
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. Fix wij and set f(α) ≡ fij(α) = gij(α) = ∂L(α∆W)/∂wij . By Eq. (4), se(wij) =

|wij |
∣∣ ∫ 1

0
f(α) dα

∣∣. Define the composite trapezoidal approximation and its sampled variant:

TN =
1

2N

[
f(0) + 2

N−1∑
k=1

f
(

k
N

)
+ f(1)

]
, T̃M =

1

2N

[
f(0) + 2(N−1) fM + f(1)

]
, (13)

where fM = 1
M

∑M
p=1 f(αp) with αp i.i.d. drawn from the discrete uniform distribution on

{1/N, . . . , (N−1)/N}.

Since sagg(wij) = |wij | |T̃M | and ||x| − |y|| ≤ |x− y|, the triangle inequality yields∣∣ se(wij)− sagg(wij)
∣∣ ≤ |wij |

∣∣ ∫ 1

0
f − T̃M

∣∣ ≤ |wij |
(∣∣ ∫ 1

0
f − TN

∣∣+ |TN − T̃M |
)
. (14)

Step 1: discretization error. By assumption, f is twice continuously differentiable on [0, 1] and
supα∈[0,1] |f ′′(α)| ≤ C2. The standard error bound for the composite trapezoidal rule on [0, 1] (see,
e.g., classical numerical analysis texts) yields∣∣ ∫ 1

0
f(α) dα− TN

∣∣ ≤ C2

12N2 . (15)

Step 2: sampling error. Let µ = 1
N−1

∑N−1
k=1 f(k

N) denote the average of f over the (N−1) interior
nodes. A simple algebraic manipulation gives

|TN − T̃M | = 1

N

∣∣∣N−1∑
k=1

f
(

k
N

)
− (N−1) fM

∣∣∣ = N − 1

N
|µ− fM | ≤ |µ− fM |. (16)

By assumption, f(α) is uniformly bounded on the discretization nodes, which is discussed in detail
in Appendix B.1: there exists B < ∞ such that |f(α)| ≤ B for all α ∈ {1/N, . . . , (N−1)/N}.
Therefore, each sample f(αp) lies in [−B,B], and Hoeffding’s inequality for bounded random
variables implies that, for any δ ∈ (0, 1),

Pr
(
|µ− fM | ≥ t

)
≤ 2 exp

(
− 2Mt2

(2B)2

)
= 2 exp

(
−Mt2

2B2

)
. (17)

Setting the right-hand side equal to δ and solving for t yields that, with probability at least 1− δ,

|µ− fM | ≤ B

√
2 log(2/δ)

M
≤ cB

√
log(1/δ)

M
(18)

for an absolute constant c > 0. Combining with the previous display gives

|TN − T̃M | ≤ |µ− fM | ≤ cB

√
log(1/δ)

M
(19)

with probability at least 1− δ.

Step 3: combining the bounds. Plugging Eq. (15) and Eq. (19) into the decomposition in Eq. (14)
yields that, with probability at least 1− δ,∣∣ se(wij)− sagg(wij)

∣∣ ≤ |wij |
(C2

12N2
+ cB

√
log(1/δ)

M

)
, (20)

which is exactly the claimed bound in Eq. (9).

A.2 HIGH-PROBABILITY STABILITY OF SNRt

The resulting SNR-based score favors parameters with consistent, high-impact contributions and
suppresses those with volatile or transient behavior. While the above formulation provides an intuitive
interpretation of SNR, it remains essential to ensure its statistical stability with high probability,
which is formally addressed in Theorem 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 2. Let yt = sagg(wij) be the per-epoch raw importance defined in Eq. (7). Since ϵ in
Eq. (12) is a very small constant, it can be ignored. Therefore, we have:

SNRt =
s̄
(t)
e

Ū (t) + ϵ
≈ s̄

(t)
e

Ū (t)
, (21)

Assume that (yt) is an i.i.d. sequence of sub-Gaussian random variables with mean µ and variance
σ2, and let d = E

[
|yt − µ|

]
> 0. For β1, β2 ∈ (0, 1), define the effective EMA window lengths

neff(β1) =
1 + β1

1− β1
, neff(β2) =

1 + β2

1− β2
, neff = min{neff(β1), neff(β2)}. (22)

Then there exist universal constants c1, c2, c0 > 0 such that, for any δ ∈ (0, 1) and all

t ≥ tburn =

⌈
c1

1−min{β1, β2}
log

c2
δ

⌉
, (23)

the following holds with probability at least 1− δ:

∣∣SNRt − µ/d
∣∣ ≤ C

√
log(2/δ)

neff
, C =

2
√
2σ

d
+ 2c0

µ

d2
(σ + d). (24)

Proof. We analyze the EMA under the stylized assumption stated in Theorem 2: (yt) is an i.i.d.
sub-Gaussian sequence with mean µ, variance proxy σ2, and d = E|yt − µ| > 0.

Recall that Eq. (10) and Eq. (11) define the EMAs

s̄(t)e = β1s̄t−1 + (1− β1)yt, Ū (t) = β2Ūt−1 + (1− β2)
∣∣yt − s̄(t)e

∣∣. (25)

Unrolling the recursions (for t large enough so that transients are negligible) shows that

s̄(t)e =
∑
k≥0

w
(1)
k yt−k, w

(1)
k = (1− β1)β

k
1 , Ū (t) = (1− β2)

∑
k≥0

βk
2

∣∣yt−k − s̄t−k

∣∣. (26)

Note that (w(1)
k)k≥0 is a geometric weight sequence with

∑
k w

(1)
k = 1 and

∥w(1)∥22 =
∑
k≥0

(1− β1)
2β2k

1 =
1− β1

1 + β1
=

1

neff(β1)
. (27)

Below we write neff = min{neff(β1), neff(β2)}.

Step 1: concentration of s̄(t)e . Since (yt) are i.i.d. sub-Gaussian with mean µ and variance proxy
σ2, any fixed weighted sum

∑
k w

(1)
k yt−k is also sub-Gaussian with mean µ and variance proxy

σ2∥w(1)∥22 = σ2/neff(β1). Standard sub-Gaussian tail bounds then yield

Pr
(
|s̄(t)e − µ| ≥ ε

)
≤ 2 exp

(
−c neff(β1) ε

2

σ2

)
(28)

for an absolute constant c > 0. Setting the right-hand side to δ/2 and solving for ε gives

|s̄(t)e − µ| ≤ σ

√
2 log(4/δ)

neff(β1)
≤

√
2σ

√
log(4/δ)

neff
(29)

with probability at least 1− δ/2.

Step 2: concentration of Ū (t). We decompose Ū (t) around d = E|yt − µ| as

|Ū (t)−d| ≤ (1−β2)
∣∣∣∑
k≥0

βk
2

(
|yt−k−µ|−d

)∣∣∣ + (1−β2)
∑
k≥0

βk
2

∣∣|yt−k−s̄t−k|−|yt−k−µ|
∣∣. (30)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Define Xt = |yt−µ|−d, which is a centered, sub-exponential random variable whose tail parameters
depend only on (σ, d) (because yt is sub-Gaussian). Let w(2)

k = (1−β2)β
k
2 denote the EMA weights

for Ū (t). Then
∑

k≥0 w
(2)
k = 1 and

∥w(2)∥22 =
∑
k≥0

(1− β2)
2β2k

2 =
1− β2

1 + β2
=

1

neff(β2)
.

Applying a Bernstein-type concentration for weighted sums of i.i.d. sub-exponential variables (see,
e.g., standard results on Orlicz norms) yields the existence of an absolute constant c0 > 0 such that,
for any δ ∈ (0, 1),

Pr

∣∣∣(1− β2)
∑
k≥0

βk
2Xt−k

∣∣∣ ≥ c0(σ + d)

√
log(4/δ)

neff(β2)

 ≤ δ

2
. (31)

For the second term in Eq. (30), note that
∣∣|a− c| − |a− b|

∣∣ ≤ |b− c| for any a, b, c ∈ R, so∣∣|yt−k − s̄t−k| − |yt−k − µ|
∣∣ ≤ |s̄t−k − µ|.

Thus
(1− β2)

∑
k≥0

βk
2

∣∣|yt−k − s̄t−k| − |yt−k − µ|
∣∣ ≤ (1− β2)

∑
k≥0

βk
2 |s̄t−k − µ|. (32)

We now bound the right-hand side by splitting the sum into a recent window and its tail. Let

L =

⌈
c1

1− β2
log

c2
δ

⌉
(33)

for absolute constants c1, c2 > 0 chosen large enough. For t ≥ L, we have

(1− β2)
∑
k≥0

βk
2 |s̄t−k − µ| ≤ (1− β2)

L∑
k=0

βk
2 |s̄t−k − µ| + (1− β2)

∑
k>L

βk
2 |s̄t−k − µ|. (34)

For the tail sum, (1− β2)
∑

k>L βk
2 = βL+1

2 and, by choosing c1, c2 appropriately, we can ensure
βL+1
2 ≤ δ/(8c2). For the finite window {t, t− 1, . . . , t− L}, we apply Eq. (29) and a union bound

over these (L+ 1) indices to obtain, with probability at least 1− δ/2,

|s̄t−k − µ| ≤
√
2σ

√
log(4L/δ)

neff(β1)
for all 0 ≤ k ≤ L. (35)

Combining these bounds and using neff ≤ neff(β1) yields

(1− β2)
∑
k≥0

βk
2 |s̄t−k − µ| ≤ c̃ σ

√
log(2/δ)

neff
(36)

with probability at least 1− δ/2, for an absolute constant c̃ > 0.

Putting Eq. (31) and Eq. (36) back into Eq. (30) and recalling that neff ≤ neff(β2), we obtain that,
for t ≥ tburn and with probability at least 1− δ,

|Ū (t) − d| ≤ C ′
2(σ + d)

√
log(2/δ)

neff
(37)

for an absolute constant C ′
2 > 0. By increasing c1 if necessary, we may ensure that the right-hand

side in Eq. (37) is at most d/2, so that Ū (t) ≥ d/2 holds on the same high-probability event.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Step 3: bounding the ratio SNRt. On the event {Ū (t) ≥ d/2} we can control the ratio SNRt =

s̄
(t)
e /Ū (t) via the deterministic inequality∣∣∣∣∣ s̄(t)e

Ū (t)
− µ

d

∣∣∣∣∣ ≤ 2

d
|s̄(t)e − µ| +

2µ

d2
|Ū (t) − d|. (38)

Combining Eq. (29) and Eq. (37) with Eq. (38), and noting that neff ≤ neff(β1), gives

∣∣SNRt − µ/d
∣∣ ≤

(
2
√
2σ

d
+ 2c0

µ

d2
(σ + d)

)√
log(2/δ)

neff
(39)

with probability at least 1− δ, for a suitable absolute constant c0 > 0. This is exactly the claimed
bound in Theorem 2 after setting C = 2

√
2σ
d +2c0

µ
d2 (σ+d) and tburn =

⌈
c1

1−min{β1,β2} log
c2
δ

⌉
.

B THE DISCUSSION OF THE ASSUMPTIONS IN THEOREM

B.1 THE ANALYSIS OF THE ASSUMPTION IN THEOREM 1

In this section, we focus on how the assumption in Theorem 1, that gij is twice continuously
differentiable on the interval [0, 1] with a bounded second derivative, leads to the conclusion that
gij(α) is bounded. First, consider the following form of gij(α):

gij(α) =
∂L(α∆W)

∂wij
, α ∈ [0, 1], (40)

The analysis of Theorem 1 relies solely on the assumption that gij is twice differentiable on the
interval [0, 1] and that its second derivative is bounded, which allows the application of the composite
trapezoidal rule, leading to a discretization error of O(N−2). Specifically, numerical analysis
typically assumes the existence of a constant C2 < ∞ such that:

sup
α∈[0,1]

∣∣g′′ij(α)∣∣ ≤ C2. (41)

Under this assumption, we can derive the following error bound:∣∣∣∣∫ 1

0

gij(α) dα− TN
∣∣∣∣ ≤ C2

12N2
, (42)

This equation provides the theoretical basis for the O(N−2) discretization error term in Theorem 1.
This requirement is essentially a standard smoothness assumption in trapezoidal integration and does
not involve any specific distributional assumptions. Furthermore, the condition of bounded second
derivatives directly implies that gij itself is bounded. By the fundamental theorem of calculus:

g′ij(α) = g′ij(0) +

∫ α

0

g′′ij(t) dt, gij(α) = gij(0) +

∫ α

0

g′ij(t) dt, (43)

We can obtain the bound for all α ∈ [0, 1]:

|g′ij(α)| ≤ |g′ij(0)|+
∫ 1

0

|g′′ij(t)| dt ≤ |g′ij(0)|+ C2, (44)

Thus,

|gij(α)| ≤ |gij(0)|+
∫ 1

0

|g′ij(t)| dt ≤ |gij(0)|+ |g′ij(0)|+ C2 ≜ B. (45)

This implies that gij(α) is bounded on [0, 1]. When we sample α from the finite set {1/N, . . . , (N −
1)/N}, the resulting random variable gij(α) is bounded by constant B.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 THE ANALYSIS OF THE I.I.D. ASSUMPTION IN THEOREM 2

Theorem 2 assumes that the per-epoch raw scores yt = sagg(wij) form an i.i.d. sub-Gaussian
sequence with a common mean µ and variance σ2. However, strictly speaking, yt depends on the
current model parameters W(t), which are updated across epochs, so exact i.i.d. is an idealization.

Our goal is to model the regime in which the training dynamics have stabilized: after an initial
transient phase (discarded via the burn-in time tburn), the statistics of the gradient noise around the
current solution change only slowly. Furthermore, within the effective EMA window neff(β1, β2),
the gradient sequence can be approximated as having nearly stationary mean and variance. In this
regime, standard extensions of EMA concentration results to weakly dependent or mixing sequences
apply. We chose the i.i.d. setting for clarity of presentation and to keep the notation simple. It is
important to note that Theorem 2 is derived under this stylized, locally stationary noise assumption,
and is meant to provide intuition about how the EMA window size and variance control the stability
of SNRt, rather than to capture every aspect of LLM training dynamics exactly.

To support this approximation empirically, we provide a small diagnostic in Appendix G: for a
representative layer on BoolQ, we plot the time series of yt and its running mean/variance across
epochs. We observe that, after the early epochs, both the mean and variance of yt quickly settle into a
narrow band, and the lag-1 autocorrelation becomes small. Correspondingly, the SNRt curves are
nearly flat after burn-in. These observations suggest that, in the regime where EMA-based importance
is actually used for rank pruning, the i.i.d./local stationarity approximation is reasonably accurate.

Finally, we emphasize that these assumptions are used only in our theoretical analysis; the algorithm
itself does not rely on them. Even when the exact assumptions are relaxed, the qualitative conclusions
remain the same: (i) our IG estimator trades off discretization error O(N−2) and sampling error
O(M−1/2), and (ii) EMA-based SNRt scores become more stable as the effective sample size
increases and the process enters a locally stationary regime.

C HYPERPARAMETER SETTINGS

During the training process, we tune the learning rate from {5 × 10−4, 1 × 10−4, 5 × 10−4, 1 ×
10−3, 2×10−4} and pick the best learning rate for every method. For the MNLI, QNLI, and QQP, we
set the batch size to 128. For RTE, MRPC, CoLA, and STS-B, the batch size is set to 32. For SST-2,
we use a batch size of 64. For all other tasks, the batch size is set to 16. All baseline methods follow
the same settings as IGU-LoRA, as detailed in Table 6. In IGU-LoRA, several key hyperparameters
ϵ,M,N, β1, β2 are set to 1× 10−6, 16, 20, 0.85, and 0.85, respectively, as detailed in Table 7. They
remain constant throughout the experiment, and their sensitivity is discussed in the main text.

Table 6: Hyperparameter setup of IGU-LoRA for training on different datasets.
Dataset learning rate batch size Max. Sequence Length # epochs γ ti ∆T tf

MNLI 5× 10−4 128 512 25 0.1 500 20 10000
RTE 1× 10−3 32 512 25 0.1 300 5 2500
QNLI 5× 10−4 128 512 25 0.1 400 20 10000
MRPC 1× 10−3 32 512 25 0.1 300 5 2500
QQP 5× 10−4 128 512 25 0.1 500 20 10000

SST-2 1× 10−3 64 512 25 0.1 400 20 5000
CoLA 1× 10−3 32 512 25 0.1 300 5 2500
STS-B 2× 10−3 32 512 25 0.1 300 5 2500

BoolQ 5× 10−4 16 512 25 0.1 500 20 10000
ARC-e 5× 10−4 16 512 25 0.1 500 20 10000
ARC-c 5× 10−4 16 512 25 0.1 500 20 10000
COPA 1× 10−3 16 512 25 0.1 500 20 10000

AQuA 1× 10−4 16 512 25 0.1 500 20 10000

MMLU 1× 10−4 128 512 15 0.1 500 20 10000

VQA 2× 10−4 32 512 25 0.1 300 20 10000
GAQ 5× 10−4 32 512 25 0.1 300 20 10000

MVLR2 5× 10−4 32 512 25 0.1 300 20 10000
COCO 2× 10−4 32 512 25 0.1 300 20 10000

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Setting of the 5 hyperparameters (ϵ,M,N, β1, β2) in IGU-LoRA.

Hyperparameter ϵ M N β1 β2

Value 1× 10−6 16 20 0.85 0.85

D ABLATION STUDY ON HIGH-IMPACT PARAMETERS

To further validate the effectiveness of IGU-LoRA in identifying high-impact parameters, we conduct
an ablation study on high-impact parameters. Specifically, we remove the high-rank and low-rank
modules with the highest IGU-LoRA scores from different layers of the Qwen2.5-0.5B model and
evaluate the performance drop on the Boolq and GSM8K datasets. As shown in Table 8, removing
the high-rank modules from the K module in Layer 3 (L3 K) and the V module in Layer 10 (L10 V)
results in a performance drop of 1.30 and 1.33 points on Boolq, respectively. Similarly, removing the
high-rank modules from the Q module in Layer 22 (L22 Q) and the K module in Layer 17 (L17 K)
results in performance drops of 1.80 and 1.73 points on GSM8K, respectively. In contrast, removing
the low-rank modules from the K module in Layer 1 (L1 K) and the V module in Layer 3 (L3 V)
results in only minor performance drops of 0.05 and 0.10 points on Boolq, respectively. The same
trend is observed on GSM8K when removing the low-rank modules from the Q module in Layer 8
(L8 Q) and the K module in Layer 6 (L6 K), resulting in performance drops of 0.11 and 0.15 points,
respectively. These results demonstrate that IGU-LoRA effectively identifies high-impact parameters,
as their removal leads to significant performance degradation compared to low-impact parameters.
Table 8: Ablation study on the impact of removing high-rank and low-rank modules from different layers on
Qwen2.5-0.5B model performance. The numbers in parentheses indicate the performance drop compared to
the model with no modules removed. The left table and the right table represent results on Boolq and GSM8K,
respectively.

Module Removed Rank Boolq

1 L3 K 10 81.15 (-1.30)
2 L10 V 10 81.12 (-1.33)
3 L3 K / L10 V 10 / 10 80.44 (-2.01)

4 L1 K 5 82.40 (-0.05)
5 L3 V 5 82.35 (-0.10)
6 L1 K / L3 V 5 / 5 82.30 (-0.15)

7 - - 82.45

Module Removed Rank GSM8K

1 L22 Q 12 32.35 (-1.80)
2 L17 K 11 32.42 (-1.73)
3 L22 Q / L17 K 12 / 11 31.15 (-3.00)

4 L8 Q 6 34.05 (-0.11)
5 L6 K 6 34.01 (-0.15)
6 L8 Q / L6 K 6 / 6 33.84 (-0.32)

7 - - 34.16

E GENERALIZATION SUPPLEMENTARY EXPERIMENTS

To further validate the generalization performance of IGU-LoRA, we conduct additional experiments
on the MMLU benchmark using the Llama2-7B model. As shown in Table 9, IGU-LoRA achieves
an average accuracy of 51.07%, which is very close to the full fine-tuning method (51.54%) and
outperforms LoRA (49.94%). Notably, IGU-LoRA demonstrates superior performance in Science,
Technology, Engineering, and Mathematics (STEM) and Social Science subjects, achieving accuracies
of 41.71% and 58.12%, respectively. These results further confirm the effectiveness of IGU-LoRA in
enhancing the generalization capabilities of fine-tuned models across diverse subject areas.
Table 9: The generalization performance of fine-tuning the Llama2-7B model on the MMLU benchmark using
different methods, reporting the average results over 5 random seeds.

Method Humanities STEM Social. Other Avg.
Full FT 49.91 41.70 57.53 57.02 51.54
LoRA 46.15 40.84 56.63 56.23 49.94

IGU-LoRA 47.33 41.71 58.12 57.10 51.07

F MULTIMODAL BENCHMARK SUPPLEMENTARY EXPERIMENTS

To further demonstrate the effectiveness of IGU-LoRA in multimodal tasks, we conduct additional
experiments on the VQAv2, GAQ, NVLR2 and COCO Captioning datasets using the VL-BART (Su
et al., 2019). As shown in Table 10, IGU-LoRA achieves an average score of 77.47, outperforming

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

LoRA (74.31) and DoRA (77.40), and closely approaching the performance of full fine-tuning
(77.35). These results further validate the capability of IGU-LoRA to effectively adapt multimodal
models while maintaining high performance across different tasks.
Table 10: Performance comparison of different fine-tuning methods on the VQA, GAQ, NVLR2 and COCO
datasets using the VL-BART model. The results are averaged over 5 random seeds.

Method VQAv2 GAQ NVLR2 COCO Captioning Avg.

Full FT 66.91 56.72 73.71 112.04 77.35

LoRA 64.32 54.10 71.25 109.56 74.31
DoRA 65.81 54.71 73.14 115.93 77.40

IGU-LoRA 65.78 55.32 73.42 115.36 77.47

G THE VERIFICATION OF THE I.I.D./LOCAL STATIONARITY APPROXIMATION
IN THEOREM 2.

To validate the i.i.d. / local stationarity approximation used in Theorem 2, we conduct an empirical
analysis of the importance score statistics during the fine-tuning process. Specifically, we monitor
several representative modules (e.g., the L16 Q module for the 16-th layer’s Q component and the
L5 K module for the 5-th layer’s K component) across multiple training iterations on the BoolQ
dataset. We observe that, after the initial epochs, the mean and variance of yt quickly stabilize
within a narrow range, and the first-order lag autocorrelation becomes very small. Correspondingly,
the SNRt curve becomes nearly flat after the burn-in period. These observations suggest that the
i.i.d./local stationarity approximation is reasonable and accurate during the stage when EMA-based
importance-ranking pruning is applied in practice.

0 10 20 30 40 50
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y t

yt Time Series

L16_Q
L5_K
L12_V
L9_Q
L10_K
L15_V
Burn-in Period

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Va
lu

e

Running Mean and Variance
Mean (L16_Q)
Variance (L16_Q)
Mean (L5_K)
Variance (L5_K)
Mean (L12_V)
Variance (L12_V)
Mean (L9_Q)
Variance (L9_Q)
Mean (L10_K)
Variance (L10_K)
Mean (L15_V)
Variance (L15_V)

0 10 20 30 40 50
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n
Va

lu
e

Lag-1 Autocorrelation

Autocorr (L16_Q)
Autocorr (L5_K)
Autocorr (L12_V)
Autocorr (L9_Q)
Autocorr (L10_K)
Autocorr (L15_V)

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SN
R t

SNRt Curve
SNR (L16_Q)
SNR (L5_K)
SNR (L12_V)
SNR (L9_Q)
SNR (L10_K)
SNR (L15_V)

Figure 7: Empirical analysis of importance score statistics during fine-tuning. The plots show the changes
in yt, the mean and variance of yt, the first-order lag autocorrelation, and SNRt across training iterations for
representative module parameters.

H EFFECTS OF SAMPLE ORDER AND BATCH SIZE

To investigate the effects of sample order and batch size on the performance of IGU-LoRA, we conduct
experiments using the Qwen-2.5-0.5B model on the BoolQ dataset. The results are summarized as
follows:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Sample Order / Random Seed. we trained with a fixed batch size using five different random
seeds. These seeds control the data shuffling and the sampled integration nodes αk. The downstream
accuracy varies slightly across seeds (within ∆acc absolute points, indicating a small change), which
demonstrates that the sample order has high stability on the results.

Batch Size. We further vary the batch size (e.g., 2, 4, 8, 16, 32) while keeping all other hyperparame-
ters fixed. The resulting test accuracy again shows only minor variation. This proves that batch size
does not have a significant impact on the results. The detailed results are presented in Table 11.

Table 11: Effect of Batch Size on BoolQ Accuracy across Different Random Seeds

Batch Size Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
2 82.46 82.47 82.45 82.46 82.45
4 82.45 82.46 82.44 82.45 82.44
8 82.44 82.45 82.43 82.44 82.43

16 82.45 82.46 82.44 82.45 82.44
32 82.40 82.41 82.39 82.40 82.39

I DATASETS AND METRICS

I.1 GLUE BENCHMARK TASKS

Single-sentence Classification Tasks. (1) CoLA (Corpus of Linguistic Acceptability): Determine
whether a sentence adheres to grammatical rules (binary classification). (2) SST-2 (Stanford Sentiment
Treebank): Movie review sentiment analysis (positive/negative binary classification).

Sentence-pair Classification Tasks. (1) MRPC (Microsoft Research Paraphrase Corpus): Determine
whether two sentences are semantically equivalent (binary classification). (2) QQP (Quora Question
Pairs): Determine whether two Quora questions are semantically identical (binary classification).
(3) RTE (Recognizing Textual Entailment): Determine whether a sentence pair entails a relationship
(three-class classification: entailment/contradiction/neutral).

Similarity and Regression Task. STS-B (Semantic Textual Similarity Benchmark): Calculate the
semantic similarity between two sentences (continuous value from 1 to 5).

Question-answering Task. QNLI (Question-answering NLI). Determine whether a sentence contains
the answer to a given question (binary classification).

Natural Language Inference Task. MNLI (Multi-Genre Natural Language Inference). Large-scale
cross-domain textual entailment classification (three-class classification).

I.2 MATHEMATICAL AND COMMON-SENSE REASONING TASKS

Mathematical Reasoning Tasks. (1) AQuA (Algebra question answering): Derive the correct answer
from a given algebraic problem (multiple-choice) and generate the corresponding solution process
(Rationales). (2) GSM8K (Grade school math 8K): Perform multi-step reasoning on mathematical
problems described in natural language.

Common-Sense Reasoning Tasks. (1) BoolQ (Boolean questions). Determine whether the answer
to a given question, based on the provided paragraph, is ”Yes” (True) or ”No” (False). (2) ARC-e
(AI2 reasoning challenge - easy): Select the most reasonable answer from a given set of scientific
questions (Multiple-choice question). (3) ARC-c (AI2 reasoning challenge - challenge): Combine
multi-step reasoning and cross-domain knowledge to provide answers. (4) COPA (Choice of plausible
alternatives). Select the most plausible cause or effect for a given premise from two provided
alternatives. The task requires understanding of causal relationships and commonsense reasoning in
everyday scenarios.

I.3 MULTIMODAL BENCHMARK TASKS

Visual Question Answering Tasks. (1) VQAv2 (Visual Question Answering v2). Given an image and
a related question, select the most appropriate answer from multiple choices. (2) GAQ (Generalized

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Question Answering). This task extends VQA to a more generalized setting, where the model is asked
to answer a wider range of questions based on visual context.

Visual-Linguistic Reasoning Task. (1) NLVR2 (Natural Language for Visual Reasoning 2). Given a
pair of images and a natural language statement, determine whether the statement accurately describes
the relationship between the two images.

Image Captioning Task. (1) COCO Captioning. Generate descriptive captions for images in the
COCO dataset, evaluating the model’s ability to understand and describe visual content accurately.

Table 12: Summary of the benchmark datasets.

Datasets # train # dev # test Type Metrics

Common-Sense reasoning tasks
BoolQ 9427 - 3270 Common-Sense reasoning Acc
ARC-e 2251 570 2376 Common-Sense reasoning Acc
ARC-c 1119 299 1172 Common-Sense reasoning Acc
COPA 400 100 500 Common-Sense reasoning Acc

Mathematical reasoning tasks
AQuA 97467 254 254 Mathematical reasoning Acc

GSM8K 7473 - 1319 Mathematical reasoning Acc

GLUE benchmark tasks
SST-2 67k 872 1.8k Sentiment Acc
MNLI 393k 20k 20k NLU Acc
QQP 364k 40k 391k Paraphrase Acc-F1

MRPC 3.7k 408 107k Paraphrase Acc-F1
RTE 2.5k 176 3k NLU Acc
QNLI 108k 5.7k 5.7k QA/NLI Acc
CoLA 8.5k 1k 1k Acceptability Mcc
STS-B 7k 1.5k 1.4k Similarity Corr

I.4 DATASET STATISTICS

In our experiments, we compare performance across multiple tasks, including the GLUE benchmark,
which consists of eight datasets: CoLA, SST-2, MRPC, QQP, STS-B, MNLI, QNLI, and RTE; three
common-sense reasoning tasks (BoolQ, ARC-e, and ARC-c); and two mathematical reasoning tasks
(AQuA and GSM8K). The dataset statistics are presented in Table 12.

I.5 EVALUATION METRICS

As shown in Table 12, we strictly follow the official settings of GLUE and use the same metrics
as Wang et al. (2018). For MNLI, we report the average of the accuracy scores on the matched and
mismatched test sets. For MRPC and QQP, we report Acc-F1, the average accuracy, and F1 scores.
For STS-B, we report Corr, which denotes the average of the Pearson and Spearman correlation
coefficients. For CoLA, we report Mcc, which is the Matthews correlation. For all other tasks,
we report accuracy (Acc). Since the common sense and math reasoning tasks usually come with a
definite answer choice, we will directly consider the correctness of the final answers. Thus, we report
accuracy (denoted as Acc).

J BASELINE DETAILS

• Full fine-tuning is the most common approach for adaptation. During fine-tuning, the model is
initialized with pre-trained weights and biases, and all model parameters undergo gradient updates.

• LoRA (Hu et al., 2022a) is a representative parameter-efficient fine-tuning (PEFT) method. It
introduces two low-rank matrices to parameterize the incremental weight updates, and only these
lightweight components are updated during fine-tuning. The number of trainable parameters is

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

determined by the rank r and the number of inserted adaptation matrices n, allowing for fine-grained
control over the adaptation budget.

• AdaLoRA (Zhang et al., 2023) extends the conventional LoRA framework by introducing a dy-
namic rank adaptation mechanism. It parameterizes the low-rank adapters using singular value
decomposition (SVD), and evaluates the importance of each parameter based on the magnitude of its
corresponding singular value. This importance score then guides a progressive rank pruning process,
allowing the model to dynamically reallocate its limited parameter budget to more critical layers or
modules.

• DoRA (Liu et al., 2024b) enhances the learning capacity and adaptability of pretrained models by
decoupling weight matrices into two distinct components: magnitude and direction. The key idea is to
keep the magnitude fixed and apply LoRA-style low-rank updates only to the directional component.
This separation allows for more expressive and geometry-aware adaptation while preserving the norm
of the original weights, which helps stabilize training and maintain alignment with the pretrained
model. Since only the direction is modified, DoRA introduces no additional inference overhead,
making it efficient and scalable for deployment.

• AutoLoRA (Xu et al., 2023) is a meta-learning-based fine-tuning approach designed to automatically
determine the optimal rank for each layer in Low-Rank Adaptation (LoRA). It introduces a learnable
selection variable for each rank-1 matrix and dynamically adjusts these variables using a meta-
learning strategy. By jointly optimizing the rank configuration along with the LoRA parameters,
AutoLoRA significantly improves fine-tuning efficiency and overall performance.

• Adapter (Houlsby et al., 2019) inserts lightweight bottleneck modules between each layer of the
pretrained model, updating only these newly introduced modules during fine-tuning while keeping
the original model parameters frozen.

• P-tuning v2 (Liu et al., 2021) is an improved prompt tuning method that inserts trainable prompt
tokens at the input layer and across multiple model layers. This design increases the trainable
parameters from approximately 0.01% to 0.1%-3% of the full model, while maintaining parameter
efficiency. P-tuning v2 enhances optimization stability and improves performance across various
tasks by integrating task-specific information deeper into the model.

• (IA)3 (Liu et al., 2022a) introduces learnable scaling vectors at key locations in the Transformer
architecture, such as the keys and values in the self-attention mechanism and the intermediate
activations in the feed-forward networks. These vectors are applied via element-wise multiplication to
modulate the internal activations, enabling flexible control over the model’s output without modifying
the original model parameters.

• SSP (Hu et al., 2022b) leverages structural sparsity to guide the automatic search for parameter
insertion locations, activating trainable parameters only in the most important substructures. This
enables higher efficiency without sacrificing model performance.

• GoRA (He et al., 2025) leverages gradient-driven adaptive low-rank adjustment to dynamically
adjust the rank of low-rank adaptation layers during training. By using gradient information, GoRA
ensures that the model can allocate computational resources more efficiently, adjusting the rank
based on the importance of each layer for different tasks and training stages. This method maintains
computational efficiency while improving model performance, adapting the low-rank configuration
to meet the specific needs of the training process.

K ADDITIONAL RELATED WORKS

K.1 DYNAMIC RANK ALLOCATION

Dynamic rank allocation gains increasing attention in deep learning model optimization, with various
methods proposed to improve adaptability and efficiency. Several other notable approaches are intro-
duced beyond AdaLoRA (Zhang et al., 2023) and AutoLoRA (Xu et al., 2023). LoSA (Huang et al.,
2025) integrates sparsity and low-rank adaptation, dynamically adjusting both using representation
mutual information and reconstruction error. PRILoRA (Benedek & Wolf, 2024) employs a heuristic
strategy that linearly increases ranks from lower to higher layers, motivated by the observation that
higher layers often require greater adaptability in transfer learning. ALoRA (Liu et al., 2024c) further
incorporates a novel mechanism, AB-LoRA, which assesses the importance of individual LoRA

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ranks and incrementally prunes redundant components, reallocating the freed budget to more critical
Transformer modules. These methods provide diverse rank allocation strategies that contribute to
more efficient fine-tuning of large models.

L THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were employed in several
auxiliary capacities. First, at the writing stage, LLMs were utilized to refine and translate the text,
thereby enhancing the overall fluency, readability, and precision of academic expression. Second,
in relation to experiments and results presentation, LLMs assisted in generating parts of the code
for data visualization and figure plotting, which facilitated a more efficient presentation of research
findings. Third, in surveying the research landscape and related work, LLMs provided support for
literature searches, helping us to locate and summarize relevant studies in the field systematically.
Finally, in the theoretical component of this work, LLMs offered auxiliary support in structuring
complex proofs and verifying critical derivation steps, contributing to the clarity and rigor of our
theoretical analysis. It should be emphasized that all uses of LLMs were strictly auxiliary in nature;
the formulation of research questions, the design of methods, the core theoretical derivations, and the
experimental analyses were all carried out independently by the authors.

26

	Introduction
	Related Works
	Parameter Efficient Fine-tuning
	Low-rank Adaptation Fine-tuning
	Integrated Gradients

	Method
	Preliminaries
	Importance Scoring via Integrated Gradients
	Uncertainty-Aware Scoring

	Experiments
	Experimental Settings
	Datasets and Evaluation Metrics
	Baseline Methods
	Main Results
	Ablation Study and Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Theoretical Proofs
	proof of Theorem 1
	High-probability stability of SNRt

	The Discussion of the Assumptions in Theorem
	The Analysis of the Assumption in Theorem 1
	The Analysis of the i.i.d. Assumption in Theorem 2

	Hyperparameter Settings
	Ablation Study on High-Impact Parameters
	Generalization supplementary experiments
	Multimodal benchmark supplementary experiments
	The verification of the i.i.d./local stationarity approximation in Theorem 2.
	Effects of Sample Order and Batch Size
	Datasets and Metrics
	GLUE Benchmark Tasks
	Mathematical and Common-sense Reasoning Tasks
	MultiModal Benchmark Tasks
	Dataset Statistics
	Evaluation Metrics

	Baseline Details
	Additional Related Works
	Dynamic Rank Allocation

	The Use of Large Language Models

