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A APPENDIX

A.1 RELATED WORK

Visual Instruction Tuning. The advancement of large language models (LLMs) (Brown et al., 2020;
Jiang et al., 2024; Touvron et al., 2023b; Chiang et al., 2023) with instruction tuning has significantly
enhanced zero-shot capabilities across a range of tasks. Drawing inspiration from this, LLaMA-
Adapter series (Zhang et al., 2024a; Gao et al., 2023b; Han et al., 2023) propose a zero-initialized
attention mechanism to align frozen vision encoders (Radford et al., 2021) with LLaMA (Touvron
et al., 2023a) for multi-modal learning. LLaVA series (Liu et al., 2023b;a) employ a linear projector
for vision-language alignment, establishing visual instruction tuning as a standard training approach
in the multi-modal field. Flamingo (Alayrac et al., 2022) and OpenFlamingo (Awadalla et al., 2023)
have honed visual representation by integrating a cross-attention resampler with vision encoders.
SPHINX series (Gao et al., 2024; Lin et al., 2023; 2025) and MR-MLLM (Wang et al., 2024a)
utilize a blend of visual encoders to make the LLM cognizant of various image aspects. InternVL
series (Chen et al., 2024; Dong et al., 2024; Team, 2023) employ a large vision encoder and Q-
Former (Li et al., 2022) to incorporate high-quality visual information through a multi-stage training
methodology. LLaVA-NexT (Liu et al., 2024a; Li et al., 2024a;b) further introduces the ‘AnyRes’
technique to manage images at any given resolution, and LLaVA-NexT-Interleave (Li et al., 2024c)
extends the scope widely to interleave multi-image settings. There are also recent efforts to apply
visual instruction tuning to 3D (Guo et al., 2023; Xu et al., 2023; Guo* et al., 2024; Tang et al., 2025),
video (Li et al., 2023; Fu et al., 2024), reasoning Guo et al. (2025); Jiang et al. (2025); Peng et al.
(2024), and robotics Jia et al. (2024); Liu et al. (2024b) scenarios. Despite the impressive strides made
in both model capability and training efficiency by multi-modal large language models (MLLMs)
through visual instruction tuning, there is currently no MLLM specifically designed for mathematical
problem-solving, nor a substantial dataset available for such purposes in the open-source community.
In this paper, we mitigate the issue by proposing MAVIS with high-quality mathematical visual
datasets and training paradigms.

Mathematics in Large Models. Recent research has predominantly concentrated on text-only
mathematical problem-solving using LLMs. MAmmoTH (Yue et al., 2023; 2024) has compiled ex-
tensive collections of mathematical problems, training LLMs using the reasoning processes described
in solutions. MetaMATH (Yu et al., 2023) has expanded upon this by rewriting existing problems
to create a larger dataset. MathCoder (Wang et al., 2024b) and ToRA (Gou et al., 2023) introduced
a tools agent approach, employing Python code and symbolic resolvers during the training phase,
significantly outperforming traditional models that rely on text-only mathematical reasoning. How-
ever, in the multi-modal field, despite the introduction of several datasets such as Geometry3K (Lu
et al., 2021), GeoQA (Chen et al., 2021b), UniGeo (Chen et al., 2022), UniMath (Liang et al., 2023),
and GeomVerse (Kazemi et al., 2023), aiming at enhancing the performance of MLLMs in solving
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graphical mathematical problems, these datasets are quite limited in scale and domain. Based on
these datasets, G-LLaVA (Gao et al., 2023a) has developed superior capabilities for understanding
graphical geometries but struggles with mathematical problems in other domains. The comprehensive
benchmark MathVerse (Zhang et al., 2024b) has also highlighted the existing MLLMs’ unsatisfactory
capacity for encoding visual diagrams in diverse mathematical domains. Therefore, there is a pressing
need for the development of more robust encoders for mathematical images and the tuning of MLLMs
with mathematical visual instructions, for which we propose MAVIS to address the challenges.

A.2 HUMAN EVALUATION OF MAVIS-INSTRUCT

To assess the dataset’s coverage, validity, and quality, human verification is employed. The creation
process of our MAVIS-Instruct dataset can be broadly categorized into two approaches:

• GPT-generated: This method leverages GPT-4 to generate new problems (including ques-
tions, rationales, and answers) based on existing problems with diagrams. While this
approach produces fluent, human-like sentences, it may be influenced by the inherent
capabilities and occasional instability of GPT-4V.

• Data Engine: As the main source of our mathematical visual data, this method utilizes the
custom automatic data engine to generate new problems (including diagrams, questions,
rationales, and answers), without relying on GPT models. It guarantees 100% correctness
due to the use of rigorous templates, though it may occasionally exhibit rigid expressions.

Specifically, we evaluate four aspects(Diagram, Question, Rationale and Answer) of each problem
using seven metrics. Each metric is scored on a scale of 1 to 3, where 1 denotes poor, 2 denotes
moderate, and 3 denotes good. The human evaluation results are shown in Figure 1 and score statistics
are shown in Figure 2. In addition, we also showcase some specific examples in Figure 3 and Figure 4.
We analyze each aspect as follows:

• Diagram: The diagrams in GPT-generated problems are directly collected from existing
sources with rigorous human filtering, ensuring high quality, resulting in scores close to 3.
In contrast, for rule-based problems, the diagrams are drawn accurately using Python code
driven by our data engine, which guarantees correctness. However, these diagrams may
lack alignment with human aesthetic preferences, as indicated by 3% of them receiving an
appearance score of 1.

• Question: Regarding the questions, both GPT-generated and rule-based problems display
a high degree of accuracy in aligning with the diagram elements. This is attributed to the
well-crafted prompts used with GPT-4 and the meticulous template design of the data engine.
Nevertheless, rule-based questions may occasionally exhibit minor fluency issues, as they
lack human refinement.

• Rationale: In terms of the rationales, most instances feature a precise and detailed chain-of-
thought (CoT) reasoning process. However, in a few cases (3% receiving an accuracy score
of 1), some GPT-generated rationales contain minor reasoning or calculation errors, which
are inherent to GPT-4’s limitations in problem-solving. These errors usually affect only one
or two steps and do not compromise the overall logic. Conversely, the rule-based rationales
are highly accurate due to the carefully designed data engine, although there is still room for
improvement in language fluency.

• Answer: The answers in both methods achieve high correctness scores. For GPT-generated
problems, we prompt GPT-4 to identify a known condition from the original problems as
the answer. Similarly, for rule-based problems, we randomly select a known attribute from
the generated diagrams to serve as the answer.

Overall, the randomly sampled instances show that our dataset exhibits good question quality and
answer accuracy.
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Figure 1: Human Evaluation Results on
200 randomly sampled problems in MAVIS-
Instruct, 100 GPT-generated and 100 Data
Engine. We set three levels (1, 2, and 3) for
each metric, and report average scores.
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Figure 2: Human Evaluation Statistics on
200 randomly sampled problems in MAVIS-
Instruct, 100 GPT-generated and 100 Data
Engine. We count the numbers of three score
levels (1, 2, and 3) for each metric.
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Figure 3: Diagram Examples in MAVIS-Instruct. The first three diagrams showcase superior
correctness and appearance, while a small portion of Data Engine generated diagrams (3%) are not
aligned with human preference, e.g., the fourth diagram.

A.3 ABLATION STUDY

A.3.1 MAVIS-CAPTION

To validate the enhancement of Math-CLIP’s diagram perception capability, we sampled 100
validation diagram-caption pairs and computed their cosine similarity using both CLIP and Math-
CLIP. The results, as shown in Table 3, indicate that Math-CLIP encodes more discriminative
diagram features. Additionally, the attention visualization in Figure ??(a) of the main paper further
demonstrates that Math-CLIP captures mathematical visual elements within diagrams more effectively,
highlighting the efficacy of MAVIS-Caption.

To validate the role of MAVIS-Caption in second-stage training, we present both quantitative and
qualitative results for diagram captioning on the same 100 validation pairs in the first column of
Table 4. The use of MAVIS-Caption significantly enhances the diagram understanding capability.
This shows that MAVIS-Caption helps the LLM generate accurate captions from diagrams, improving
its ability to comprehend each visual token from Math-CLIP and align visual elements with textual
descriptions. We also evaluated MAVIS’s performance on MathVerse without second-stage training,
as shown in the second column of Table 4. Without MAVIS-Caption training, the CoT reasoning
quality of MAVIS-7B is somewhat compromised. This suggests that training the model in diagram
captioning improves its mathematical expression capability, enabling it to produce language
expressions that align with mathematical concepts. This foundational skill supports the generation of
subsequent CoT reasoning steps.

A.3.2 MAVIS-INSTRUCT

Redundant Text When curating questions for MAVIS-Instruct, we minimize the redundant content
within the question texts, which refers to the directly observable content in the diagram, e.g., the
presence of shapes or intersection points of functions. Such information is repetitive to visual
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Figure 4: Accurate Rationale Examples in MAVIS-Instruct. Most GPT-generated and Data
Engine-generated rationales ensure correctness.

Table 3: Diagram Perception Enhancement by Math-CLIP, using MAVIS-Caption in the first
stage. We calculate the average cosine similarity among 100 validation diagram-caption pairs.

Vision Encoder Matched Pair ↑ Unmatched Pair ↓
CLIP 0.22 0.24
Math-CLIP 0.83 0.17

Table 4: Diagram Understanding Enhancement and Mathematical Expression Enhancement in
LLM using MAVIS-Caption in the second Stage. We compare the METEOR and CIDEr scores for
diagram captioning on 100 validation samples, as well as the accuracy and CoT evaluation results on
MathVerse, both with and without the MAVIS-Caption training.

Training Data Diagram-Caption Pairs MathVerse

METEOR CIDEr Acc (%) CoT-E (%)

w MAVIS-Caption 23.7 161.3 28.4 35.2
w/o MAVIS-Caption 14.0 69.4 25.6 32.8
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Table 1: Statistics of MAVIS-Caption.

Statistic Number

Total Captions
- Total number 588K
- Average length (words) 62.85
- Average length (characters) 339.68
- Vocabulary size 418

Plane Geometry
- Total number 299K (50.9%)
- Average length (words) 69.77
- Average length (characters) 385.85
- Vocabulary size 195

Analytic Geometry
- Total number 77K (13.1%)
- Average length (words) 39.64
- Average length (characters) 210.10
- Vocabulary size 158

Function
- Total number 212K (36.0%)
- Average length (words) 61.48
- Average length (characters) 321.46
- Vocabulary size 149

Table 2: Subject Distribution of MAVIS-Instruct.

Statistic Number

Total questions 834K
- Multiple-choice questions 615K (62.4%)
- Free-form questions 218K (37.6%)

Data Engine Generated Problems 582K
- Geometry questions 466K (80.0%)
- Function questions 116K (20.0%)

Data Engine Captions Annotated by GPT-4 51K
- Geometry questions 30K (58.8%)
- Function questions 21K (41.2%)

Manual Collection Augmented by GPT-4 83K
- Geometry questions 72K (86.5%)
- Function questions 11K (13.5%)

Existing Datasets Augmented by GPT-4 118K
- Geometry questions 118K (100.0%)
- Function questions 0 (0%)

Number of unique images 611K (73.3%)
Number of unique questions 804K (96.5%)
Number of unique answers 675K (81.0%)

Average question length 44.60
Average answer length 62.82

components, and may assist MLLMs in bypassing the process of diagram interpretation, thereby
harming their related skills. By mostly avoiding redundant texts in MAVIS-Instruct, our data enforces
MLLMs to learn stronger diagram interpretation capabilities. In Table 5, we add redundant
texts (diagram captions) to the Data Engine Generated Problems for training, leading to expected
performance drop.

CoT Rationales For each instance in MAVIS-Instruct, we incorporate detailed rationales for
problem-solving, either generated by GPT-4 or our rule-based data engine. In Table 6, we remove all
intermediate rationales of each problem in MAVIS-Instruct, and train the model to directly output
the final answer. As shown, both the CoT evaluation and accuracy scores are degraded. This
demonstrates the significance of our rationale annotations, which effectively improves the CoT
reasoning capabilities of MLLMs.

Table 5: Diagram Interpretation Enhancement for MLLM,
using MAVIS-Instruct in the third stage. We compare the
results by adding redundant texts (diagram captions) to the
Data Engine Generated Problems within MAVIS-Instruct.

MAVIS-Instruct MathVerse GeoQA FunctionQA

w/o Redundant Texts 28.4 68.3 50.0
w Redundant Texts 26.5 66.5 48.4

Table 6: Reasoning Capability
Enhancement for MLLM, using
MAVIS-Instruct in the third stage.

Training Data MathVerse

Acc CoT-E

w Rationales 28.4 35.2
w/o Rationales 25.2 26.6

A.3.3 COMPARED TO GENERAL VISUAL INSTRUCTION DATA

Since Mammoth-2 is a highly capable LLM for mathematical tasks, one possible question is whether
simply integrating a vision encoder into Mammoth-2 and training it with conventional visual in-
struction tuning data would suffice for effectively solving visual-based mathematical problems. To
compare MAVIS data with other visual instruction tuning datasets and investigate the specific ben-
efits of MAVIS data in Mammoth-2 (7B), we conduct an ablation study. We utilize the data from
LLaVA-NeXT (558K for pre-training and 760K for fine-tuning) and compare it with our MAVIS data
(558K MAVIS-Caption for pre-training and 834K MAVIS-Instruct for fine-tuning). Performance is
evaluated using the accuracy metric on MathVerse, excluding the DPO training stage for fairness.

Based on the results presented in Table 7, we make the following observations:
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Table 7: Ablation study results for comparison between MAVIS Data and other visual instruction
tuning data. The first row in the table represents the original LLaVA-NeXT-8B.

Visual Encoder LLM Pre-training Fine-tuning MathVerse Acc (%)
CLIP LLaMA-3 (8B) LLaVA data LLaVA data 15.6
CLIP Mammoth-2 (7B) LLaVA data LLaVA data 18.3
CLIP Mammoth-2 (7B) LLaVA data MAVIS-Instruct 25.7
CLIP Mammoth-2 (7B) MAVIS-Caption MAVIS-Instruct 26.4
Math-CLIP Mammoth-2 (7B) MAVIS-Caption MAVIS-Instruct 27.5

1. Mammoth-2 vs. LLaMA-3: Mammoth-2 achieves a +2.7 improvement in accuracy com-
pared to LLaMA-3, highlighting its prior knowledge and inherent capability in mathematical
problem solving.

2. Impact of MAVIS-Instruct: Fine-tuning with MAVIS-Instruct significantly enhances
performance by +7.4, underscoring the substantial advantage of our dataset for mathematical
reasoning tasks compared to general visual instruction datasets.

3. MAVIS-Caption and Math-CLIP: Using MAVIS-Caption for pre-training and employing
the Math-CLIP encoder further boosts performance, leading to enhanced mathematical
visual perception and reasoning capabilities. Overall, our MAVIS data contributes a +9.2
improvement in accuracy over Mammoth-2 trained with LLaVA data.

A.3.4 PERFORMANCE ACROSS DIFFERENT SUBJECTS

Although MAVIS-Instruct contains a substantial number of high-quality solid geometry problems
that were manually curated, our data engine only generates plane geometry and function problems.
Therefore, we aim to evaluate the performance of the MAVIS model across different mathematical
domains, specifically plane geometry, functions, and solid geometry. We provide the detailed subject
scores of MAVIS-7B on MathVerse, comparing the CoT evaluation score (note that the subject-level
accuracy scores are not publicly released) with other models on the official leaderboard.

Table 8: Performance comparison across different models on Plane Geometry, Solid Geometry, and
Functions of MathVerse evaluation tasks.

Model All (CoT-Eval) Plane Geometry Solid Geometry Functions
LLaVA-NeXT 17.2 15.9 19.6 23.1
ShareGPT4V 17.4 16.9 15.0 20.2
SPHINX-MoE 22.8 24.5 15.8 19.5
InternLM-XC2 25.9 26.2 20.1 23.7
MAVIS-7B 35.2 37.1 28.9 31.0

The results shown in Table 8 demonstrate that our model achieves leading performance across all
three subjects. Notably, its proficiency in plane geometry and functions can be attributed to the
training with our meticulously curated MAVIS dataset. Additionally, for solid geometry, which shares
similarities with plane geometry in both visual appearance and reasoning process, we believe that our
model effectively generalizes its learned knowledge and reasoning capabilities, leading to enhanced
performance in this domain as well.

A.3.5 SYNTHETIC DATA VS REAL DATA

In MAVIS-Instruct, we integrate both synthetic problems generated by the data engine (633K, 76%)
and real-world problems augmented with GPT (201K, 24%). The synthetic data is composed of
both geometry and function problems, while the real-world data primarily focuses on geometry. We
conduct an ablation study to assess the contributions of these data components, excluding the DPO
training stage to ensure fairness.
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Table 9: Ablation study of synthetic and real data contributions to MAVIS-7B’s performance.

Synthetic Data Real-world Data MathVerse Acc (%) GeoQA FunctionQA MMMU-Math
✓ – 22.6 44.2 37.1 34.6
– ✓ 24.3 66.4 25.8 29.8
✓ ✓ 27.5 66.7 40.3 39.2

The results shown in Table 9 indicate that the two data sources exhibit complementary characteristics,
both playing a crucial role in achieving the final performance. Specifically, synthetic data significantly
enhances the results on FunctionQA and MMMU-Math, as these benchmarks include a substantial
proportion of function-related problems. Conversely, real-world data has a greater impact on GeoQA,
given its stronger alignment with the geometry-focused nature of this benchmark.

A.3.6 DATA SCALING

A good instruction tuning dataset should exhibit the characteristic of data scaling: as the dataset size
increases, the model trained on it should demonstrate progressively better performance. To verify that
MAVIS-Instruct possesses this property, we conduct an ablation study on the 834K MAVIS-Instruct
dataset by randomly sampling 25%, 50%, and 75% of the data for instruction tuning, excluding
the DPO stage. We then evaluate the models using the accuracy metric on MathVerse. The results,
as shown in Table 10, indicate that the performance of MAVIS-7B consistently improves as the
data scale increases. This demonstrates the promising potential of our dataset to further enhance
mathematical reasoning capabilities with larger-scale utilization.

Table 10: Performance of MAVIS-7B at different
data proportions.

25% 50% 75% 100%
23.3 25.7 26.9 27.5

Table 11: Comparison of different training set-
tings.

LLMs Caption CIDEr MathVerse Acc (%)
Frozen 79.6 26.2
Unfrozen 146.2 28.1
LoRA-based 161.3 28.4

A.3.7 GENERALIZATION ABILITY

Although our Data Engine considers as many problem types as possible, it is inherently challenging
for a manually designed engine to cover all possible types of mathematical visual diagrams. To
alleviate this, we incorporate real-world data by manual collection and GPT augmentation, which well
enhances the generalization capablitity of MAVIS-7B. In Figure 5, we selected examples involving
inscribed triangles (they cannot be generated via our data engine) from publicly available math
benchmarks, and tested MAVIS-7B on these examples, where our model performs accurate reasoning.

Q: AB is tangent to circle O at
point B, and the extended line
of AO intersects circle O at
point C. Connect BC, if angle A =
36.0, then angle C is equal to ?

A: Since AB is tangent to circle
O at point B, we have OB
perpendicular to AB. Therefore,
angle ABO is 90°. Angle AOB is
equal to 90° - angle A, which is
90°- 36°, giving us 54°. Since
OC is equal to OB, angle C is
equal to angle OBC. And since
angle AOB is equal to angle C
plus angle OBC, we have angle C
equal to half of angle AOB,
which is half of 54°, giving us 
27°.

Q: in circle O, chord AC parallel
radius OB, angle BOC = 50.0,
the degree of angle OAB is ?

A: Since AC is parallel to OB,
therefore angle BOC is equal to
angle ACO which is 50 degrees.
Also, OA is equal to OC, so
angle OAC is equal to angle ACO
which is 50 degrees. Since angle
CAB is half of angle BOC, it is
25 degrees. Therefore, angle
BAO is equal to angle OAC
minus angle CAB which is 25
degrees.

Figure 5: Examples for MAVIS-7B solving math problems with circumcircles of triangles.
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A.3.8 ENHANCING VISION-ONLY PERFORMANCE

To evaluate the impact of OCR datasets on MAVIS-7B’s performance, we conducted an ablation
study focusing on vision-only and vision-dominant problems in MathVerse. These problems require
the model to interpret question texts rendered directly in diagrams, thus relying heavily on OCR
capabilities. MAVIS-7B, however, was initially not trained with OCR-specific datasets, limiting its
performance in these tasks.

In contrast, generalist models like LLaVA-NeXT include extensive OCR datasets such as OCRVQA,
DocVQA, and SynDog-EN, which significantly enhance their OCR capabilities. To bridge this gap,
we incorporated OCR datasets (OCRVQA and DocVQA) in our third-stage instruction tuning to
improve MAVIS-7B’s OCR performance.

The results, as shown in Table 12, indicate a notable improvement in vision-dominant and vision-only
problems for MAVIS-7B after the inclusion of OCR datasets, highlighting the potential of better OCR
integration for further boosting its performance. In Figure 6, we also showcase some failure cases of
our MAVIS-7B with OCR training on vision-only problems. Although the vision-only results are
improved via the OCR instruction dataset, the model still suffers from limited perception capabilities
of questions and visual elements within the diagram. This indicates that the OCR capability is still
the bottleneck of vision-only performance. We leave this as a future work to further enhance the
OCR capabilities of MAVIS for mathematical visual elements.

Since BD bisects angle ABC, 
angles ABD and CBD are 
congruent. With angle ABC 
measuring 70 degrees (180 - 
70 - 40 = 70), each of these 
angles measures 35 degrees 
(70 / 2 = 35). Because CD is 
parallel to AB, line BD acts as 
a transversal, … so angle CDB 
also measures 35 degrees. 
Therefore, the answer is D. 

In the given diagram, AB is 
tangent to the circle at point B, 
and ∠OBA=90∘ since a tangent is 
perpendicular to the radius at the 
point of tangency. The triangle 
△OBC is isosceles as OB=OC (both 
are radii of the circle). Given 
∠ABO=36∘, the remaining angle 
∠OBC=180∘−90∘−36∘=54∘. Since 
△OBC is isosceles, ∠C=∠OBC=54∘. 
Thus, the correct answer is B: 54°.

To solve 10×f(7)+9×g(1), we 
first determine f(7) and g(1) 
from the graphs. From the blue 
graph (y=f(x)), at x=7, f(7)=−6. 
From the pink graph (y=g(x)), at 
x=1, g(1)=2. Substituting these 
values into the expression gives 
10×(−6)+9×2=−60+18=−42. Thus, 
the final answer is -42.

Question	&	Diagram:

Answer: A
Answer: D

Answer:	−1

Question	&	Diagram: Question	&	Diagram:

MAIS-7B with OCR: MAIS-7B with OCR: MAIS-7B with OCR:

Figure 6: Failure cases of MAVIS-7B with OCR training on vision-only problems.

Table 12: Impact of OCR data on solving vision-only problems.

Model LLM Size All Text Dominant Text Lite Vision Intensive Vision Dominant Vision Only
LLaVA-NeXT 8B 15.6 19.4 15.2 16.8 15.2 11.3
LLaVA-NeXT 110B 24.5 31.7 24.1 21.0 22.1 20.7
MAVIS-7B 7B 28.4 41.6 29.5 27.9 24.7 18.3
MAVIS-7B w/ OCR 7B 28.9 40.8 29.2 27.4 26.2 21.1

A.3.9 BASE LLM

We investigate different LLMs for the MAVIS model. As shown in Table 13, MAVIS is not very
sensitive to LLM choices, and still surpasses previous models with the same LLM.

A.3.10 DIFFERENT TRAINING SETTINGS

Our training strategy is similar to LLaVA, but with key differences in the pre-training stage: we
train both the projection layer and the LoRA-based LLM, whereas LLaVA only trains the projection

8



Published as a conference paper at ICLR 2025

Table 13: Performance Comparison using
Different LLMs. We compare the accuracy
and CoT evaluation results on MathVerse.

Method Base LLM MathVerse

Acc CoT-E

SPHINX-Plus LLaMA2-13B 12.2 14.0
ShareGPT4V Vicuna-13B 13.1 17.4
InternLM-XC2. InternLM2-7B 16.5 25.9

MAVIS

LLaMA2-13B 24.5 30.7
Vicuna-13B 24.8 30.6
InternLM2-7B 28.0 33.8
MAmmoTH2 28.4 35.2

layer. This design choice stems from the fundamental differences between general visual tasks and
mathematical tasks:

1. For general visual tasks (e.g., LLaVA), training MLLMs typically requires the LLM to generate
daily natural language responses, such as descriptive captions or instruction-following outputs.
These outputs often rely on pre-existing knowledge within the pre-trained LLM. As a result, in
LLaVA, there is no need to unfreeze the LLM to learn new types of outputs.

2. In contrast, for mathematical domains, LLMs need to generate math-specific responses, such as
geometric descriptions, functional explanations, formulas, and theorems. These outputs often
involve domain-specific knowledge not inherent in pre-trained LLMs. Given this, we incorporate
learnable LoRA layers to infuse new knowledge into the LLM, enhancing its capability to produce
high-quality mathematical expressions. Concurrently, we aim to prevent the LLM from overfitting
to diagram captioning tasks during alignment. Therefore, using LoRA-based tuning allows us to
preserve the LLM’s generalizable pre-trained language knowledge while injecting specialized
math-specific capabilities.

To further investigate the impact of different training settings on model performance, we conduct
an ablation study comparing various LLM training settings during the alignment stage. We evaluate
two tasks: the CIDEr score for diagram captioning on 100 validation samples (following the same
setting as in Table 6 of the Appendix) and the accuracy score on MathVerse. The results, as shown in
Table 11, indicate that the LoRA-based approach performs best, enabling MLLMs to generate high-
quality mathematical captions while preserving pre-trained knowledge for improved problem-solving
capabilities.

A.3.11 ENHANCING A PRE-TRAINED MLLM

To investigate whether our curated data and training techniques can improve the mathematical perfor-
mance of a pre-trained large model (LLaVA-NeXT), we conducted an ablation study. Specifically,
we progressively employed MAVIS-Instruct for instruction tuning, followed by DPO alignment
on top of LLaVA-NeXT-8B, with both training stages performed for one epoch using a learning
rate of 1× 10−5. The results, as shown in Table 14, demonstrate that these two continual training
stages significantly enhance LLaVA-NeXT’s ability to solve mathematical problems, with notable
improvements across all evaluation categories.

Table 14: Performance improvement of LLaVA-NeXT-8B with MAVIS-Instruct and DPO alignment.

Model LLM Size All Text Dominant Text Lite Vision Intensive Vision Dominant Vision Only
LLaVA-NeXT 8B 15.6 19.4 15.2 16.8 15.2 11.3
+ MAVIS-Instruct 8B 22.8 32.3 25.3 24.6 18.3 14.2
+ DPO 8B 24.0 33.7 26.9 25.4 19.1 15.1
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A.4 DETAILS OF AUTOMATIC DATA ENGINE

A.4.1 DIAGRAM GENERATION

In this section, we detail the implementation specifics of the process for generating diagrams related
to plane geometry, analytic geometry, and function domains.

Plane Geometry Diagram. Inspired by previous multi-hop reasoning methods (Kazemi et al., 2023;
Wei et al., 2022; Nye et al., 2021), we employ an iterative generation method over logical theories
to generate plane geometric images along with corresponding captions and question-answering
pairs, whose complexity can be controlled across multiple axes. Specifically, we first define a set of
fundamental geometric shapes in Figure 7.

Figure 7: The set of fundamental shapes in plane geometry diagrams, whose straight edges can be
extended into other basic shapes.

Within each shape, new basic shapes can be generated by extending a particular edge. For each basic
shape, we initially define a meta reasoning process:

On−1, C
i
mn−1

Ei
mn−1−−−−→ On, i ∈ [1, z], (1)

where O represents the initial side length of the shape, Cm denotes the additional conditions required
to complete meta reasoning, and Em provides a detailed explanation of the meta reasoning process.
For example, when considering an isosceles triangle as the (n− 1)th shape in a sequence, the vertex
angle is still required as Cm to reason about base side length, and then to expand to the nth shape,
with Em serving as the explanation of this process. The variable z indicates that there are z sets of
possible meta reasoning for the shape, n indicates the length of the generating sequence, which is
also the number of hops of reasoning required to answer the question. The initial side, extend side,
and additional conditions for meta-reasoning of each basic shape can be referred to in Figure 7. In
the final shape, question-answering pairs pertinent to this shape can be generated as

On, C
j
qn , Q

j
n

Ej
qn−−→ Aj

n, j ∈ [1,m], (2)

where Cq represents the additional conditions required to solve the problem, while Q and A denote
the question and answer, respectively. Eq refers to the detailed explanation of the solving process.
The variable m indicates that there are m pairs of question-answering and corresponding detailed
explanations within the shape. By applying meta reasoning to the n − 1th shape, the initial side
length of the nth shape can be deduced. Therefore, for a complex composite figure consisting of n
shapes, the overall question-answering pair can be defined as follows:

O1,

n−1∑
k=1

Cmk
, Cj

qn , Q
j
n

Ej
qn−−→ Aj

n. (3)

Each shape defines a sufficient number of conditions, explanations, and answers to ensure the diversity
of the generated question-answering pairs. Based on the aforementioned rules, controlling the length
of the generation sequence can regulate the number of reasoning steps, and controlling the type of
questions can manage the knowledge required for solving the problems. Thus, we can generate
questions of varying difficulty levels, which can also be illustrated in Figure 8a.
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(a) A single process for generating plane geometry diagrams and corresponding question-answering pairs as
well as image captions. In this example, the generation sequence length is specified as 2. Initial side length is
painted in pink, Cm is painted in green, while Cq is painted in yellow. Whenever a new basic shape is generated,
its caption is appended to the previous caption.

(b) A single process is used for generating function diagrams along with the corresponding question-answer pairs
and image captions. Once the functional expression is determined, all its properties can be directly computed,
and the function plot can be generated accordingly. The caption for the function diagram simply states the
functional expression.

Figure 8: The pipeline of our data engine, consisting of (a) the generation of plane geometry diagrams
and (b) the generation of function diagrams.

Analytic Geometry Diagram. The image generation method for analytic geometry is relatively
straightforward. First, we randomly select a range within the coordinate system: the minimum value
of x is chosen as an integer between [−12,−8], and the maximum value of x is chosen as an integer
between [8, 12]; the range for y is the same as for x. Then, we define the following basic shapes:
point, line segment, line, circle, ellipse, rectangle, square, polygon, and sector. During the generation
process, we select a number between 1 and 4 as the number of shapes to generate. The generation
rule is that nonlinear shapes other than points, line segments, and lines must not overlap.

Function Diagram. The generation of function graphs is also straightforward as shown in Figure 8b.
We define the following basic functions, each with a set of parameters that can be randomly selected:

Sine Function y = A · sin(f · x + ϕ), where the amplitude A is a random integer
between 1 and 3, the frequency f is either 1 or 2, and the phase ϕ is a
random integer between 0 and 2π.

Cosine Function y = A · cos(f · x + ϕ), where the amplitude A is a random integer
between 1 and 3, the frequency f is either 1 or 2, and the phase ϕ is a
random integer between 0 and 2π.
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Tangent Function y = A · tan(f · x + ϕ), where the amplitude A is a random integer
between 1 and 3, the frequency f is either 1 or 2, and the phase ϕ is a
random integer between 0 and 2π.

Polynomial Function P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, where the degree n is
a random integer between 1 and 4. The coefficients ai are randomly
selected integers ranging from -3 to 3.

piece-wise Function piece-wise polynomial functions are divided into 2 or 3 segments, with
each segment’s parameters identical to those of a polynomial function.

Logarithmic Function y = a · logb(c · x + d), where the coefficient a is randomly cho-
sen from {−3,−2,−1, 1, 2, 3}, the base b is randomly chosen from
{2, 10, ⌊e⌋}, the coefficient c is a random integer between 1 and 3,
and the coefficient d is a random integer between 1 and 6, ensuring
that c · x+ d is positive.

Absolute Function y = |a · x+ b|, where a and b are random integer between −5 and 5.

We first determine the domain range to be displayed on the function graph. For trigonometric
functions, the domain is set to [−π, π]. For piece-wise polynomial functions, the minimum value of
x is a random integer between [−12,−8], and the maximum value of x is a random integer between
[8, 12]. For other functions, the minimum and maximum values of x are random integers within
the ranges of [−6,−3] and [3, 6], respectively. During the plotting process, we calculate the local
maxima, minima, and zeros of the function by iterating through the domain. We then render the
x-coordinates of these extrema and zeros on the x-axis of the function graph.

A.4.2 MAVIS-CAPTION

In this section, we detail how the captions corresponding to images in the MAVIS-Caption Dataset
are generated with our automatic data engine.

Plane Geometry Caption. Based on the generation process described in Section A.4.1, when
generating each shape, a caption is randomly selected from a set of captions for that shape and some
connecting words are randomly added. We also randomly select some edges or angles and state their
measurements in the caption. After generating the raw caption, we use GPT-3.5 to refine it, enhancing
its linguistic structure and semantic diversity. An example is shown in Figure ??.

Function Caption. According to the function graph generation process described in Section A.4.1,
we record the function’s zeros and extrema. Additionally, we also record the function’s expression
and asymptotes. These attributes are incorporated into a randomly selected caption template to form
the function graph’s caption. Some examples are provided in Figure 10.

Analytic Geometry Caption. For each shape, we maintain a set of caption templates that describe
the shape’s type, coordinate position, and other attributes. In the generation process described in
Section A.4.1, we select a template and randomly add some diverse connecting words to form a
complete caption. Examples of some captions are shown in Figure 9.

A.4.3 MAVIS-INSTRUCT

Manual Collection Augmented by GPT-4. To complement the dataset with real-world problem-
solving scenarios, we hire 8 human experts to manually collect visual math problems from various
public sources1,2,3, spanning plane geometry, analytic geometry, and function. For problems, we try
to obtain their content as complete as possible, including questions, diagrams, answers, and rationales
if available. The collection process consists of the following steps:

1. Problem Collection: We gathered problems from three public sources as comprehensively as
possible, including questions, diagrams, answers, category information, and rationales where
available. The problems are primarily at the high-school level, covering plane geometry and
functions (including analytic geometry).

12



Published as a conference paper at ICLR 2025

Figure 9: Examples of analytical geometry diagram caption.

Figure 10: Function diagram captions.

2. Data Verification: Based on their initial categories (subject, subfield, and difficulty level), the
problems were organized into distinct groups. Six expert annotators were tasked with meticulously
verifying the correctness and completeness of each problem. They refined the detailed chain-of-
thought (CoT) rationales and ensured that there was no overlap with evaluation data by visually
inspecting the diagrams. This rigorous verification process resulted in a total of 4K verified
problems.

3. Text-lite Construction: To optimize the problems for training mathematical visual capabilities,
the 4K problems were processed using GPT-4V with a customized prompt (as shown in Figure
15). This step involved removing redundant information from the question text to create concise,
text-lite problems, specifically tailored to our training objectives.

Then, we first feed all the related information into GPT-4V to eliminate the redundant information
within text questions, constructing the text-lite version of problems by the prompt in Figure 11. Then,
we design three types of prompts for GPT-4 to augment 15 multiple-choice questions (including 10
multiple-choice and 5 binary-choice, i.e., ‘True’ or ‘False’) and 5 free-form questions, respectively,
as shown in Figure 12. We do not adopt GPT-4V here, since GPT-4V itself would misunderstand
diagrams for low-quality data augmentation. The newly generated problems contain detailed CoT
rationales and diverse question forms.
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Figure 11: Manually collect visual math problems text-lite version.

Figure 12: We design different types of prompts for GPT-4 to augment 15 multiple-choice questions
and 5 free-form questions, respectively.

Existing Datasets Augmented by GPT-4. Previous efforts have been made to provide some small-
scale, plane geometry datasets, e.g., GeoQA (Chen et al., 2021c), GeoQA+ (Chen et al., 2021a),
and Geometry3K (Lu et al., 2021). Although they are limited in data scale for tuning MLLMs
and include no rationales, we can also regard them as a seed dataset and adopt GPT-4 to augment
larger-scale training data. We do not utilize GPT-4V here for the same reason aforementioned. In
detail, we design 3 types of question generation approaches using different prompts, as shown in
Figure 13. For Geometry3K, as the question texts are normally brief and contain marginal descriptive
information, posing challenges for GPT-4 to understand the diagram, we only augment them to
generate binary-choice questions, i.e., ‘Ture’ or ‘False’. For GeoQA+, we can leverage the sufficient
redundant information within their texts to generate more diverse and accurate multi-choice and
free-form questions. Likewise, GPT-4 can produce CoT rationales for each problem.

1https://homework.study.com
2https://www.ixl.com/math
3https://mathspace.co/us
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Figure 13: We design 3 types of question generation approaches using different prompts to augment
existing visual mathematical dataset.

Figure 14: The Text Dominant, Text Lite, Vision Dominant, and Vision Only versions of the same
question. Text Dominant and Text Lite use the same image. In the text, the necessary conditions for
solving the problem are highlighted in red, while redundant descriptive conditions are highlighted in
blue. In the Vision Only version, the question is rendered in the image, with no textual format.

Data Engine Captions Annotated by GPT-4. Given the delicately designed data engine for
automatic diagram-caption creation, we can utilize the generated large-scale pairs to annotate question-
answering data using GPT-4V. Different from the previous two sources that augment questions based
on questions, we utilize the GPT-4V model here for caution data with two reasons: first, the detailed
caption from our data engine can well guide GPT-4V for relatively higher-quality visual embedding;
second, the visual input serves as guidance to provide additional spatial information for broad
question forms. As shown in Figure 21 and Figure 22, we adopt different prompts for function and
plane geometry problems, ensuring that the generated question-answering data is of high quality for
instruction tuning.

Data Engine Generated Problems:

PLANE GEOMETRY. Based on the generation process described in Section A.4.1, we pose questions
about the final shape in the generation sequence. We designed 6 types of questions: finding the
perimeter, finding the area, finding the base length, finding the angle, finding the arc length, and
finding the extended edge length. Each type of question has a set of templates that can be randomly
selected, as shown in Figure 15-20. As for the answer and analysis, each shape has a set of templates
for different types of questions to choose from, as shown in Section A.4.1.

To further enhance the model’s understanding of different forms of questions and better utilize the
diverse modal information in the text and images, we divided the plain geometry questions generated
by the Data Engine into four versions referring to MathVerse (Zhang et al., 2024b): Text Dominant,
Text Lite, Vision Dominant, and Vision Only.
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Figure 15: Perimeter problem templates. Figure 16: Area problem templates.

Figure 17: Base length problem templates.

Text Dominant We marked all the conditions required for solving the problem in the diagram
and also described these conditions in the text, along with some redundant
descriptive text.

Text Lite All the conditions required for solving the problem are randomly divided into
two parts: one part is marked in the diagram, and the other part is described
in the text. In other words, the conditions in the diagram and the conditions
in the text do not overlap.

Vision Dominant All the conditions required for solving the problem are marked in the diagram,
while the text only contains the question without any conditions.

Vision Only Not only are all the conditions required for solving the problem marked in
the diagram, but the question is also rendered in the diagram, leaving the text
portion empty.

The differences among the four versions of the same question are illustrated in Figure 14. Each basic
shape will retain a set of redundant conditions. During the shape generation process, there is a 50%
probability of including these redundant conditions.
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Figure 18: Angle problem templates.

Figure 19: Arc length problem templates. Figure 20: Extend side length problem tem-
plates.

FUNCTION. All functions will be examined with two types of questions: finding the derivative and
finding the extrema. After obtaining the derivative, we calculate whether the derivative has zeros
within the given domain. The presence of zeros determines the method for calculating the extrema.
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The function can be described by the 
equation y = 1*cos(1*x + 3). With an x range 
of [-𝝿, 𝝿], we find the zero points at -1.43, 
1.71. Exploring the function within the range 
[-𝝿, 𝝿], we find that the highest value it 
reaches is 1.0 at -3.0, and the lowest value is 
-1.0 at 0.14. There are no asymptotes in the 
functions.

Question: 
What is the length of square side FG? Choices: A. 10.0; B. 10.1; C. 9.9; D. 10.5

Rational: 
Since FG is a side of square DBFG, and the properties of a square dictate that all sides are 
equal in length, the length of FG must be the same as DB which is given as 10.0 units. So the 
answer is A.

Diagram:

Caption:

Question & Rationale Generated by GPT-4V:

Question: 
What is the length of diagonal AC in triangle ABC? Choices: A. 10.1; B. 9.8; C. 9.9; D. 10.0

Rational: 
In right triangle ABC with sides AB = 7.0 and BC = 7.0 units, and angle ACB = 45°, the 
triangle is isosceles. The length of diagonal AC can be calculated using the Pythagorean 
theorem: AC = √(AB² + BC²) = √(7.0² + 7.0²) = √98 ≈ 9.9. So the answer is C.

Question: 
What is the perimeter of quadrilateral CBDE? Choices: A. 33.0; B. 34.0; C. 35.0; D. 32.0

Rational: 
The perimeter of quadrilateral CBDE includes sides CB, BD, DE, and EC. Given CB = 7.0, BD = 
10.0, and knowing quadrilateral CBDE has parallel and equal opposite sides, DE = CB and EC = 
BD. Thus, DE = 7.0 and EC = 10.0. The perimeter = CB + BD + DE + EC = 7.0 + 10.0 + 7.0 + 10.0 
= 34.0 units. So the answer is B.

Here is some more supplementary information for the diagram I 
give you: "{caption}"
Please first watch the diagram and ask a question that can be 
correctly answered only by seeing the diagram.
Then you should correctly analysis the question and give the answer. 
The reasoning process should not use "According to the caption" or 
something like that.
Next, you should give 3 other hard false choices along with the 
correct one.

You should totally provide 3 questions.
The type of questions is multi-choice. 

You should strictly follow this format and order (end every problem 
with ####):
QUESTION: What is the maximum value of the function in the 
given range? 
ANALYSIS: From the diagram, we can observe that when x=0, the 
function obtain the maximum value, which is 4.
ANSWER: B. 4
CHOICE: A. 3; B. 4; C. 2; D. 1 ####

Prompt for Function Problems:

Figure 21: The function prompt for GPT-4V and the generated questions and rationals.

Firstly, trace a Right Triangle ABC.
Secondly, attached to edge CB, draw a 
Quadrilateral with opposite sides parallel and 
equal in length CBDE. Thirdly, joined to edge DB, 
render a Square DBFG. The measurement of 
angle ACB is 45o. The angle DBC measures 60o. 
Angle BDG measures 90o in size. The distance 
between points A and B is 7.0. The segment CB 
spans 7.0 units. Side DB spans 10.0 units.

Question: 
What is the length of square side FG? Choices: A. 10.0; B. 10.1; C. 9.9; D. 10.5

Rational: 
Since FG is a side of square DBFG, and the properties of a square dictate that all sides are 
equal in length, the length of FG must be the same as DB which is given as 10.0 units. So the 
answer is A.

Diagram:

Caption:

Question & Rationale Generated by GPT-4V:

Question: 
What is the length of diagonal AC in triangle ABC? Choices: A. 10.1; B. 9.8; C. 9.9; D. 10.0

Rational: 
In right triangle ABC with sides AB = 7.0 and BC = 7.0 units, and angle ACB = 45°, the 
triangle is isosceles. The length of diagonal AC can be calculated using the Pythagorean 
theorem: AC = √(AB² + BC²) = √(7.0² + 7.0²) = √98 ≈ 9.9. So the answer is C.

Question: 
What is the perimeter of quadrilateral CBDE? Choices: A. 33.0; B. 34.0; C. 35.0; D. 32.0

Rational: 
The perimeter of quadrilateral CBDE includes sides CB, BD, DE, and EC. Given CB = 7.0, BD = 
10.0, and knowing quadrilateral CBDE has parallel and equal opposite sides, DE = CB and EC = 
BD. Thus, DE = 7.0 and EC = 10.0. The perimeter = CB + BD + DE + EC = 7.0 + 10.0 + 7.0 + 10.0 
= 34.0 units. So the answer is B.

Here is some more supplementary information of the diagram I give 
you: "{caption}"
Please first watch the diagram and ask a question that can be 
correctly answered only by seeing the diagram.
Then you should correctly analysis the question and give the answer. 
The reasoning process should not use "According to the caption" or 
something like that.
Next, you should give 3 other hard false choices along with the 
correct one.

You should totally provide 3 questions.
The type of questions is multi-choice. 

You should strictly follow this format and order (end every problem 
with ####):
QUESTION: What is the height of the trapezium ABCD?
ANALYSIS: Since we know the length of AB and the angle CBA, we 
can derive the height of the trapezium ABCD. The height should be 
AB \times sin(\angle CBA) = 11.7 * sin(60) = 10.1, so the answer is 
11.7
ANSWER: B. 11.7
CHOICE: A. 11; B. 11.7; C. 12; D. 8 ####

Prompt for Plane Geometry Problems:

Figure 22: The geometry prompt for GPT-4V and the generated questions and rationals.
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Figure 23: The initial side, extend side, and additional conditions for meta-reasoning of each basic
shape. Some special shapes are not extended and only appear in the last position of the generation
sequence, thus their extend side is ∅.
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