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A THEORETICAL PROOFS

A.1 PROOF OF THEOREMIII

Proof. Fix w;; and set f(a) = fij(@) = gij(e) = OL(@AW)/Ow;;. By Bq. (@), se(wij) =
|wij | | fol fla da|. Define the composite trapezoidal approximation and its sampled variant:
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where f), = Zp:l f(ay) with a, ii.d. drawn from the discrete uniform distribution on

{1/N,...,(N-1)/N}.

Since Sqgq(wij) = |wj| |Tas] and ||z| — |y|| < |z — y], the triangle inequality yields
1 ~ 1 ~
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Step 1: discretization error. By assumption, f is twice continuously differentiable on [0, 1] an
SUPueo,1) |/ ()] < C2. The standard error bound for the composite trapezoidal rule on [0, 1] (see
e.g., classical numerical analysis texts) yields

|fo da—TN| = 12CJ%/2' (15)

Step 2: sampling error. Let i1 = ZkN:_ll f(%) denote the average of f over the (N—1) interior
nodes. A simple algebraic manipulation gives
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By assumption, f(«) is uniformly bounded on the discretization nodes, which is discussed in detail
in Appendix [B.1} there exists B < oo such that |f(«)| < B forall « € {1/N,...,(N-1)/N}.
Therefore, each sample f(c,,) lies in [—B, B], and Hoeffding’s inequality for bounded random
variables implies that, for any ¢ € (0, 1),

- 2M ¢ Mt?
Pr(lu—ful>t) < 2exp(—(2B)2> :2eXp(—2B2> . (17)
Setting the right-hand side equal to ¢ and solving for ¢ yields that, with probability at least 1 — 6,
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for an absolute constant ¢ > 0. Combining with the previous display gives

Toc~ Tl < In=Tul < e85

with probability at least 1 — 4.

Step 3: combining the bounds. Plugging Eq. (I5) and Eq. (I9) into the decomposition in Eq. (T4)
yields that, with probability at least 1 — 4,
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which is exactly the claimed bound in Eq. (9). O

A.2 HIGH-PROBABILITY STABILITY OF SNR;

The resulting SNR-based score favors parameters with consistent, high-impact contributions and
suppresses those with volatile or transient behavior. While the above formulation provides an intuitive
interpretation of SNR, it remains essential to ensure its statistical stability with high probability,
which is formally addressed in Theorem 2]
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Theorem 2. Let y; = sq44(wij;) be the per-epoch raw importance defined in Eq. @) Since € in
Eq. is a very small constant, it can be ignored. Therefore, we have:

5((at) _ Eét)
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Assume that (y;) is an i.i.d. sequence of sub-Gaussian random variables with mean . and variance
o, and let d = E[|y, — p|] > 0. For 1, B2 € (0,1), define the effective EMA window lengths
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Neff (51) = 5 Neff (52) = 5 Neff = min{neﬂ (61), neff(62)}- (22)
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Then there exist universal constants c1, ca, ¢ > 0 such that, for any § € (0, 1) and all
C1 Co
t >t urn — T Ao o log— ) 23
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the following holds with probability at least 1 — §:
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Proof. We analyze the EMA under the stylized assumption stated in Theorem [2} (y;) is an i.i.d.
sub-Gaussian sequence with mean i, variance proxy o2, and d = El|y; — p| > 0.

Recall that Eq. and Eq. define the EMAs

59 =Pise-1+ (L= By, UY = Bole1 + (1= B2) [ye — 51)]. (25)
Unrolling the recursions (for ¢ large enough so that transients are negligible) shows that
s =N wlyow, w) =08, U9 =18 5 s — 5er|.  26)
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Note that (w,, ’) x>0 is a geometric weight sequence with ), w,(cl) = 1and
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Below we write neg = min{neg(51), nes(82)}-

Step 1: concentration of Eg). Since (y;) are i.i.d. sub-Gaussian with mean y and variance proxy

o2, any fixed weighted sum ), w,(cl)yt_ & 1s also sub-Gaussian with mean p and variance proxy

o?||lwM |2 = 02 /neg(B1). Standard sub-Gaussian tail bounds then yield
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for an absolute constant ¢ > 0. Setting the right-hand side to §/2 and solving for € gives

0l < o 20800 g fiosa/e 09)
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with probability at least 1 — §/2.

Step 2: concentration of U(Y). We decompose U*) around d = Ely: — p as

T®—d| < (1—62)‘2550%71@_/”_6[)‘ + (1=B2) Y B8 lye—r—Se—k|—ye—u—pl]. (30)

k>0 k>0
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Define X; = |y; — 1| — d, which is a centered, sub-exponential random variable whose tail parameters
depend only on (o, d) (because y; is sub-Gaussian). Let w,(f) = (1— f32)35 denote the EMA weights
for U®). Then Y7, -, w® =1and

@2 _ B 221@:1*52: 1
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Applying a Bernstein-type concentration for weighted sums of i.i.d. sub-exponential variables (see,
e.g., standard results on Orlicz norms) yields the existence of an absolute constant ¢y > 0 such that,
forany 0 € (0,1),
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For the second term in Eq. , note that ||a — ¢| — |a — b|| < [b— | forany a,b,c € R, so

[[Ye—r — Stk = lye—r — pl| < |50k — pl-

Thus
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We now bound the right-hand side by splitting the sum into a recent window and its tail. Let
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for absolute constants c1, co > 0 chosen large enough. For ¢ > L, we have
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For the tail sum, (1 — 32) >, B = 2L+1 and, by choosing c;, ¢y appropriately, we can ensure

L+1 < §/(8¢y). For the finite window {t,t — 1,...,t — L}, we apply Eq. and a union bound
over these (L + 1) indices to obtain, with probability at least 1 — §/2,

log(4L/9d)

S —pl < V20 et (1)

forall0 < k < L. 35)

Combining these bounds and using neg < neg(51) yields

(1—=B2) Y Bslse-k—n| < éo Log(2/9) (36)

n
k>0 eff

with probability at least 1 — §/2, for an absolute constant ¢ > 0.

Putting Eq. and Eq. back into Eq. and recalling that neg < neg(S2), we obtain that,
for t > tyu,m and with probability at least 1 — 6,

log(2/9)
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(37

for an absolute constant C% > 0. By increasing ¢, if necessary, we may ensure that the right-hand
side in Eq. is at most d/2, so that U ®) >d /2 holds on the same high-probability event.
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Step 3: bounding the ratio SNR;. On the event {U(*) > d/2} we can control the ratio SNR; =
Eét) JU® via the deterministic inequality

50
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Combining Eq. and Eq. with Eq. (38), and noting that neg < nes(B1), gives

ISNR, — pu/d| < (2\?0 +20052(a+d)> % (39)

with probability at least 1 — 9, for a suitable absolute constant ¢y > 0. This is exactly the claimed
bound in Theoremafter setting C' = 2‘/5‘7 +2¢o L5 (0+d) and tiyen = [m log2]. O

B THE DISCUSSION OF THE ASSUMPTIONS IN THEOREM

B.1 THE ANALYSIS OF THE ASSUMPTION IN THEOREM/I]

In this section, we focus on how the assumption in Theorem |I|, that g;; is twice continuously
differentiable on the interval [0, 1] with a bounded second derivative, leads to the conclusion that
gij () is bounded. First, consider the following form of g;; (cv):

OL(aAW
gij(a) = %a o€ [07 1]7 (40)
ij

The analysis of Theorem |I| relies solely on the assumption that g;; is twice differentiable on the
interval [0, 1] and that its second derivative is bounded, which allows the application of the composite
trapezoidal rule, leading to a discretization error of O(N~2). Specifically, numerical analysis
typically assumes the existence of a constant Co < oo such that:

sup |g7i(@)| < Ca. (41)
a€l0,1]

Under this assumption, we can derive the following error bound:

1
C
‘/0 gij () dOé—TN‘ < ﬁ7 42)

This equation provides the theoretical basis for the O(N ~?2) discretization error term in Theorem
This requirement is essentially a standard smoothness assumption in trapezoidal integration and does
not involve any specific distributional assumptions. Furthermore, the condition of bounded second
derivatives directly implies that g;; itself is bounded. By the fundamental theorem of calculus:

(03

(@) = g50)+ [ gt gs(@) = 9(0)+ [ gly(e) 3)
0 0
We can obtain the bound for all & € [0, 1]:
1
lg:; ()| < 1gi;(0)] +/O |gi; ()] dt < ]g;;(0)] + Ca, (44)
Thus,
1
9 ()] < 19:5(0)] +/ lgi; (0] dt < |gi;(0)| + |9, (0)] + C2 £ B. (45)
0

This implies that g;; () is bounded on [0, 1]. When we sample « from the finite set {1/N, ..., (N —
1)/N}, the resulting random variable g;;(c) is bounded by constant B.
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B.2 THE ANALYSIS OF THE I.I.D. ASSUMPTION IN THEOREM [2]

Theorem [2| assumes that the per-epoch raw scores y; = Sqqq(w;;) form an i.i.d. sub-Gaussian
sequence with a common mean 4 and variance o2. However, strictly speaking, y; depends on the
current model parameters W *) | which are updated across epochs, so exact i.i.d. is an idealization.

Our goal is to model the regime in which the training dynamics have stabilized: after an initial
transient phase (discarded via the burn-in time t1,,,y,), the statistics of the gradient noise around the
current solution change only slowly. Furthermore, within the effective EMA window ng (531, f2),
the gradient sequence can be approximated as having nearly stationary mean and variance. In this
regime, standard extensions of EMA concentration results to weakly dependent or mixing sequences
apply. We chose the i.i.d. setting for clarity of presentation and to keep the notation simple. It is
important to note that Theorem 2]is derived under this stylized, locally stationary noise assumption,
and is meant to provide intuition about how the EMA window size and variance control the stability
of SNR;y, rather than to capture every aspect of LLM training dynamics exactly.

To support this approximation empirically, we provide a small diagnostic in Appendix |G} for a
representative layer on BoolQ, we plot the time series of y; and its running mean/variance across
epochs. We observe that, after the early epochs, both the mean and variance of y; quickly settle into a
narrow band, and the lag-1 autocorrelation becomes small. Correspondingly, the SNR; curves are
nearly flat after burn-in. These observations suggest that, in the regime where EMA-based importance
is actually used for rank pruning, the i.i.d./local stationarity approximation is reasonably accurate.

Finally, we emphasize that these assumptions are used only in our theoretical analysis; the algorithm
itself does not rely on them. Even when the exact assumptions are relaxed, the qualitative conclusions
remain the same: (i) our IG estimator trades off discretization error O(N ~2) and sampling error
O(M~'/?), and (ii) EMA-based SNR; scores become more stable as the effective sample size
increases and the process enters a locally stationary regime.

C HYPERPARAMETER SETTINGS

During the training process, we tune the learning rate from {5 x 1074,1 x 10745 x 10741 x
1073,2 x 10~} and pick the best learning rate for every method. For the MNLI, QNLI, and QQP, we
set the batch size to 128. For RTE, MRPC, CoLA, and STS-B, the batch size is set to 32. For SST-2,
we use a batch size of 64. For all other tasks, the batch size is set to 16. All baseline methods follow
the same settings as IGU-LoRA, as detailed in Table[] In IGU-LoRA, several key hyperparameters
e, M,N, B, 3> are setto 1 x 1079, 16, 20, 0.85, and 0.85, respectively, as detailed in Table They
remain constant throughout the experiment, and their sensitivity is discussed in the main text.

Table 6: Hyperparameter setup of IGU-LoRA for training on different datasets.

Dataset | learning rate  batch size Max. Sequence Length  #epochs v t;  Arp ty

MNLI 5x 107 128 512 25 0.1 500 20 10000

RTE 1x1073 32 512 25 0.1 300 5 2500
QNLI 5x 107 128 512 25 0.1 400 20 10000
MRPC 1x1073 32 512 25 0.1 300 5 2500
QQP 5x 107 128 512 25 0.1 500 20 10000
SST-2 1x1073 64 512 25 0.1 400 20 5000
CoLA 1x1073 32 512 25 0.1 300 5 2500
STS-B 2x1073 32 512 25 0.1 300 5 2500
BoolQ 5x 107 16 512 25 0.1 500 20 10000
ARC-e 5x 107 16 512 25 0.1 500 20 10000
ARC-c 5x 107 16 512 25 0.1 500 20 10000
COPA 1x1073 16 512 25 0.1 500 20 10000
AQuA ‘ 1x1074 16 512 25 0.1 500 20 10000
MMLU ‘ 1x1074 128 512 15 0.1 500 20 10000
VQA 2x 1074 32 512 25 0.1 300 20 10000
GAQ 5x 1074 32 512 25 0.1 300 20 10000
MVLR? 5x 1074 32 512 25 0.1 300 20 10000
COCO 2x 1074 32 512 25 0.1 300 20 10000
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Table 7: Setting of the 5 hyperparameters (e, M, N, 31, $2) in IGU-LoRA.

Hyperparameter ‘ € M N 51 Ba
Value | 1x10°¢ 16 20 0.85 0.85

D ABLATION STUDY ON HIGH-IMPACT PARAMETERS

To further validate the effectiveness of IGU-LoRA in identifying high-impact parameters, we conduct
an ablation study on high-impact parameters. Specifically, we remove the high-rank and low-rank
modules with the highest IGU-LoRA scores from different layers of the Qwen2.5-0.5B model and
evaluate the performance drop on the Boolq and GSM8K datasets. As shown in Table[8] removing
the high-rank modules from the K module in Layer 3 (L3_K) and the V module in Layer 10 (L10_V)
results in a performance drop of 1.30 and 1.33 points on Boolq, respectively. Similarly, removing the
high-rank modules from the Q module in Layer 22 (L22_Q) and the K module in Layer 17 (L17_K)
results in performance drops of 1.80 and 1.73 points on GSM8K, respectively. In contrast, removing
the low-rank modules from the K module in Layer 1 (L1_K) and the V module in Layer 3 (L3_V)
results in only minor performance drops of 0.05 and 0.10 points on Boolq, respectively. The same
trend is observed on GSM8K when removing the low-rank modules from the Q module in Layer 8
(L8-Q) and the K module in Layer 6 (L6_K), resulting in performance drops of 0.11 and 0.15 points,
respectively. These results demonstrate that IGU-LoRA effectively identifies high-impact parameters,
as their removal leads to significant performance degradation compared to low-impact parameters.
Table 8: Ablation study on the impact of removing high-rank and low-rank modules from different layers on
Qwen2.5-0.5B model performance. The numbers in parentheses indicate the performance drop compared to
the model with no modules removed. The left table and the right table represent results on Boolq and GSM8K,
respectively.

| Module Removed | Rank | Boolq | Module Removed | Rank |  GSMSK

1 L3.K 10 | 81.15(-1.30) 1 L22.Q 12 | 32.35(-1.80)
2 L10.V 10 |81.12(-1.33) 2 L17 K 11 3242 (-1.73)
3| L3K/LIOV |10/10]80.44(-2.01) 3| 122.Q/L17.K |12/11|31.15 (-3.00)
4 LI.K 5 82.40 (-0.05) 4 L8.Q 6 34.05 (-0.11)
5 L3V 5 82.35(-0.10) 5 L6 K 6 34.01 (-0.15)
6| LIK/L3V 5/5 |82.30(-0.15) 6 L8 Q/L6.K 6/6 |33.84(-0.32)
7] - - 82.45 7] 34.16

E GENERALIZATION SUPPLEMENTARY EXPERIMENTS

To further validate the generalization performance of IGU-LoRA, we conduct additional experiments
on the MMLU benchmark using the Llama2-7B model. As shown in Table[9} IGU-LoRA achieves
an average accuracy of 51.07%, which is very close to the full fine-tuning method (51.54%) and
outperforms LoRA (49.94%). Notably, IGU-LoRA demonstrates superior performance in Science,
Technology, Engineering, and Mathematics (STEM) and Social Science subjects, achieving accuracies
of 41.71% and 58.12%, respectively. These results further confirm the effectiveness of IGU-LoRA in
enhancing the generalization capabilities of fine-tuned models across diverse subject areas.

Table 9: The generalization performance of fine-tuning the Llama2-7B model on the MMLU benchmark using
different methods, reporting the average results over 5 random seeds.

Method | Humanities STEM Social. Other | Avg.

Full FT 49.91 4170  57.53  57.02 | 51.54
LoRA 46.15 40.84  56.63  56.23 | 49.94
IGU-LoRA | 47.33 41.71 58.12 57.10 | 51.07

F MULTIMODAL BENCHMARK SUPPLEMENTARY EXPERIMENTS

To further demonstrate the effectiveness of IGU-LoRA in multimodal tasks, we conduct additional
experiments on the VQAv2, GAQ, NVLR? and COCO Captioning datasets using the VL-BART
2019). As shown in Table[T0] IGU-LoRA achieves an average score of 77.47, outperforming
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LoRA (74.31) and DoRA (77.40), and closely approaching the performance of full fine-tuning
(77.35). These results further validate the capability of IGU-LoRA to effectively adapt multimodal
models while maintaining high performance across different tasks.

Table 10: Performance comparison of different fine-tuning methods on the VQA, GAQ, NVLR? and COCO
datasets using the VL-BART model. The results are averaged over 5 random seeds.

Method | VQAv2 GAQ NVLR® COCO Captioning Avg.

Full FT | 6691 5672  73.71 112.04 77.35
LoRA 64.32 5410 71.25 109.56 74.31
DoRA 65.81 5471 73.14 115.93 77.40
IGU-LoRA | 6578 5532  73.42 115.36 7747

G THE VERIFICATION OF THE I.I.D./LOCAL STATIONARITY APPROXIMATION
IN THEOREM [2.

To validate the i.i.d. / local stationarity approximation used in Theorem 2} we conduct an empirical
analysis of the importance score statistics during the fine-tuning process. Specifically, we monitor
several representative modules (e.g., the L16_Q module for the 16-th layer’s Q component and the
L5_K module for the 5-th layer’s K component) across multiple training iterations on the BoolQ
dataset. We observe that, after the initial epochs, the mean and variance of y; quickly stabilize
within a narrow range, and the first-order lag autocorrelation becomes very small. Correspondingly,
the SNR; curve becomes nearly flat after the burn-in period. These observations suggest that the
i.i.d./local stationarity approximation is reasonable and accurate during the stage when EMA-based
importance-ranking pruning is applied in practice.
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Figure 7: Empirical analysis of importance score statistics during fine-tuning. The plots show the changes
in y¢, the mean and variance of y., the first-order lag autocorrelation, and SNR; across training iterations for
representative module parameters.

H EFFECTS OF SAMPLE ORDER AND BATCH SIZE

To investigate the effects of sample order and batch size on the performance of IGU-LoRA, we conduct
experiments using the Qwen-2.5-0.5B model on the BoolQ dataset. The results are summarized as
follows:
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Sample Order / Random Seed. we trained with a fixed batch size using five different random
seeds. These seeds control the data shuffling and the sampled integration nodes a;,. The downstream
accuracy varies slightly across seeds (within A, absolute points, indicating a small change), which
demonstrates that the sample order has high stability on the results.

Batch Size. We further vary the batch size (e.g., 2, 4, 8, 16, 32) while keeping all other hyperparame-
ters fixed. The resulting test accuracy again shows only minor variation. This proves that batch size
does not have a significant impact on the results. The detailed results are presented in Table[TT]

Table 11: Effect of Batch Size on BoolQ Accuracy across Different Random Seeds
Batch Size | Seed1 | Seed2 | Seed3 | Seed4 | Seed 5

2 82.46 82.47 82.45 82.46 82.45
4 82.45 82.46 82.44 82.45 82.44
8 82.44 82.45 82.43 82.44 82.43
16 82.45 82.46 82.44 82.45 82.44
32 82.40 82.41 82.39 82.40 82.39

I DATASETS AND METRICS

1.1 GLUE BENCHMARK TASKS

Single-sentence Classification Tasks. (1) CoLA (Corpus of Linguistic Acceptability): Determine
whether a sentence adheres to grammatical rules (binary classification). (2) SST-2 (Stanford Sentiment
Treebank): Movie review sentiment analysis (positive/negative binary classification).

Sentence-pair Classification Tasks. (1) MRPC (Microsoft Research Paraphrase Corpus): Determine
whether two sentences are semantically equivalent (binary classification). (2) QOP (Quora Question
Pairs): Determine whether two Quora questions are semantically identical (binary classification).
(3) RTE (Recognizing Textual Entailment): Determine whether a sentence pair entails a relationship
(three-class classification: entailment/contradiction/neutral).

Similarity and Regression Task. STS-B (Semantic Textual Similarity Benchmark): Calculate the
semantic similarity between two sentences (continuous value from 1 to 5).

Question-answering Task. QNLI (Question-answering NLI). Determine whether a sentence contains
the answer to a given question (binary classification).

Natural Language Inference Task. MNLI (Multi-Genre Natural Language Inference). Large-scale
cross-domain textual entailment classification (three-class classification).

1.2 MATHEMATICAL AND COMMON-SENSE REASONING TASKS

Mathematical Reasoning Tasks. (1) AQuA (Algebra question answering): Derive the correct answer
from a given algebraic problem (multiple-choice) and generate the corresponding solution process
(Rationales). (2) GSMSK (Grade school math 8K): Perform multi-step reasoning on mathematical
problems described in natural language.

Common-Sense Reasoning Tasks. (1) BoolQ (Boolean questions). Determine whether the answer
to a given question, based on the provided paragraph, is ”Yes” (True) or "No” (False). (2) ARC-e
(AI2 reasoning challenge - easy): Select the most reasonable answer from a given set of scientific
questions (Multiple-choice question). (3) ARC-c (AI2 reasoning challenge - challenge): Combine
multi-step reasoning and cross-domain knowledge to provide answers. (4) COPA (Choice of plausible
alternatives). Select the most plausible cause or effect for a given premise from two provided
alternatives. The task requires understanding of causal relationships and commonsense reasoning in
everyday scenarios.

1.3 MULTIMODAL BENCHMARK TASKS

Visual Question Answering Tasks. (1) VQAv2 (Visual Question Answering v2). Given an image and
a related question, select the most appropriate answer from multiple choices. (2) GAQ (Generalized
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Question Answering). This task extends VQA to a more generalized setting, where the model is asked
to answer a wider range of questions based on visual context.

Visual-Linguistic Reasoning Task. (1) NLVR2 (Natural Language for Visual Reasoning 2). Given a
pair of images and a natural language statement, determine whether the statement accurately describes
the relationship between the two images.

Image Captioning Task. (1) COCO Captioning. Generate descriptive captions for images in the
COCO dataset, evaluating the model’s ability to understand and describe visual content accurately.

Table 12: Summary of the benchmark datasets.

Datasets \ #train #dev #test Type Metrics
Common-Sense reasoning tasks
BoolQ 9427 - 3270 Common-Sense reasoning Acc
ARC-e 2251 570 2376 Common-Sense reasoning Acc
ARC-c 1119 299 1172 Common-Sense reasoning Acc
COPA 400 100 500 Common-Sense reasoning Acc
Mathematical reasoning tasks
AQuA | 97467 254 254 Mathematical reasoning Acc
GSMSK | 7473 - 1319  Mathematical reasoning Acc
GLUE benchmark tasks
SST-2 67k 872 1.8k Sentiment Acc
MNLI 393k 20k 20k NLU Acc
QQP 364k 40k 391k Paraphrase Acc-F1
MRPC 3.7k 408 107k Paraphrase Acc-F1
RTE 2.5k 176 3k NLU Acc
QNLI 108k 5.7k 5.7k QA/NLI Acc
CoLA 8.5k 1k 1k Acceptability Mcc
STS-B 7k 1.5k 1.4k Similarity Corr

1.4 DATASET STATISTICS

In our experiments, we compare performance across multiple tasks, including the GLUE benchmark,
which consists of eight datasets: CoLA, SST-2, MRPC, QQP, STS-B, MNLI, QNLI, and RTE; three
common-sense reasoning tasks (BoolQ, ARC-e, and ARC-c); and two mathematical reasoning tasks
(AQuA and GSMSK). The dataset statistics are presented in Table @

1.5 EVALUATION METRICS

As shown in Table [T2] we strictly follow the official settings of GLUE and use the same metrics
as Wang et al.| (2018)). For MNLI, we report the average of the accuracy scores on the matched and
mismatched test sets. For MRPC and QQP, we report Acc-F1, the average accuracy, and F1 scores.
For STS-B, we report Corr, which denotes the average of the Pearson and Spearman correlation
coefficients. For CoLA, we report Mcc, which is the Matthews correlation. For all other tasks,
we report accuracy (Acc). Since the common sense and math reasoning tasks usually come with a
definite answer choice, we will directly consider the correctness of the final answers. Thus, we report
accuracy (denoted as Acc).

J BASELINE DETAILS

o Full fine-tuning is the most common approach for adaptation. During fine-tuning, the model is
initialized with pre-trained weights and biases, and all model parameters undergo gradient updates.

e LoRA (Hu et al., |2022a) is a representative parameter-efficient fine-tuning (PEFT) method. It
introduces two low-rank matrices to parameterize the incremental weight updates, and only these
lightweight components are updated during fine-tuning. The number of trainable parameters is
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determined by the rank r and the number of inserted adaptation matrices n, allowing for fine-grained
control over the adaptation budget.

e AdaLoRA (Zhang et al [2023)) extends the conventional LoRA framework by introducing a dy-
namic rank adaptation mechanism. It parameterizes the low-rank adapters using singular value
decomposition (SVD), and evaluates the importance of each parameter based on the magnitude of its
corresponding singular value. This importance score then guides a progressive rank pruning process,
allowing the model to dynamically reallocate its limited parameter budget to more critical layers or
modules.

e DoRA (Liu et al.,[2024b) enhances the learning capacity and adaptability of pretrained models by
decoupling weight matrices into two distinct components: magnitude and direction. The key idea is to
keep the magnitude fixed and apply LoRA-style low-rank updates only to the directional component.
This separation allows for more expressive and geometry-aware adaptation while preserving the norm
of the original weights, which helps stabilize training and maintain alignment with the pretrained
model. Since only the direction is modified, DoRA introduces no additional inference overhead,
making it efficient and scalable for deployment.

o AutoLoRA (Xu et al.|[2023) is a meta-learning-based fine-tuning approach designed to automatically
determine the optimal rank for each layer in Low-Rank Adaptation (LoRA). It introduces a learnable
selection variable for each rank-1 matrix and dynamically adjusts these variables using a meta-
learning strategy. By jointly optimizing the rank configuration along with the LoRA parameters,
AutoLoRA significantly improves fine-tuning efficiency and overall performance.

e Adapter (Houlsby et al 2019) inserts lightweight bottleneck modules between each layer of the
pretrained model, updating only these newly introduced modules during fine-tuning while keeping
the original model parameters frozen.

e P-tuning v2 (Liu et al.,|2021)) is an improved prompt tuning method that inserts trainable prompt
tokens at the input layer and across multiple model layers. This design increases the trainable
parameters from approximately 0.01% to 0.1%-3% of the full model, while maintaining parameter
efficiency. P-tuning v2 enhances optimization stability and improves performance across various
tasks by integrating task-specific information deeper into the model.

o (IA)’ (Liu et al., 2022a) introduces learnable scaling vectors at key locations in the Transformer
architecture, such as the keys and values in the self-attention mechanism and the intermediate
activations in the feed-forward networks. These vectors are applied via element-wise multiplication to
modulate the internal activations, enabling flexible control over the model’s output without modifying
the original model parameters.

e SSP (Hu et al., [2022b) leverages structural sparsity to guide the automatic search for parameter
insertion locations, activating trainable parameters only in the most important substructures. This
enables higher efficiency without sacrificing model performance.

e GoRA (He et al., 20235)) leverages gradient-driven adaptive low-rank adjustment to dynamically
adjust the rank of low-rank adaptation layers during training. By using gradient information, GoRA
ensures that the model can allocate computational resources more efficiently, adjusting the rank
based on the importance of each layer for different tasks and training stages. This method maintains
computational efficiency while improving model performance, adapting the low-rank configuration
to meet the specific needs of the training process.

K ADDITIONAL RELATED WORKS

K.1 DYNAMIC RANK ALLOCATION

Dynamic rank allocation gains increasing attention in deep learning model optimization, with various
methods proposed to improve adaptability and efficiency. Several other notable approaches are intro-
duced beyond AdalLoRA (Zhang et al., [2023)) and AutoLoRA (Xu et al.,|2023)). LoSA (Huang et al.,
2025) integrates sparsity and low-rank adaptation, dynamically adjusting both using representation
mutual information and reconstruction error. PRILoRA (Benedek & Wolf} [2024) employs a heuristic
strategy that linearly increases ranks from lower to higher layers, motivated by the observation that
higher layers often require greater adaptability in transfer learning. ALoRA (Liu et al.,2024c)) further
incorporates a novel mechanism, AB-LoRA, which assesses the importance of individual LoRA
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ranks and incrementally prunes redundant components, reallocating the freed budget to more critical
Transformer modules. These methods provide diverse rank allocation strategies that contribute to
more efficient fine-tuning of large models.

L THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were employed in several
auxiliary capacities. First, at the writing stage, LLMs were utilized to refine and translate the text,
thereby enhancing the overall fluency, readability, and precision of academic expression. Second,
in relation to experiments and results presentation, LLMs assisted in generating parts of the code
for data visualization and figure plotting, which facilitated a more efficient presentation of research
findings. Third, in surveying the research landscape and related work, LLLMs provided support for
literature searches, helping us to locate and summarize relevant studies in the field systematically.
Finally, in the theoretical component of this work, LLMs offered auxiliary support in structuring
complex proofs and verifying critical derivation steps, contributing to the clarity and rigor of our
theoretical analysis. It should be emphasized that all uses of LLMs were strictly auxiliary in nature;
the formulation of research questions, the design of methods, the core theoretical derivations, and the
experimental analyses were all carried out independently by the authors.
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