt)# η(Xt, At)

))∣∣∣∣∣
]

≤(a) Eµ

[
|∇wCEw (η(x, a))|+

H∑
t=0

c1:t

∣∣∣∇wCEw

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
−∇wCEw

(
(bt)# η(Xt, At)

)∣∣∣]

≤(b) Eµ

[
M +

H∑
t=0

ρt ·M

]
<∞,
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where (a) follows from the application of triangle inequality; (b) follows from the fact that the QR
loss gradient against a fixed distribution is bounded∇wCEw (ν) ∈ [−M,M ],∀ν ∈P∞(R) [16].

Hence, with the application DCT, we can exchange the gradient and expectation operator, which
yields Eµ

[
∇wĈE

τ

w (Rπ,µη(x, a))
]
= ∇wEµ

[
ĈE

τ

w (Rπ,µη(x, a))
]
= ∇wCEw (Rπ,µη(x, a)).

We remark that the condition on the bounded gradient |∇wCEw (η) | ≤M is not restrictive. When
ηw is adopts a softmax parameterization and w represents the logits, M = 1.

Finally, the deep RL agent C51 parameterizes the categorical distribution pi(x, a;w) with a neural
network w at each state action pair (x, a) [23]. When combined with the above algorithm, this
produces C51-Retrace.

F Additional experiment details
In this section, we provide detailed information about experiment setups and additional results. All
experiments are carried out in Python, using NumPy for numerical computations [35] and Matplotlib
for visualization [36]. All deep RL experiments are carried out with Jax [37], specifically making use
of the DeepMind Jax ecosystem [38].

F.1 Tabular
We provide additional details on the tabular RL experiments.

Setup. We consider a tabular MDP with |X | = 3 states and |A| = 2 actions. The reward r(x, a) is
deterministic and generated from a standard Gaussian distribution. The transition probability P (·|x, a)
is sampled from a Dirichlet distribution with parameter (Γ,Γ...Γ) for Γ = 0.5. The discount factor
is fixed as γ = 0.9. The MDP has a starting state-action pair (x0, a0). The behavior policy µ is a
uniform policy. The target policy is generated as follows: we first sample a deterministic policy πd

and then compute π = (1− ε)πd + εµ, with parameter ε to control the level of off-policyness.

Quantile distribution and projection. We use m = 100 atoms throughout the experiments.
Assuming access to the MDP parameters (e.g., reward and transition probability), we can analytically
compute the projection ΠQ using a sorting algorithm. See [16, 10] for details.

Evaluation metrics. Let ηk = (Rπ,µ)kη0 be the k-th iterate. We use a few different metrics in
Figure 3. Given any particular distributional Retrace operatorRπ,µ, there exists a fixed point to the
composed operator ΠQRπ,µ. Recall that we denote this distribution as ηπR. Fig 3(a)-(b) calculates
the iterates’ distance from the fixed point, evaluated at (x0, a0).

Lp (ηk(x0, a0), η
π
R(x0, a0)) .

Fig 3(c) calculates the distance from the projected target distribution ΠQη
π . Recall that ΠQη

π is in
some sense the best possible approximation that the current quantile representation can obtain.

Lp (ηk(x0, a0),ΠQη
π(x0, a0)) .

F.2 Deep reinforcement learning
We provide additional details on the deep RL experiments.

Evaluation metrics. For the i-th of the 57 Atari games, we obtain the performance of the agent Gi at
any given point in training. The normalized performance is computed as Zi = (Gi − Ui)/(Hi − Ui)
where Hi is the human performance and Ui is the performance of a random policy. Then the
mean/median metric is calculated as the mean or median statistics over (Zi)

57
i=1.

The super human ratio is computed as the number of games such as Zi ≥ 1, i.e., Gi ≥ Hi where the
agent obtains super human performance on the game. Formally, it is compute as 1

57

∑57
i=1 I[Zi ≥ 1].
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Shared properties of all baseline agents. All baseline agents use the same torso architecture as
DQN [33] and differ in the head outputs, which we specify below. All agents an Adam optimizer
[39] with a fixed learning rate; the optimization is carried out on mini-batches of size 32 uniformly
sampled from the replay buffer. For exploration, the agent acts ε-greedy with respect to induced
Q-functions, the details of which we specify below. The exploration policy adopts ε that starts with
εmax = 1 and linearly decays to εmin = 0.01 over training. At evaluation time, the agent adopts
ε = 0.001; the small exploration probability is to prevent the agent from getting stuck.

Details of baseline C51 agent. The agent head outputs a matrix of size |A|×m, which represents the
logits to (pi(x, a; θ))

m
i=1. The support (zi)mi=1 is generated as a uniform array over [−VMAX, VMAX].

Though VMAX should in theory be determined by RMAX; in practice, it has been found that setting
VMAX = RMAX/(1− γ) leads to highly sub-optimal performance. This is potentially because usually
the random returns are far from the extreme values RMAX/(1− γ), and it is better to set VMAX at a
smaller value. Here, we set VMAX = 10 and m = 51. For details of other hyperparameters, see [6].
The induced Q-function is computed as Qθ(x, a) =

∑m
i=1 pi(x, a; θ)zi.

Details of baseline QR-DQN agent. The agent head outputs a matrix of size |A| × m, which
represents the quantile locations (zi(x, a; θ))

m
i=1. Here, we set m = 201. For details of other

hyperparameters, see [16]. The induced Q-function is computed as Qθ(x, a) =
1
m

∑m
i=1 zi(x, a; θ).

Details of multi-step agents. Multi-step variants use exactly the same hyperparameters as the
one-step baseline agent. The only difference is that the agent uses multi-step back-up targets.

The agent stores partial trajectories (Xt, At, Rt, xt)
n−1
t=0 ∼ µ generated under the behavior policy.

Here, the behavior policy µ is the ε-greedy policy with respect to a potentially old Q-function (this is
because the data at training time is sampled from the replay); the target policy π is the greedy policy
with respect to the current Q-function.

G Proof
To simplify the proof, we assume that the immediate random reward takes a finite number of values.
It is straightforward to generalize results to the case where the reward takes an infinite number of
values (e.g., the random reward has a continuous distribution).

Assumption G.1. (Reward takes a finite number of values) For all state-action pair (x, a), we
assume the random reward R(x, a) takes a finite number of values. Let R̃ be the finite set of values
that the reward {R(x, a), (x, a) ∈ X ×A} can take.

For any integer t ≥ 1, Let R̃t denotes the Cartesian product of t copies of R̃:

R̃t := R̃× R̃× ...× R̃︸ ︷︷ ︸
t copies of R̃

.

For any fixed t, we let r0:t−1 denote the sequence of realizable rewards from time 0 to time t − 1.
Since R̃ is a finite set, R̃t is also a finite set.

Lemma 3.1. (Convex combination) The Retrace back-up target is a convex combination of n-
step target distributions. Formally, there exists an index set I(x, a) such that Rπ,µη(x, a) =∑

i∈I(x,a) wiηi where wi ≥ 0,
∑

i∈I(x,a) wi = 1 and (ηi)i∈I(x,a) are ni-return target distributions.

Proof. In general ct = c(Ft, At) where Ft is a filtration of (Xs, As)
t
s=0. To start with, we assume

ct = c(Xt, At) to be a Markovian trace coefficient [13]. We start with the simpler case because the
proof is greatly simplified with notations and can extend to the general case with some care. We
discuss the extension to the general case where ct = c(Ft, At) towards the end of the proof.

For all t ≥ 1, we define the coefficient
wy,b,r0:t−1

:= Eµ

[
c1...ct−1 (π(b|Xt)− c(Xt, b)µ(b|Xt)) · I[Xt = y]Πt−1

s=0I[Rs = rs]
]
.

Through careful algebra, we can rewrite the Retrace operator as follows

Rπ,µη(x, a) =

∞∑
t=1

∑
y∈X

∑
b∈A

∑
r0:t−1∈R̃t

wy,b,r0:t−1

(
bG0:t−1,γt

)
#
η(y, b).
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Figure 6: Deep RL experiments on Atari-57 games for (a) C51 and (b) QR-DQN. We compare the
one-step baseline agent against the multi-step variants (Retrace and uncorrected n-step). For all
multi-step variants, we use n = 3. For each agent, we calculate the mean, median and super human
ratio performance across all games, and we plot the mean± standard error across 3 seeds. In almost
all settings, Multi-step variants provide clear advantage over the one-step baseline algorithm.
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Figure 7: Deep RL experiments on Atari-57 games for (a) C51 and (b) QR-DQN, with the same setup
as in Figure 7. Here, we compute the interquartile mean (IQM) with 95% bootstrapped confidence
interval [40]. In a nutshell, IQM calculates the mean scores after removing extreme score values,
making the performance statistics more robust. Even after excluding extreme scores, Retrace obtains
favorable performance compared to the uncorrected and one-step algorithm.
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Note that each term of the form
(
bG0:t−1,γt

)
#
η(y, b) corresponds to applying a pushforward opera-

tion
(
bG0:t−1,γt

)
#

on the distribution η(x, a), which means
(
bG0:t−1,γt

)
#
η(y, b) ∈P∞(R). Now

that we have expressedRπ,µη(x, a) as a linear combination of distributions, we proceed to show that
the combination is in fact convex.

Under the assumption ct ∈ [0, ρt], we have π(b|y) − c(y, b)µ(b|y) ≥ 0 for all (y, b) ∈ X × A.
Therefore, all weights are non-negative. Next, we examine the sum of all coefficients

∑
wy,b,r0:t−1

=∑∞
t=1

∑
x∈X

∑
b∈A

∑
r0:t−1∈R̃t wy,b,r0:t−1

.

∑
wy,b,r0:t−1

=(a)

∞∑
t=1

∑
y∈X

∑
b∈A

Eµ [c1...ct−1 (π(b|Xt)− c(Xt, b)µ(b|Xt)) · I[Xt = y]]

=(b)

∞∑
t=1

Eµ [c1...ct−1(1− ct)] =(c) 1.

In the above, (a) follows from the fact that
∑

rs∈R̃ E[I[Rs = rs]] = 1; (b) follows from the fact that
for all time steps t ≥ 1, the following is true,∑

y∈X

∑
b∈A

Eµ [c1...ct−1 (π(b|Xt)− c(Xt, b)µ(b|Xt)) · I[Xt = y]]

=
∑
b∈A

Eµ [c1...ct−1 (π(b|Xt)− c(Xt, b)µ(b|Xt))]

= Eµ

[
c1...ct−1

(
1−

∑
b∈A

c(Xt, b)µ(b|Xt)

)]
= Eµ [c1...ct−1(1− ct)] .

Finally, (c) is based on the observation that the summation telescopes. Now, by taking the index set
to be the set of indices that parameterize wy,b,r0:t−1 ,

I(x, a) = ∪∞t=1 (y, b, r0:t−1)y∈X ,b∈A,r0:t−1∈R̃t .

We can write Rπ,µη(x, a) =
∑

i∈I(x,a) wiηi. Note further that for any i ∈ I(x, a), ηi =

(bG0:t−1,γt)#η(y, b) is a fixed distribution. The above result suggests that Rπ,µη(x, a) is a con-
vex combination of fixed distributions.

Extension to the general case. When ct = c(Ft, At) is filtration dependent, we let Ft to be the
space of the filtration value up to time t. For simplicity with the notation, we assume Ft contains a
finite number of elements, such that below we can adopt the summation notation instead of integral.
Define the combination coefficient

wy,b,ft,r0:t−1
:= Eµ

[
c1...ct−1 (π(b|Xt)− c(Ft, b)µ(b|Xt)) · I[Xt = y]Πt−1

s=0I[Rs = rs]
]
.

It is straightforward to verify the following

Rπ,µη(x, a) =

∞∑
t=1

∑
y∈X

∑
b∈A

∑
ft∈Ft

∑
r0:t−1∈R̃t

wy,b,ft,r0:t−1

(
bG0:t−1,γt

)
#
η(y, b).

In addition, the combination coefficients wy,b,ft,r0:t−1 sum to 1 and are all non-negative.

Proposition 3.2. (Contraction) Rπ,µ is β-contractive under supremum p-Wasserstein distance,
where β = maxx∈X ,a∈A

∑∞
t=1 Eµ [c1...ct−1(1− ct)] γ

t ≤ γ.

Proof. From the proof of Lemma 3.1, we have

Rπ,µη(x, a) =

∞∑
t=1

∑
y∈X

∑
b∈A

∑
r0:t−1∈R̃t

wy,b,r0:t−1

(
bG0:t−1,γt

)
#
η(y, b).
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Now, we have for any η1, η2 ∈ P∞(R)X×A, for any fixed (x, a), we have
Wp (Rπ,µη1(x, a),Rπ,µη2(x, a)) upper bounded as follows

≤(a)

∞∑
t=1

∑
y∈X

∑
b∈A

wy,b,r0:t−1
Wp

((
b∑t−1

s=0 γsrs,γt

)
#
η1(y, b),

(
b∑t−1

s=0 γsrs,γt

)
#
η2(y, b)

)

≤(b)

∞∑
t=1

∑
y∈X

∑
b∈A

wy,b,r0:t−1
γtWp (η1(y, b), η2(y, b))

≤(c)

∞∑
t=1

∑
y∈X

∑
b∈A

wy,b,r0:t−1
γtW p (η1, η2)

In the above, (a) follows by applying the convexity of the p-Wasserstein distance [10]; (b) follows by
the contraction property of the pushforward operation and Wp [10]; (c) follows from the definition of
W p. By taking the maixmum over (x, a) on both sides of the inequality, we obtain

W p(Rπ,µη1,Rπ,µη2) ≤ βW p(η1, η2).

This concludes the proof.

Lemma G.2. For any fixed (x, a) and scalar c ∈ R,

(bc,1)# ηπ(x, a) = Eπ

[
(bc+R0,γ)# ηπ(X1, A1)

∣∣∣ X0 = x,A0 = a
]
. (6)

Proof. Let By := {x < y|x ∈ R} be a subset of R indexed by y ∈ R. Since the set of all such sets
{By, y ∈ R} is dense in the sigma-field of R [34], if we can show for two measures η1, η2

η1 (By) = η2 (By) ,∀y

then, η1(B) = η2(B) for all Borel sets in R. Hence, in the following, we seek to show(
(bc,1)# ηπ(x, a)

)
By =

(
Eπ

[
(bc+R0,γ)# ηπ(X1, A1)

])
By,∀y ∈ R (7)

Let Fπ(y;x, a) := Pπ(Gπ(x, a) ≤ y) = ηπ(x, a)(By), y ∈ R be the CDF of random variable
Gπ(x, a). The distributional Bellman equation in Equation (1) implies

Fπ(y;x, a) = Eπ

[
Fπ

(
y −R0

γ
;X1, A1

)]
,∀y ∈ R.

For any constant c ∈ R, let y = y′ − c and plug into the above equality,

Fπ(y′ − c;x, a) = Eπ

[
Fπ

(
y′ − c−R0

γ
;X1, A1

)]
,∀y′ ∈ R.

Note the LHS is ((bc,1)#η
π(x, a)) (By) while the RHS is

(
Eπ

[
(bc+R0,γ)# ηπ(X1, A1)

])
(By).

This implies that Equation (7) holds and we conclude the proof.

Proposition 3.3. (Unique fixed point)Rπ,µ has ηπ as the unique fixed point in P∞(R)X×A.

Proof. To verify that ηπ is a fixed point, it is equivalent to show

Eµ

[
n∑

t=0

c1:t

((
bG0:t,γt+1

)
#
ηπ(Xt+1, A

π
t+1)−

(
bG0:t−1,γt

)
#
ηπ(Xt, At)

)]
= 0.

Here, the RHS term 0 denotes the zero measure, a measure such that for all Borel sets B ⊂ R,
0(B) = 0. We now verify that each of the summation term is a zero measure, i.e.,

Eµ

[
c1:t

((
bG0:t,γt+1

)
#
ηπ(Xt+1, A

π
t+1)−

(
bG0:t−1,γt

)
#
ηπ(Xt, At)

)]
= 0.
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To see this, we follow the derivation below,

Eµ

[
c1:t

((
bG0:t,γt+1

)
#
ηπ(Xt+1, A

π
t+1)−

(
bG0:t−1,γt

)
#
ηπ(Xt, At)

)]
=(a) E

[
E
[
c1:t

[((
bG0:t,γt+1

)
#
ηπ(Xt+1, A

π
t+1)

]
−
(
bG0:t−1,γt

)
#
ηπ(Xt, At)

) ∣∣∣ (Xs, As, Rs−1)
t
s=1

]]
=(b) E

[
c1:tE

[(
bG0:t,γt+1

)
#
ηπ(Xt+1, A

π
t+1)

∣∣∣ (Xs, As, Rs−1)
t
s=1

]
− c1:t

(
bG0:t−1,γt

)
#
ηπ(Xt, At)

]
=(c) E

c1:t E [(bG0:t−1+γtRt,γt+1

)
#
ηπ(Xt+1, A

π
t+1)

∣∣∣ (Xs, As, Rs−1)
t
s=1

]
︸ ︷︷ ︸

first term

−c1:t
(
bG0:t−1,γt

)
#
ηπ(Xt, At)

 .

(8)

In the above, in (a) we condition on (Xs, As, Rs)
t
s=1 and the equality follows from the tower property

of expectations; in (b), we use the fact that the trace product c1:t and
(
bG0:t−1,γt

)
#
ηπ(Xt, At) are

deterministic function of the conditioning variable (Xs, As, Rs)
t
s=1; in (c), we split the summation

G0:t = G0:t−1 + γRt. Now we examine the first term in Equation (8), by applying Lemma G.2, we
have

first term =
(
bG0:t−1,γt

)
#
ηπ(Xt, At).

This implies Equation (8) evaluates to a zero measure. Hence ηπ is a fixed point of the operatorRπ,µ.
BecauseRπ,µ is also contractive by Proposition 3.2, the fixed point is unique.

Theorem 5.1. (Convergence of quantile distributions) The projected distributional Retrace operator
ΠQRπ,µ is β-contractive under W∞ distance in PQ(R). As a result, the above ηk converges to a
limiting distribution ηπR in W∞, such that W∞(ηk, η

π
R) ≤ (β)kW∞(η0, η

π
R). Further, the quality

of the fixed point is characterized as W∞(ηπR, ηπ) ≤ (1− β)−1W∞(ΠQη
π, ηπ).

Proof. The quantile projection ΠQ is a non-expansion under W∞ [16]. SinceRπ,µ is β-contractive
under W p for all p ≥ 1, the composed operator ΠQRπ,µ is β-contractive under W∞. Now, because
(1) ΠQRπ,µ ∈P∞(R)X×A; (2) the space ΠQRπ,µ ∈P∞(R)X×A is closed [10]; (3) the operator
is contractive, the iterate ηk = (ΠQRπ,µ)

k
η0 converges to a limiting distribution ηπR ∈P∞(R)X×A.

Finally, by Proposition 5.28 in [10], we have W∞(ηπR, ηπ) ≤ (1− β)−1W∞(ΠQη
π, ηπ).

Lemma 5.2. (Unbiased stochastic QR loss gradient estimate) Assume that the trajectory
terminates within H < ∞ steps almost surely, then we have Eµ[L̂

τi
zi(x,a)

(Rπ,µη(x, a))] =

Lτi
zi(x,a)

(Rπ,µη(x, a)) and Eµ[∇zi(x,a)L̂
τi
zi(x,a)

(Rπ,µη(x, a))] = ∇zi(x,a)L
τi
zi(x,a)

(Rπ,µη(x, a)).

Proof. The QR loss Lτ
θ (η) is defined for any distribution η and scalar parameter θ. Let ν =∑m

i=1 wiηi be the linear combination of distributions (ηi)
m
i=1 where wis are potentially negative

coefficients. In this case, ν is a signed measure. We define the generalized QR loss for ν as the linear
combination of QR losses against ηi weighted by wi,

Lτ
θ (ν) :=

m∑
i=1

wiL
τ
θ (ηi).

Next, we note that the QR loss is linear in the input distribution (or signed measure). This means
given any (potentially infinite) set of N distributions or signed measures νi with coefficients ai,

Lτ
θ

(
N∑
i=1

aiνi

)
=

N∑
i=1

aiL
τ
θ (νi).

When (ai)
N
i=1 denotes a distribution, the above is equivalently expressed as an exchange between

expectation and the QR loss Lτ
θ (E[νi]) = E[Lτ

θ (νi)]. For notational convenience, we let θ = zi(x, a)
and τ = τi. Because the trajectory terminates within H steps almost surely, since c1:t ≤ ρ1:t ≤ ρH
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where ρ := maxx∈X ,A
π(a|x)
µ(a|x) , the estimate L̂τ

θ (Rπ,µη(x, a)) is finite almost surely. Combining all
results from above we obtain the following

Eµ [Rπ,µη(x, a)] = Eµ

[
Lτ
θ (η(x, a)) +

∞∑
t=0

c1:t

(
Lτ
θ

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
− Lτ

θ

(
(bt)# η(Xt, At)

))]
=(a) Eµ

[
Lτ
θ

(
R̂π,µη(x, a)

)]
=(b) L

τ
θ

(
Eµ

[
R̂π,µη(x, a)

])
= Lτ

θ (Rπ,µη(x, a)) .

In the above, (a) follows from the definition of the generalized QR loss against signed measure the
definition ofRπ,µη(x, a); (c) follows from the linearity of the QR loss.

Next, to show that the gradient estimate is unbiased too, the high level idea is to apply dominated con-
vergence theorem (DCT) to justify the exhchange of gradient and expectation [34]. Since the expected
QR loss gradient∇θL

τ
θ (Rπ,µη(x, a)) exists, we deduce that the estimate∇θL̂

τ
θ (Rπ,µη(x, a)) exists

almost surely. Consider the absolute value of the gradient estimate
∣∣∣∇θL̂

τ
θ (Rπ,µη(x, a))

∣∣∣, which
serves as an upper bound to the gradient estimate. In order to apply DCT, we need to show the
expectation of the absolute gradient is finite. Note we have

Eµ

[∣∣∣∇θL̂
τ
θ (Rπ,µη(x, a))

∣∣∣]
= Eµ

[∣∣∣∣∣∇θL
τ
θ (η(x, a)) +

H∑
t=0

c1:t

(
∇θL

τ
θ

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
−∇θL

τ
θ

(
(bt)# η(Xt, At)

))∣∣∣∣∣
]

≤(a) Eµ

[
|∇θL

τ
θ (η(x, a))|+

H∑
t=0

c1:t

∣∣∣∇θL
τ
θ

(
(bt+1)# η

(
Xt+1, A

π
t+1

))
−∇θL

τ
θ

(
(bt)# η(Xt, At)

)∣∣∣]

≤(b) Eµ

[
1 +

H∑
t=0

ρt · 2

]
<∞,

where (a) follows from the application of triangle inequality; (b) follows from the fact that the QR
loss gradient against a fixed distribution is bounded∇θL

τ
θ (ν) ∈ [−1, 1],∀ν ∈P∞(R) [16].

With the application of DCT, we can exchange the gradient and expectation operator, which yields
Eµ

[
∇θL̂

τ
θ (Rπ,µη(x, a))

]
= ∇θEµ

[
L̂τ
θ (Rπ,µη(x, a))

]
= ∇θL

τ
θ (Rπ,µη(x, a)).
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