
A Details of Low-level Controller419

A.1 Notation420

We represent the base pose of the robot in the world frame as q = [p,⇥] 2 R6. p 2 R3 is the421

Cartesian coordinate of the base position. ⇥ = [�, ✓,] is the robot’s base orientation represented422

as Z-Y-X Euler angles, where is the yaw, ✓ is the pitch and � is the roll. We represent the base423

velocity of the robot as q̇ = [v,!], where v and ! are the linear and angular velocity of the base. We424

define the control input as f = [f1,f2,f3,f4] 2 R12, where fi denotes the ground reaction force425

generated by leg i. rfoot = (r1, r2, r3, r4) 2 R12 represents the four foot positions relative to the426

robot base. In denotes the n⇥ n identity matrix. [·]⇥ converts a 3d vector into a skew-symmetric427

matrix, so that for a, b 2 R3, a⇥ b = [a]⇥b.428

A.2 Details of the Stance Leg Controller429

CoM PD Controller Given the desired CoM velocity in the sagittal plane
⇥
vref
x , vref

z ,!ref
y

⇤
, we first430

find the reference pose qref and velocity q̇ref of the robot base. We set qref = [px, py, pz, 0, ✓,] to be431

the current pose of the robot with the roll angle set to 0, and q̇ref =
⇥
vref
x , 0, vref

z , 0,!ref
y , 0

⇤
to follow432

the policy command in the sagittal plane and keep the remaining dimensions to 0. We then find the433

CoM acceleration using a PD controller:434

q̈ref = kp(q
ref � q) + kd(q̇

ref � q̇) (9)

where we set kp = [0, 0, 0, 50, 0, 0] to only track the reference roll angle, and kd =435

[10, 10, 10, 10, 10, 10] to track reference velocity in all dimensions.436

Centroidal Dynamics Model Our centroidal dynamics model is based on [8] with a few modifica-437

tions. We assume massless legs, and simplify the robot base to a rigid body with mass m and inertia438

Ibase (in the body frame). The rigid body dynamics in local coordinates are given by:439

Ibase!̇ =
4X

i=1

ri ⇥ fi (10)

mp̈ =
4X

i=1

fi + g (11)

where g is the gravity vector transformed to the base frame.440

With the above simplifications, we get the linear, time-varying dynamics model:441


!̇
p̈

�

| {z }
q̈

=


I�1

base[r1]⇥ I�1
base[r2]⇥ I�1

base[r3]⇥ I�1
base[r4]⇥

I3/m I3/m I3/m I3/m

�

| {z }
A

2

64

f1

f2

f3

f4

3

75

| {z }
f

+


0
g

�

| {z }
g

(12)

as seen in Eq. (3).442

A.3 Reference Trajectory for Swing Legs443

For swing legs, we design the reference trajectory to always keep the feet tangential to the ground,444

and use residuals from the centroidal policy to generate vertical movements. To find the reference445

trajectory, we interpolate between three key frames (plift-off,pair,pland) based on the gait timing. The446

lift-off position plift-off is the foot location at the beginning of the swing phase. The mid-air position447

pair is the position of the robot’s hip projected onto the ground plane. We use the Raibert Heuristic448

[40] to estimate the desired foot landing position:449

pland = pref + vCoMTstance/2 (13)

12

where vCoM is the projected robot’s CoM velocity onto the x� y plane, and Tstance is the expected450

duration of the next stance phase, which is estimated using the stepping frequency from the centroidal451

policy. Raibert’s heuristic ensures that the stance leg will have equal forward and backward movement452

in the next stance phase, and is commonly used in locomotion controllers [? 8].453

Given these three key points, plift-off,pair, and pland, we fit a quadratic polynomial, and computes454

the foot’s desired position in the curve based on its progress in the current swing phase. Given the455

desired foot position, we then compute the desired motor position using inverse kinematics, and track456

it using a PD controller. We re-compute the desired foot position of the feet at every step (500Hz)457

based on the latest velocity estimation.458

B Experiment Details459

B.1 Reward Function460

Our reward function consists of 9 terms. We provide the detail about each term and its corresponding461

weight below:462

1. Upright (0.02) is the projection of a unit vector in the z-axis of the robot frame onto the463

z-axis of the world frame, and rewards the robot for keeping an upright pose.464

2. Base Height (0.01) is the height of the robot’s CoM in meters, and rewards the robot for465

jumping higher.466

3. Contact Consistency (0.008) is the sum of 4 indicator variables:
P4

i=1 (ci = ĉi), where467

ci is the actual contact state of leg i, and ĉi is the desired contact state of leg i specified by468

the gait generator. It rewards the robot for following the desired contact schedule.469

4. Foot Slipping (0.032) is the sum of the world-frame velocity for contact-legs:470
P4

i=1 ĉi
q
v2i,x + v2i,y , where ĉi 2 {0, 1} is the desired contact state of leg i, and vi,x, vi,y is471

the world-frame velocity of leg i. This term rewards the robot for keeping contact legs static472

on the ground.473

5. Foot Clearance (0.008) is the sum of foot height (clipped at 2cm) for non-contact legs. This474

term rewards the robot to keep non-contact legs high on the ground.475

6. Knee Contact (0.064) is the sum of knee contact variables
P4

i=1 kci, where kci 2 {0, 1} is476

the indicator variable for knee contact of the ith leg.477

7. Stepping Frequency (0.008) is a constant plus the negated frequency 1.5� clip(f, 1.5, 4),478

which encourages the robot to jump at large steps using a low stepping frequency.479

8. Distance to goal (0.016) is the Cartesian distance from the robot’s current location to the480

desired landing position, and encouarges the robot to jump close to the goal.481

9. Out-of-bound-action (0.01) is the normalized amount of excess when the policy computes482

an action that is outside the action space. We design this term so that PPO would not483

excessively explore out-of-bound actions.484

B.2 PPO details485

As listed in Table. 3, we use the same set of hyperparameters for all PPO training, including the486

CAJun policies and baseline policies.487

B.3 Setup for End-to-end RL Baseline488

We use a similar MDP setup as CAJun (section. 5) for the end-to-end RL baseline. More specifically,489

we use the same gait generator as CAJun to generate reference foot contacts, and include stepping490

frequency as part of the action space so that the policy can modify the gait schedule. However, unlike491

CAJun, this reference gait is only used for reward computation, and does not directly affect leg492

13

Parameter Value
Learning rate 0.001, adaptive

env steps per update 98,304
Batch size 24,576

epochs per update 5
Discount factor 0.99

GAE � 0.95
Clip range 0.2

Table 3: Hyperparameters used for PPO.

(a) Reward Curves (b) Training Time

Figure 7: Reward curve and training time of CAJun compared to the ablated methods.

controllers. For reward, we keep the same reward terms and weights (Appendix. B.1). However,493

since the initial exploration phase of end-to-end RL can lead to a lot of robot failures with negative494

rewards, we add an additional alive bonus of 0.02 to ensure that the reward stays positive.495

B.4 Additional Result for Ablation Study496

For each baseline, we report its total reward over 6 consecutive jumps with a desired distance of 1m497

per jump (Fig. 7a). We train each baseline using 5 random seeds and report the average and standard498

deviations. We also report the wall-clock training time in Fig. 7b.499

14

