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Abstract

Theoretical efforts to prove advantages of Transformers in comparison with classi-
cal architectures such as feedforward and recurrent neural networks have mostly
focused on representational power. In this work, we take an alternative perspective
and prove that even with infinite compute, feedforward and recurrent networks
may suffer from larger sample complexity compared to Transformers, as the latter
can adapt to a form of dynamic sparsity. Specifically, we consider a sequence-to-
sequence data generating model on sequences of length N , where the output at each
position only depends on q ≪ N relevant tokens, and the positions of these tokens
are described in the input prompt. We prove that a single-layer Transformer can
learn this model if and only if its number of attention heads is at least q, in which
case it achieves a sample complexity almost independent of N , while recurrent
networks require NΩ(1) samples on the same problem. If we simplify this model,
recurrent networks may achieve a complexity almost independent of N , while
feedforward networks still require N samples. Our proposed sparse retrieval model
illustrates a natural hierarchy in sample complexity across these architectures.

1 Introduction

The Transformer [VSP+17], a neural network architecture that combines attention and feedforward
blocks, forms the backbone of large language models and machine learning approaches across
many domains [RNSS18, DBK+20, BMR+20]. The theoretical efforts surrounding the success
of Transformers have so far demonstrated various capabilities like in-context learning [ASA+23,
VONR+23, BCW+23, ZFB24, KNS24, and others] and chain-of-thought prompting along with
its benefits [FZG+23, MS24, LLZM24, KS24, and others] in various settings. There are fewer
works that provide specific benefits of Transformers in comparison with feedforward and recurrent
architectures. On the approximation side, there are tasks that Transformers can solve with size
logarithmic in the input, while alternative architectures require polynomial size [SHT23, SHT24].
Based on these results, [WWHL24] showed a separation between Transformers and feedforward
networks by providing further optimization guarantees for gradient-based training of Transformers
on a sparse token selection task.

While most prior works focused on the approximation separation between Transformers and feedfor-
ward networks (FFNs), in this work we focus on a purely statistical separation, and ask:

What function class can Transformers learn with fewer samples compared to
feedforward and recurrent networks, even with infinite computational resources?

[FGBM23] approached the above problem with random features, where the query-key matrix for
the attention and the first layer weights for the two-layer feedforward network were fixed at random
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Statistical Model Feedforward RNN Transformer
Simple-qSTR ✗ (Theorem 9) ✓ (Theorem 5) ✓ (Theorem 3)

qSTR ✗ (Theorem 9) ✗ (Theorem 7) ✓ (Theorem 3)

Table 1: Summary of main contributions (see Theorem 1). ✓ indicates a sample complexity upper bound that is
almost sequence length-free (up to polylogarithmic factors). ✗ indicates a lower bound of order NΩ(1).

initialization. However, this only presents a partial picture, as neural networks can learn a significantly
larger class of functions once “feature learning” is allowed, i.e., parameters are trained to adapt to the
structure of the underlying task [Bac17, BES+22, DLS22, BBSS22, DKL+23, AAM23, MHWE24].

We evaluate the statistical efficiency of Transformers and alternative architectures by characterizing
how the sample complexity depends on the input sequence length. A benign length dependence
(e.g., sublinear) signifies the ability to achieve low test error in longer sequences, which intuitively
connects to the length generalization capability [AWA+22]. While Transformers have demonstrated
this ability in certain structured logical tasks, they fail in other simple settings [ZBL+23, LAG+23].
Our generalization bounds for bounded-norm Transformers — along with our contrasts to RNNs
and feedforward neural networks — provide theoretical insights into the statistical advantages of
Transformers and lay the foundation for future rigorous investigations of length generalization.

1.1 Our Contributions

We study the q-Sparse Token Regression (qSTR) data generating model, a sequence-to-sequence
model where the output at every position depends on a sparse subset of the input tokens. Importantly,
this dependence is dynamic, i.e., changes from prompt to prompt, and is described in the input itself.
We prove that by employing the attention layer to retrieve relevant tokens at each position, single-
layer Transformers can adapt to this dynamic sparsity, and learn qSTR with a sample complexity
almost independent of the length of input sequence N , as long as the number of attention heads
is at least q. On the other hand, we develop a new metric-entropy-based argument to derive norm
and parameter-count lower bounds for RNNs approximating the qSTR model. Thanks to lower
bounds on weight norm, we also obtain a sample complexity lower bound of order NΩ(1) for RNNs.
Further, we show that RNNs can learn a subset of qSTR where the output is a constant sequence,
which we call simple-qSTR, with a sample complexity polylogarithmic in N . Finally, we develop a
lower bound technique for feedforward networks (FFNs) that takes advantage of the fully connected
projection of the first layer to obtain a sample complexity lower bound linear in N , even when learning
simple-qSTR models. The following theorem and Table 1 summarize our main contributions.
Theorem 1 (Informal). We have the following hierarchy of statistical efficiency for learning qSTR.

• A single-layer Transformer with H ≥ q heads can learn qSTR with sample complexity almost
independent of N , and cannot learn qSTR when H < q even with infinitely many samples.

• RNNs can learn simple-qSTR with sample size almost independent of N , but require at least
Ω(N c) samples for some constant c > 0 to learn a generic qSTR model, regardless of their size.

• Feedforward neural networks, regardless of their size, require Ω(Nd) samples to learn even
simple-qSTR models, where d is input token dimension.

We empirically validate the intuitions from Theorem 1 in Figure 1. Observe that on a 1STR task, both
FFNs and RNNs suffer from a large sample complexity for larger N . However, for a simple-1STR
model, RNNs perform closer to Transformers with a much milder dependence on N than FFNs.

1.2 Related Work

While generalization is a fundamental area of study in machine learning theory, theoretical work
on the generalization capabilities of Transformers remains relatively sparse. Some works analyze
the inductive biases of self-attention through connections to max-margin SVM classifiers [VDT24].
Others quantify complexity in terms of the simplest programs in a formal language (such as the
RASP model of [YCA23]) that solve the task and relate that to Transformer generalization [ZBL+23,
CS24]. The most relevant works to our own are [EGKZ22, TT23, Tru24], which employ covering
numbers to bound the sample complexity of deep Transformers with bounded weights. They
demonstrate a logarithmic scaling in the sequence length, depth, and width and apply their bounds
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Figure 1: Number of samples required to reach a certain test MSE loss threshold while training with online
AdamW. We consider (a) the 1STR model with loss threshold 0.7 and (b) the simple-1STR model with loss
threshold 0.02, averaged over 5 experiments. We use a linear link function, standard Gaussian input, d = 10 and
de = ⌊5 log(N)⌋. Positional encodings are sampled uniformly from the unit hypercube. Experimental details
and additional results on the effect of q are provided in Appendix E.

to the learnability of sparse Boolean functions. We refine these covering number bounds to better
characterize generalization in sequence-to-sequence learning with dynamic sparsity [SHT23]. Our
problems formalize long-context reasoning tasks, extending beyond simple retrieval to include
challenges like multi-round coreference resolution [VOT+24].

Expressivity of Transformers. The expressive power of Transformers has been extensively studied
in prior works. Universality results establish that Transformers can approximate the output of
any continuous function or Turing machine [YBR+19, WCM21], as well as measure-to-measure
maps [GRRB24], and their memorization capacity is well-understood [MLT24]. However, complexity
limitations remain for bounded-size models. Transformers with fixed model sizes are unable to solve
even regular languages, such as Dyck and Parity [BAG20, Hah20]. Further work [e.g. MS23] relates
Transformers to boolean circuits to establish the hardness of solving tasks like graph connectivity with
even polynomial-width Transformers. Additionally, work on self-attention complexity explores how
the embedding dimension and number of heads affects the ability of attention layers to approximate
sparse matrices [LCW21], recover nearest-neighbor associations [AYB24], and compute sparse
averages [SHT23]. The final task closely resembles our qSTR model and has been applied to
relate the capabilities of deep Transformers to parallel algorithms [SHT24]. Several works [e.g.
JBKM24, BHBK24, WDL24] introduce sequential tasks where Transformers outperform RNNs
or other state space models in parameter-efficient expressivity. We establish similar architectural
separations with an added focus on generalization capabilities.

Statistical Separation. Our work is conceptually related to studies on feature learning and adaptiv-
ity in feedforward networks, particularly in learning models with sparsity and low-dimensional
structures. Prior work has analyzed how neural networks and gradient-based optimization in-
troduce inductive biases that facilitates the learning of low-rank and low-dimensional functions
[LMZ18, WLLM19, CB20, MHPG+23, OSSW24]. These studies often demonstrate favorable gen-
eralization properties based on certain structures of the solution such as large margin or low norm
[BFT17, NLB+18, OWSS19, WLLM19]. Our goal is to extend efficient learning of low-dimensional
concepts to sequential architectures, ensuring sample complexity remains efficient in both input
dimension d and context length N . Our approach, motivated by [SHT23, WWHL24], suggests that
qSTR is a sequential model whose sparsity serves as a low-dimensional structure, making it the
primary determinant of generalization complexity for Transformers.

Notation. For a natural number n, define [n] := {1, . . . , n}. We use ∥·∥p to denote the ℓp norm
of vectors. For a matrix A ∈ Rm×n, ∥A∥p,q :=

∥∥(∥A:,1∥p, . . . , ∥A:,n∥p
)∥∥

q
, and ∥A∥op denotes

the operator norm of A. We use a ≲ b and a ≤ O(b) interchangeably, which means a ≤ Cb for
some absolute constant C. We similarly define ≳ and Ω. Õ and Ω̃ hide multiplicative constants that
depend polylogarithmically on problem parameters. σ denotes the ReLU activation.
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2 Problem Setup

Statistical Model. In this paper, we will focus on the ability of different architectures for learning
the following data generating model.
Definition 2 (q-Sparse Token Regression). Suppose p,y ∼ P where

p =

((
x1

t1

)
, . . . ,

(
xN

tN

))
,

ti ∈ [N ]q and xi ∈ Rd for i ∈ [N ]. In the q-sparse token regression (qSTR) data generating model,
the output is given by y = (y1, . . . , yN )⊤ ∈ RN , where

yi = g(xti1 , . . . ,xtiq ),

for some g : Rqd → R. We call this model simple-qSTR if the data distribution is such that ti = t
for all i ∈ [N ] and some t drawn from [N ]q .

The above defines a class of sequence-to-sequence functions, where the label at position i in the
output sequence depends only on a subsequence of size q of the input data, determined by the set of
indices ti. p in the above definition denotes the prompt or context. Given the large context length of
modern architectures, we are interested in a setting where q ≪ N . In this setting, the answer at each
position only depends on a few tokens, however the tokens it depends on change based on the context.
Therefore, we seek architectures that are adaptive to this form of dynamic sparsity in the true data
generating process, with computational and sample complexity independent of N . As a special case,
choosing g as the tokens’ mean recovers the sparse averaging model proposed in [SHT23], where
the authors separate the representational capacity of Transformers and other architectures.

While our main motivation for using the qSTR model is the role of this model as a theoretical
benchmark (cf. [SHT23, WWHL24]), we now present an example of how tasks similar to qSTR
can arise in natural language modeling. Consider the prompt “For my vacation this summer, I’m
considering either Paris or Tokyo. If I go to Paris, I want to visit their art museums, and if I end up
in Tokyo, I want to try their cuisine. Can you tell me how much would my first and second option
cost respectively?” In this case, t1 is the token first and refers to the tokens Paris and art museumes,
while t2 is the token second and refers to the tokens Tokyo and cuisine. Note that for either t1 or t2,
the answer to the prompt only depends on two tokens out of the entire context, thus this example
demonstrates the case of q = 2. We refer the interested readers to the multi-round conference
resolution task of [VOT+24] for more realistic examples in evaluating large models.

To obtain statistical guarantees, we will impose mild moment assumptions on the data.

Assumption 1. Suppose E[∥xi∥r]
1/r ≤

√
Cxdr and E[|yi|r]

1/r ≤
√

Cyrs for all r ≥ 1, i ∈ [N ],
and some absolute constants s ≥ 1 and Cx, Cy > 0.

We only require the above assumption to establish standard concentration bounds, and it is satisfied as
soon as ∥x∥ is subGaussian and y is sub-Weibull (e.g. g grows at most like a polynomial of degree s).
Learning the qSTR model requires two steps: (i) extracting the relevant tokens at each position, (ii)
learning the link function g. We are interested in settings where the difficulty of learning is dominated
by the first step, hence we assume g can be approximated by a two-layer feedforward network.
Assumption 2. There exist mg ∈ N, ag, bg ∈ Rmg and W g ∈ Rmg×qd, such that ∥ag∥2 ≤
ra/

√
mg , and ∥(W g, bg)∥F ≤ √

mgrw for some constants ra, rw > 0, and

sup{
∥xi∥2≤

√
Cd log(nN), ∀i∈[q]

}∣∣g(x1, . . . ,xq)− a⊤g σ(W g(x
⊤
1 , . . . ,x

⊤
q )
⊤ + bg)

∣∣2 ≤ ε2NN,

where C = 3Cxe and ε2NN is some absolute constant.

Ideally, ε2NN above is a small constant denoting the approximation error. This assumption can be
verified using various universal approximation results for ReLU networks. For example, when g is
an additive model of P Lipschitz functions, where each function depends only on a k-dimensional
projection of the input, the above holds for every ε2NN > 0 and mg = Õ

(
(P/

√
ε2NN)

k
)
, ra =

Õ
(
(P/

√
ε2NN)

(k+1)/2
)
, and rw = 1 (we can always have rw = 1 by homogeneity) [Bac17].
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Empirical Risk Minimization. While Empirical Risk Minimization (ERM) is a standard abstract
learning algorithm to use for generalization analysis, its standard formalizations use risk functions
for scalar-valued predictions. Before introducing the notions of ERM that we employ, we first
state several sequential risk formulations to evaluate a predictor ŷarc(·;Θ) ∈ Farc on i.i.d. training
samples {p(i),y(i)}ni=1, where arc denotes a general architecture. We define the population risk,
averaged empirical risk, and point-wise empirical risk respectively as

Rarc(Θ) :=
1

N
E

[
N∑
j=1

(ŷarc(p;Θ)j − yj)
2

]
=

1

N
E
[
∥ŷarc(p;Θ)− y∥22

]
, (2.1)

R̂arc
n,N (Θ) := 1

nN

∑n
i=1

∑N
j=1

(
ŷarc(p

(i);Θ)j − y
(i)
j

)2
, (2.2)

R̂arc
n (Θ) :=

1

n

n∑
i=1

(
ŷarc(p

(i);Θ)j(i) − y
(i)

j(i)

)2
, (2.3)

where {j(i)}ni=1 are i.i.d. position indices drawn from Unif([N ]).The goal is to minimize the popula-
tion risk Rarc(Θ) by minimizing some empirical risk, potentially with weight regularization. We use
three formalizations of learning algorithms to prove our results.

1. Constrained ERM minimizes an empirical risk R̂arc
n subject to the model parameters belonging on

some (e.g., norm-constrained) set Θ. Concretely, let

Θ̂ ∈ argminΘ∈Θ R̂arc
n (Θ).

Theorem 3 considers constrained ERM algorithms for bounded-weight transformers with point-
wise risk R̂TR

n (Θ), and Theorem 5 uses R̂RNN
n (Θ) for RNNs. Note that upper bounds for training

with point-wise empirical risk R̂arc
n readily transfer to training with averaged empirical risk R̂arc

n,N .

2. Min-norm ε-ERM minimizes the norm of the parameters, subject to sufficiently small loss:

Θ̂ε ∈ argmin
{Θ:R̂arc

n (Θ)−min R̂arc
n ≤ε}

∥vec(Θ)∥2. (2.4)

Theorem 7 uses min-norm ε-ERM to place a sample complexity lower bound R̂RNN
n (Θ).

3. Beyond ERM, Theorem 9 also considers stationary points of the averaged or point-wise loss, with
ℓ2 regularization. This learning algorithm is presented in greater detail in Definition 8.

If Θ is defined by a norm constraint, then min-norm ε-ERM with a proper ε can be seen as an instance
of constrained ERM. All three formulations are motivated by practical optimization algorithms that
either minimize an explicitly regularized loss, or have an implicit bias towards min-norm solutions.

3 Transformers

A single-layer Transformer is composed of an attention and a parallel feedforward layer. Given a
sequence {zi}Ni=1 of input embeddings where zi ∈ RDe with embedding dimension De, a single
head of attention outputs another sequence of length N in RDe , given by

fAttn(p;WQ,WK ,W V ) =

[
N∑
j=1

W V zj
e⟨WQzi,WKzj⟩∑N
l=1 e

⟨WQzi,WKzl⟩

]
i∈[N ]

.

Where WK ,WQ,W V are the key, query, and value projection matrices respectively. The output
of H units of attention can be concatenated to form multi-head attention with output h ∈ RHDe . A
two-layer neural network acts on h to generate the final output sequence via

f2NN(h;a2NN,W 2NN, b2NN) = a⊤2NNσ(W 2NNh+ b2NN), W 2NN ∈ Rm×HDe ,a2NN, b2NN ∈ Rm

Our architectural choices are standard in theoretical studies of Transformers. We provide full details,
including how to obtain input embeddings by positional encoding, in Appendix A.1.
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3.1 Learning Guarantees for Multi-Head Transformers

We consider the following parameter class ΘTR = {∥vec(Θ)∥2 ≤ R} and provide a learning guaran-
tee for empirical risk minimizers over ΘTR, with its proof deferred to Appendix A.2.

Theorem 3. Let Θ̂ = argminΘ∈ΘTR
R̂TR

n (Θ) and m = mg. Suppose we set H = q and R2 =

Θ̃(r2a/mg +mgr
2
w + q2/d). Under Assumptions 1, 2 and 3, we have

RTR(Θ̂n) ≲ ε2NN + Õ

(
C1

√
mgq(d+ q) + q3 + qd2

n

)
where C1 = R2qd, with probability at least 1− n−c for some absolute constant c > 0.

We make the following remarks.

• First, the sample complexity above depends on N only up to log factors. Second, we can remove
the C1 factor by performing a clipping operation with a large constant on the Transformer output.
Note that the first and second terms in the RHS above denote the approximation and estimation
errors respectively. Extending the above guarantee to cover m ≥ mg and H ≥ q is straightforward.

• This bound provides guidance on the relative merits of scaling the parameter complexity of the
feedforward versus the attention layer (which is an active research area related to Transformer
scaling laws [HSSL24, JMB+24]), by highlighting the trade-off between the two to achieve
minimal generalization error. Concretely, mg ≫ d+ q represents a regime where the complexity
is dominated by the feedforward layer learning the downstream task g, while mg ≪ d+ q signifies
dominance of the attention layer learning to retrieve the relevant tokens.

Attention Weights
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Figure 2: Trained attention weights
match our theoretical construction (A.2).

Finally, by incorporating additional structure in the ERM
solution, it is possible to obtain improved sample complex-
ities. A close study of the optimization dynamics may reveal
such additional structure in the solution reached by gradient-
based methods, pushing the sample complexity closer to the
information-theoretic limit of Ω(qd). Figure 2 demonstrates
that the attention weights achieved through standard optimiza-
tion of a Transformer match our theoretical constructions –
see Equation (A.2) – even while maintaining separate WQ

and WK during training (we use the 1STR setup of Figure 1
with N = 100). We leave the study of optimization dynamics
and the resulting sample complexity for future work.

3.2 Limitations of Transformers with Few Heads

We establish the necessity of the linear dependence of H on q. In contrast to [AYB24], we do not put
any assumptions on the rank of the key-query projections, i.e. our lower bound applies even when the
key-query projection matrix is full-rank.
Proposition 4. Consider a qSTR model where yi = 1√

qd

∑q
j=1

(
∥xtij∥2 − E

[
∥xtij∥2

])
, xi ∼

N (0,Σi) such that Σi = Id for i < N/2 and Σi = 0 for i ≥ N/2. Then, there exists a distribution
over (ti)i∈[N ] such that for any choice of ΘTR (including arbitrary {W (h)

QK}h∈[H]), we have

1

N
E
[
∥y − ŷTR(p;ΘTR)∥22

]
≥ 1− (q + d)H

qd
.

Remark. We highlight the importance of the nonlinear dependence of yi on x for the above lower
bound. In particular, for the sparse token averaging task introduced in [SHT23], a single-head
attention layer with a carefully constructed embedding suffices for approximation.

The above proposition implies that given sufficiently large dimensionality d ≫ q, approximation
alone necessitates at least H = Ω(q) heads. In Appendix A.3, we present the proof of Proposition 4,
along with Proposition 21 which establishes an exact lower bound H ≥ q for all d ≥ 1, at the expense
of additional restrictions on the query-key projection matrix.
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4 Recurrent Neural Networks

In this section, we first provide positive results for RNNs by proving that they can learn simple-qSTR
with a sample complexity only polylogarithmic in N , thus establishing a separation in their learning
capability from feedforward networks. Next, we turn to general qSTR, where we provide a negative
result on RNNs, proving that to learn such models their sample complexity must scale with NΩ(1)

regardless of model size, making them less statistically efficient than Transformers. Throughout this
section, we focus on bidirectional RNNs, since the qSTR model is not necessarily causal and the
output at position i may depend on future tokens.

4.1 RNNs can learn simple-qSTR

A bidirectional RNN maintains, for each position in the sequence, a forward and a reverse hidden
state, denoted by (h→i )Ni=1 and (h←i )Ni=1, where h→i ,h←i ∈ Rdh . These hidden states are obtained
by initializing h→1 = h←N = 0dh

and recursively applying

h→i = Πrh

(
h→i−1 + f→h (h→i−1, zi−1;Θ

→
h )
)
, ∀i ∈ {2, . . . , N}

h←i = Πrh

(
h←i+1 + f←h (h←i+1, zi+1;Θ

←
h )
)
, ∀i ∈ {1, . . . , N − 1},

where Πrh : Rdh → Rdh is the projection Πrhh = (1 ∧ rh/∥h∥2)h, and f→h and f←h are
implemented by feedforward networks, parameterized by Θ→h and Θ←h respectively. Recall
zi = (x⊤i , enc(i, ti)

⊤)⊤ is the encoding of xi. We remark that while we add Πrh for techni-
cal reasons, it resembles layer normalization which ensures stability of the state transitions on very
long inputs; a more involved analysis can replace Πrh with standard formulations of layer normal-
ization. Additionally, directly adding h→i−1 and h←i+1 to the output of transition functions represents
residual or skip connections. The output at position i is generated by

yi = fy(h
→
i ,h←i , zi;Θy),

which is an Ly-layer feedforward network. Specifically, we consider an RNN with deep transitions
[PGCB13] and let f→h (·;Θ→h ) be an Lh-layer feedforward network (see Appendix B.1 for complete
definitions). We denote the complete output of the RNN via

ŷRNN(p;ΘRNN) = (fy(h
→
1 ,h←1 , z1;Θy), . . . , fy(h

→
N ,h←N , zN ;Θy)) ∈ RN .

We have the following guarantee for RNNs learning simple-qSTR models.

Theorem 5. Let Θ̂ = argminΘ∈ΘRNN
R̂RNN

n (Θ) (with ΘRNN defined in Equation (B.2)). Suppose As-
sumptions 1, 2 and 3 hold with the simple-qSTR model, i.e. ti = t for all i ∈ [N ] and some t drawn
from [N ]q. Then, with Lh, Ly = O(1), rh = Θ̃(

√
qd), and proper hyperparameters in ΘRNN (see

Appendix B.1), we obtain

RRNN(Θ̂) ≲ ε2NN +

√
poly(d, q,mg, ra, rw, ε

−1
2NN, log(nN))

n
,

with probability at least 1− n−c for some absolute constant c > 0.

As desired, the above sample complexity depends on N only up to polylogarithmic factors. The
dimension and norm of RNN weights, implicit in the formulation above, must have a similar
polynomial scaling as evident by the proof of the above theorem in Appendix B.

4.2 RNNs cannot learn general qSTR

For our lower bound, we will consider a broad class of recurrent networks, without restricting to a
specific form of parametrization. Specifically, we consider bidirectional RNNs chracterized by

h→i+1 = projrh
(
f→h (h→i ,xi, ti, i)

)
, ∀ i ∈ {1, . . . , N − 1}

h←i−1 = projrh
(
f←h (h←i ,xi, ti, i)

)
, ∀ i ∈ {2, . . . , N}

yi = fy(U
→h→i ,U←h←i ,xi, ti, i), ∀i ∈ [N ]

where fy : Rdh × Rdh × Rd × [N ]q+1 → R, f→h , f←h : Rdh × Rd × [N ]q+1 → Rdh , U→,U← ∈
Rdh×dh , dh is the width of the model, and rh > 0 is some constant. Moreover, projrh : Rdh → Rdh
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is any mapping that guarantees
∥∥projrh(·)∥∥2 ≤ rh. As mentioned before, this operation mirrors the

layer normalization to ensure that hi remains stable. Further, we assume fy(·,x, t) is L/rh-Lipschitz
for all x ∈ Rd and t ∈ [N ]q . This formulation covers different variants of (bidirectional) RNNs used
in practice such as LSTM and GRU, and includes the RNN formulation of Section 4.1 as a special
case. Define U := (U→,U←) ∈ Rdh×2dh for conciseness. Note that in practice fy, f

→
h , f←h are

determined by additional parameters. However, the only weight that we explicitly denote in this
formulation is U , since our lower bound will directly involve this projection, and we keep the rest of
the parameters implicit for our representational lower bound.

Our technique for proving the RNN lower bound differs significantly from that of FFNs. In particular,
we will control the representation cost of the qSTR model, i.e., a lower bound on the norm of ΘRNN.

We will now present the RNN lower bound, with its proof deferred to Appendix B.5.
Proposition 6. Consider the 1STR model where x ∼ N (0, INd) with a linear link function, i.e.
yj =

〈
u,xtj

〉
for some u ∈ Sd−1. Further, ti is drawn independently from the rest of the prompt

and uniformly from [N ] for all i ∈ [N ]. Then, there exists an absolute constant c > 0, such that

1

N
E
[
∥y − ŷRNN(p)∥

2
]
≤ c,

implies

dh ≥ Ω
( N

log(1 + L2∥U∥2op)

)
, and ∥U∥2op ≥ Ω

( N

L2 log(1 + dh)

)
.

Remark. Note that the unboundedness of Gaussian random variables is not an issue for approxi-
mation here, since (g(x1), . . . , g(xN )) is highly concentrated around SN−1(

√
N). In fact, one can

directly assume (g(x1), . . . , g(xN )) ∼ Unif(SN−1(
√
N)) and derive a similar lower bound. The

choice of Gaussian above is only made to simplify the presentation of the proof.

The above proposition has two implications. First, it has a computational consequence, implying
that any RNN representing the qSTR models requires a width that grows at least linearly with the
context-length N . A similar lower bound in terms of bit complexity was derived in [SHT23] using
different tools. More importantly, the norm lower bound ∥U∥F ≥ Ω̃(

√
N) has a generalization

consequence, which we discuss below.

To translate the above representational cost result to a sample complexity lower bound, we now
introduce the parametrization of the output function fy. The exact parametrization of the transition
functions will be unimportant, and we will use the notation f→h (h,x, t;Θ→h ) to denote a general
parameterized function (similarly with f←). We will assume fy is given by a feedforward network,

fy(U
→h→,U←h←,x, t;Θy) = WLy

σ
(
. . . σ(W 2σ(Uh+W yz + by) + b2) . . .

)
,

where h = (h→,h←) ∈ R2dh , z = (xi, fE(ti, i)) ∈ Rd+dE . Here, fE(ti, i) is an arbitrary
encoding function with arbitrary dimension dE . Then Θy = (U ,W y, by,W 2, b2, . . . ,WLy

),
and ΘRNN = (U ,Θy,Θ

→
h ,Θ←h ). Note that thanks to the homogeneity of ReLU, we can always

reparameterize the network by taking h̄ = h/rh, W̄ y = W y/rh, b̄y = by/rh, and W̄ 2 = W 2/rh
without changing the prediction function. Thus, in the following, we take rh = 1 without losing the
expressive power of the network. We then have the following sample complexity lower bound.
Theorem 7. Consider the 1STR model of Proposition 6. Suppose the size of the hidden state, the
depth of the prediction function, and the weight norm respectively satisfy dh ≤ eN

c

, 2 ≤ Ly ≤ C,
and ∥vec(ΘRNN)∥2 ≤ eN

c/Ly for some absolute constants c < 1 and C ≥ 2, and recall we set rh = 1

due to homogeneity of the network. Let Θ̂ε be the min-norm ε-ERM of R̂RNN
n , defined in (2.4). Then,

there exist absolute constants c1, c2, c3 > 0 such that if n ≤ O(N c1), for any ε ≥ 0, with probability
at least c2 over the training set,

1

N
E
[∥∥∥ŷRNN(p; Θ̂n,ε)− y

∥∥∥2
2

]
≥ c3.

Remark. It is possible to remove the subexponential bound on ∥vec(ΘRNN)∥ by allowing the learner
to search over families of RNNs with arbitrary dh ≤ eN

c

rather than fixing a single dh. Additionally,
one would avoid solutions that violate this norm constraint in practice due to numerical instability.
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To prove the above theorem, we use the fact that an RNN that generalizes on the entire data distribution
(hence approximates the 1STR model) requires a weight norm that scales with

√
N , while overfitting

on the n samples in the training set with zero empirical risk is possible with a poly(n) weight norm.
As a result, as long as n ≤ N c1 for some small constant c1 > 0, min-norm ε-ERM will choose
models that overfit rather than generalize. A similar approach was taken in [POW+24] to prove
sample complexity separations between two and three-layer feedforward networks. The complete
proof is presented in Appendix B.6.

5 Feedforward Neural Networks (FFNs)

In this section, we consider a general formulation of a feedforward network. Our only requirement
will be that the first layer performs a fully-connected projection. The subsequent layers of the network
can be arbitrarily implemented, e.g. using attention blocks or convolution filters. Specifically, the
FFN implements the mapping p 7→ f(T ,Wx) where W ∈ Rm1×Nd is the weight matrix in the first
layer, x = (x⊤1 , . . . ,x

⊤
N )⊤ ∈ RNd, and f : [N ]qN ×Rm1 → RN implements the rest of the network.

Unlike the Transformer architecture, here we give the network full information of T = (t1, . . . , tN ),
and in particular the network can implement arbitrary encodings of the position variables t1, . . . , tN .
This formulation covers usual approaches where encodings of t are added to or concatenated with x.

For our negative result on feedforward networks, we can further restrict the class of qSTR models,
and only look at simple-qSTR where R̂n of (2.3) and R̂n,N of (2.2) will be equivalent. Additionally,
the lower bound of this section holds regardless of the loss function used for training; for some
arbitrary loss ℓ : R× R → R, we define the empirical risk of the FFN as

L̂FFN(f,W ) :=
1

nN

n∑
i=1

N∑
j=1

ℓ(y
(i)
j , f(T (i),Wx(i))j),

where T (i) = (t
(i)
1 , . . . , t

(i)
N ). We still use RFFN(f,W ) for expected squared loss. Our lower bound

covers a broad set of algorithms, characterized by the following definition.

Definition 8. Let ASP denote the set of algorithms that return a stationary point of the regularized
empirical risk. Specifically, for every A ∈ ASP, A(Sn) returns fA(Sn), WA(Sn), such that

∇W L̂FFN(fA(Sn),WA(Sn)) + λWA(Sn) = 0,

for some λ > 0 depending on A. Sn above denotes the training set. Let AERM denote the set of
algorithms that return the min-norm approximate ERM. Specifically, every A ∈ AERM returns

A(Sn) = argmin
{f,W :L̂FFN(f,W )≤ε}

∥W ∥F,

for some ε ≥ 0. Define A := ASP ∪ AERM.

In particular, A goes beyond constrained ERM in that it also includes the (ideal) output of first-order
optimization algorithms with weight decay, or ERM with additional ℓ2 penalty on the weights. The
following minimax lower bound shows that all algorithms in class A fail to learn even the subset of
simple-qSTR models with a sample complexity sublinear in N .

Theorem 9. Suppose x ∼ N (0, INd), and consider the simple-1STR model with ti1 = t1 for
all i ∈ [N ], where t1 is drawn independently and uniformly in [N ], and a linear link function, i.e.
y = ⟨u,xt1⟩ for some u ∈ Sd−1. Let A be the class of algorithms in Definition 8. Then,

inf
A∈A

sup
u∈Sd−1

RFFN(fA(Sn),WA(Sn)) ≥ 1− n

Nd
,

with probability 1 over the training set Sn.

Remark. The above lower bound implies that learning the simple 1STR model with FFNs requires
at least Nd samples. Note that here we do not have any assumption on m1, i.e. the network can have
infinite width. This is a crucial difference with the lower bounds in [SHT23, WWHL24] which are
computational, i.e., a similar model cannot be learned unless m1 ≥ Nd.
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The main intuition is that from the stationarity property of Definition 8, the rows of the trained W
will always be in the span of the training data x(i) for i ∈ [n]. This is an n-dimensional subspace,
and the best predictor that only depends on this subspace still has a loss determined by the variance of
y conditioned on this subspace. By randomizing the target direction u, the label y can depend on all
Nd target directions. As a result, as long as n < Nd, this variance will be bounded away from zero,
leading to the failure of FFNs, even with infinite compute/width. See Appendix D for detailed proof.

6 Conclusion

In this paper, we established a sample complexity separation between Transformers and baseline
architectures, namely feedforward and recurrent networks, for learning sequence-to-sequence models
where the output at each position depends on a sparse subset of input tokens described in the input
itself, coined the qSTR model. We proved that Transformers can learn such a model with sample
complexity almost independent of the length of the input sequence N , while feedforward and recurrent
networks have sample complexity lower bounds of N and NΩ(1), respectively. Further, we established
a separation between FFNs and RNNs by proving that recurrent networks can learn the subset of
simple-qSTR models where the output at all positions is identical, whereas feedforward networks
require at least N samples. An important direction for future work is to develop an understanding of
the optimization dynamics of Transformers to learn qSTR models, and to study sample complexity
separations that highlight the role of depth in Transformers.
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A Details of Section 3

Here we present the omitted details and proofs of Section 3. We begin by presenting the architectural
details before proving sample complexity upper bounds for Transformers.

A.1 Transformer Architectural Definition

We formally introduce the single-layer H-headed Transformer that appears in all Section 3 proofs.

Positional encoding. To break the permutation equivaraince of Transformers, we append positional
information to the input tokens. Given a prompt p, we consider an encoding given by

Z(p) =

(
x1 . . . xN

enc(1, t1) . . . enc(N, tN )

)
∈ RDe×N ,

where enc : [N ]× [N ]q → Rdenc provides the encoding of the position and of ti, and De := d+denc.
We use zi to refer to the ith column above. We remark that allowing enc to take ti as input allows
specific encodings of the indices ti that take advantage of the qSTR structure; examples of this have
been considered in prior works [WWHL24]. In practice, we expect such useful encodings to be
learned automatically by previous layers in the Transformer. We remark that for a fair comparison,
in our lower bounds for other architectures we allow arbitrary processing of ti in their encoding
procedure. To specify enc, we use a set of vectors {ωi}Ni=1 in Rde that satisfy the following property.

Assumption 3. We have |⟨ωi,ωj⟩| ≤ 1
2 for all i ̸= j, and ∥ωi∥2 = 1 for all i, with de = Θ(logN).

Such a set of vectors can be obtained e.g., by sampling random Rademacher vectors from the unit
cube {±1/

√
de}de which will satisfy the assumption with high probability. We define

enc(i, ti) =
√

d/q(ωi,ωti1 , . . . ,ωtiq )
⊤ ∈ R(q+1)de ,

hence denc = (q+1)de and De = d+ (q+1)de. The
√
d/q prefactor ensures that xi and enc(i, ti)

will roughly have the same ℓ2 norm, resulting in a balanced input to the attention layer.

Multi-head attention. Given a sequence {zi}Ni=1 where zi ∈ RDe with De as the embedding
dimension, a single head of attention outputs another sequence of length N in RDe , given by

fAttn(p;WQ,WK ,W V ) =

[
N∑
j=1

W V zj
e⟨WQzi,WKzj⟩∑N
l=1 e

⟨WQzi,WKzl⟩

]
i∈[N ]

.

Where WK ,WQ,W V are the key, query, and value projection matrices respectively. We can sim-
plify the presentation by replacing W⊤

QWK with a single parameterizing matrix for query-key pro-
jections denoted by WQK ∈ RDe×De , and absorbing W V into the weights of the feedforward layer.
This provides us with a simplified parameterization of attention, which we denote by fAttn(p;WQK).
This simplification is standard in theoretical works (see e.g. [LIPO23, ACDS23, ZFB24, WWHL24]).
Our main separation results still apply when maintaining separate trainable projections.

We can concatenate the output of H attention heads with separate key-query projection matrices
to obtain a multi-head attention layer with H heads. We denote the output of head h ∈ [H] with
fAttn(p;W

(h)
QK). The output of the multi-head attention at position i is then given by

f
(H)
Attn(p;W

(1)
QK, . . . ,W

(H)
QK )i = (fAttn(p;W

(1)
QK)i, . . . , fAttn(p;W

(H)
QK )i)

⊤ ∈ RHDe .

We will denote by ΘQK = (W
(1)
QK, . . . ,W

(H)
QK ) the parameters of the multi-head attention.

Finally, a two-layer neural network acts on the output of the attention to generate labels. Given input
h ∈ RHDe , the output of the network is given by

f2NN(h;a2NN,W 2NN, b2NN) = a⊤2NNσ(W 2NNh+ b2NN),

where W 2NN ∈ Rm×HDe are the first layer weights, b2NN,a2NN ∈ Rm are the second layer weights
and biases, and m is the width. We also use the summarized notation Θ2NN = (a2NN,W 2NN, b2NN) to
refer to the feedforward layer weights. The prediction of the transformer at position i is given by

ŷTR(p;ΘTR)i = f2NN(f
(H)
Attn(p;ΘQK)i;Θ2NN),

where ΘTR = (ΘQK,Θ2NN) denotes the overall trainable parameters of the Transformer. We use the
notation ŷTR(p;ΘTR) = (ŷTR(p;ΘTR)1, . . . , ŷTR(p;ΘTR)N )⊤ ∈ RN to denote the vectorized output.
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A.2 Proof of Theorem 3

To prove Theorem 3, we will prove the more general theorem below.

Theorem 10. Let Θ̂ := argminΘ∈ΘTR
R̂TR

n (Θ), where

ΘTR :=
{
∥a2NN∥2 ≤ ra/

√
m, ∥(W 2NN, b2NN)∥F ≤ rw

√
m,
∥∥∥W (h)

QK

∥∥∥
2,1

≤ α ∀h ∈ [H]
}
.

Suppose H = q, m = mg , and α = Θ̃(1) (given in Lemma 11). Then, under Assumptions 1, 2 and 3,
with probability at least 1− n−c for some absolute constant c > 0, we have

RTR(Θ̂) ≤ O(ε2NN) + Õ

(
C1

√
(mgq(d+ q) + r6zr

2
ar

2
wq

2 ∧ q(q2 + d2))

n

)
, (A.1)

where C1 = qr2ar
2
wr

2
z .

We begin with a lemma establishing the capability of Transformers in approximating qSTR models.

Lemma 11. Suppose Assumption 2 holds. Let rx =
√
3Cxed log(nN). Assume H = q and

mg = m. Then, there exists ΘTR such that

sup
{∥xj∥2≤rx, ∀j∈[N ]}

∣∣g(xti1 , . . . ,xtiq )− ŷTR(p;ΘTR)i
∣∣ ≤ 2

√
ε2NN,

and

∥a2NN∥2 ≤ ra√
m
, ∥(W 2NN, b2NN)∥F ≤

√
mrw,

∥∥∥∥W (h)
QK

⊤
∥∥∥∥
2,1

≤ 2deq

d
log

(
2rarwrxN

√
q

ε2NN

)
,

for all h ∈ [H].

Proof. In our construction, the goal of attention head h at position i will be to output ztih . Namely,
we want to achieve

fAttn(p;W
(h)
QK)i ≈ ztih .

Note that to do so, for each key token zj , we only need to compute ⟨ωtih ,ωj⟩. Therefore, most
entries in W

(h)
QK can be zero. We only require a block of de × de, which corresponds to comparing

ωj and ωtih when comparing query zi and key zj . Thus, we let

W
(h)
QK =

0(d+hde)×d 0(d+hde)×de
0(d+hde)×qde

0de×d αIde 0de×qde

0(q−h)de×d 0(q−h)de×de
0(q−h)de×qde

 (A.2)

Then, we have
〈
zi,W

(h)
QKzj

〉
= α⟨ωtih ,ωj⟩d/q. We can then verify that∥∥∥AfAttn(p;W

(h)
QK)i −Aztih

∥∥∥
2
≤
∑
j ̸=tih

e−αd/(2q)(∥Azj∥+ ∥Aztih∥2)

for every matrix A. We will specifically choose A to be the projection onto the first d coordinates in
the following. Hence, α will control the error in the softmax attention approximating a “hard-max”
attention that would exactly choose ztih .

To construct the weights of the feedforward layer a2NN,W 2NN, b2NN, we let a2NN = ag and b2NN = bg
from Assumption 2, and define W 2NN by extending W g with zero entries such that

W 2NN

(
zti1
. . .
ztiq

)
= W g

(
xti1
. . .
xtiq

)
.

Then ∥W 2NN∥F = ∥W g∥F. Notice that · 7→ a⊤σ(W (·) + b) is rarw Lipschitz. As a result, for any
x with ∥x∥ ≤ rx we have∣∣g(xti1 , . . . ,xtiq )− ŷTR(p;ΘTR)i

∣∣ ≤ √
ε2NN + εAttn,
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where we recall∣∣g(xti1 , . . . ,xtiq )− f2NN((zti1 , . . . ,ztiq );a2NN,W 2NN, b2NN)
∣∣ ≤ √

ε2NN,

and

εAttn =
∣∣∣f2NN((zti1 , . . . ,ztiq );Θ2NN)− f2NN(f

(q)
Attn(p;ΘQK);Θ2NN)

∣∣∣
≤ rarw

√√√√ q∑
h=1

∥∥∥AfAttn(p;W
(h)
QK)i −Aztih

∥∥∥2
2

≤ 2rarwrxN
√
qe−αd/(2q),

where we recall Azj = xj . Thus, with

α = 2q log(2rarwrxN
√
q/
√
ε2NN)/d

we can guarantee the distance is at most 2
√
ε2NN.

Before proceeding to obtain statistical guarantees, we will show that we can consider the encodings
z
(i)
j to be bounded with high probability. This will be a useful event to consider throughout the proofs

of various sections.

Lemma 12. Suppose {p(i)}ni=1 are n input prompts (not necessarily independent) drawn from the
input distribution, with tokens denoted by {(x(i)

j )Nj=1}ni=1. Under Assumption 1, for any rx > 0 we
have

P
(

max
i∈[n],j∈[N ]

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤ nNe−r

2
x/(2Cxed).

In particular, for rx =
√
3Cxed log(nN) we have

P
(

max
i∈[n],j∈[N ]

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤
√

1

nN
.

Proof. Via Markov’s inequality, for any p > 0 and rx > 0, we have

P
(
max
i,j

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤

E
[
maxi,j

∥∥∥x(i)
j

∥∥∥p
2

]
rpx

≤
E
[∑

i,j

∥∥∥x(i)
j

∥∥∥p
2

]
rpx

≤ Nn(Cxpd)
p/2

rpx
.

Let p = r2x/(Cxed). Then,

P
(
max
i,j

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤ nNe−r

2
x/(2Cxed),

which proves the first statement, and the second statement follows by plugging in the specific value
of rx.

We are now ready to move to the generalization analysis of Transformers. First, we have to formally
define the prediction function class of Transformers with a notation suitable for this section. We
begin by defining the function class of attention. We have

FAttn = {p, j 7→ f
(H)
Attn(p;ΘQK)j : ΘQK ∈ ΘQK},

where we will later specify ΘQK. Additionally, we define F2NN by

F2NN = {h 7→ f2NN(h;Θ2NN) : Θ2NN ∈ Θ2NN},

where Θ2NN = (a2NN,W 2NN, b2NN), and we will later specify Θ2NN. Then the class FTR can be defined
as

FTR = {p, j 7→ f2NN(fAttn(p)j) : fAttn ∈ FAttn, f2NN ∈ F2NN}.
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Recall we use the Sn to denote the training set. To avoid extra indices, we will use the notation
p, j ∈ Sn to go over {p(i), j(i)}ni=1. We can then define the following distances on the introduced
function classes

dTR∞(f, f ′) := sup
p,j

|f(p)j − f ′(p)j |, ∀f, f ′ ∈ FTR

dAttn∞ (f, f ′) := sup
p,j

∥f(p)j − f ′(p)j∥2, ∀f, f ′ ∈ FAttn

d2NN∞ (f, f ′) := sup
∥·∥2≤

√
Hrz

|f(·)− f ′(·)|, ∀f, f ′ ∈ F2NN.

We choose the radius
√
Hrz for defining d2NN∞ since on the event of Lemma 12, this will be the norm

bound on the output of the attention layer at every position.

Recall that for a distance d∞ and a set F , an ϵ-covering F̂ is a set such that for every f ∈ F , there
exists f̂ ∈ F̂ such that d∞(f, f̂) ≤ ϵ. The ϵ-covering number of F , denoted by C(F , d∞, ϵ), is the
number of elements of the smallest such F̂ . The following lemma relates the covering number of FTR
to those of FAttn and F2NN.

Lemma 13. Suppose f2NN is Lf Lipschitz for every f2NN ∈ F2NN. Then, for any ϵ2NN, ϵAttn > 0, on
the event of Lemma 12 we have

log C(FTR, d
TR
∞, ϵ2NN + Lf ϵAttn) ≤ log C

(
F2NN, d

2NN
∞ , ϵ2NN

)
+ log C

(
FAttn, d

Attn
∞ , ϵAttn

)
.

Proof. The proof simply follows from the triangle inequality, namely

sup
p,j

∣∣∣fTR(p;ΘTR)j − fTR(p; Θ̂TR)j

∣∣∣ ≤ sup
∥h∥2≤

√
Hrz

∥∥∥f2NN(h;ΘNN)− f2NN(h; Θ̂NN)
∥∥∥
2

+ Lf sup
p,j

∥∥∥f (H)
Attn(p;ΘQK)j − f

(H)
Attn(p; Θ̂QK)j

∥∥∥
2
.

We have the following estimate for the covering number of F2NN.

Lemma 14. Suppose ∥vec(ΘRNN)∥2 ≤ R and
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and j ∈ [N ]. Then,

log C
(
F2NN, d

2NN
∞ , ϵ

)
≲ mgHDe log(1 + poly(R)/ϵ).

This is a special case of Lemma 30, proved in Appendix B.

For the next step, define the distance

dQK
∞ (ΘQK,Θ

′
QK) := sup

p,j

∥∥∥Θ⊤QKzj −Θ′
⊤
QKzj

∥∥∥
2

on ΘQK, where we recall ΘQK = (W
(1)
QK, . . . ,W

(H)
QK ) ∈ RDe×HDe . The following lemma relates

the covering number of the multi-head attention layer to the matrix covering number of the class of
attention parameters.

Lemma 15. Suppose
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all i ∈ [n] and j ∈ [N ]. Then,

log C(FAttn, d
Attn
∞ , ϵ) ≤ log C

(
ΘQK, d

QK
∞ ,

ϵ

2r2z

)
.
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Proof. We recall that Z ∈ RN×De denotes the encoded prompt, and softmax is applied row-wise.

For conciseness, Let ∆ := supp,j

∥∥∥f (H)
Attn(p;ΘQK)j − f

(H)
Attn(p; Θ̂QK)j

∥∥∥2
2
. Then we have

∆ = sup
p,j∈Sn

∑
h∈[H]

∥∥∥fAttn(p;W (h)
QK)j − fAttn(p; Ŵ

(h)

QK)j

∥∥∥2
2

= sup
p,j∈Sn

∑
h∈[H]

∥∥∥softmax
(
z⊤j W

(h)
QKZ

⊤)Z − softmax
(
z⊤j Ŵ

(h)

QKZ
⊤)Z∥∥∥2

2

≤ sup
p,j∈Sn

∑
h∈[H]

∥∥∥Z⊤∥∥∥2
2,∞

∥∥∥softmax(z⊤j W
(h)
QKZ

⊤)⊤ − softmax(z⊤j Ŵ
(h)

QKZ
⊤)⊤

∥∥∥2
1
,

where we used Lemma 39 for the last inequality. Moreover, by [EGKZ22, Corollary A.7],∥∥∥softmax
(
z⊤j W

(h)
QKZ

⊤)⊤ − softmax
(
z⊤j Ŵ

(h)

QKZ
⊤)∥∥∥

1
≤ 2
∥∥∥ZW (h)⊤

QKzj −ZŴ
(h)⊤

QKzj

∥∥∥
∞

≤ 2
∥∥∥Z⊤∥∥∥

2,∞

∥∥∥W (h)⊤
QKzj − Ŵ

(h)⊤
QKzj

∥∥∥
2
.

Consequently,

∆ ≤ 4r4z sup
p,j∈Sn

∑
h∈[H]

∥∥∥∥W (h)
QK

⊤
zj − Ŵ

(h)⊤
QKzj

∥∥∥∥2
2

= 4r4z sup
p,j∈Sn

∥∥∥Θ⊤QKzj − Θ̂
⊤
QKzj

∥∥∥2
2
,

which completes the proof.

Further, we have the following covering number estimate for ΘQK.

Lemma 16. Suppose ΘQK = {∥ΘQK∥2,1 ≤ R2,1, ∥ΘQK∥F ≤ RF } and
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all

i ∈ [n] and j ∈ [N ]. Then,

log C
(
ΘQK, d

QK
∞ , ϵ

)
≲ min

(
r2zR

2
2,1 log(2HD2

e)

ϵ2
, HD2

e log
(
1 +

2RF rz
ϵ

))
.

Proof. The first estimate comes from Maurey’s sparsification lemma [BFT17, Lemma 3.2], while the
second estimate is based on the inequality∥∥∥Θ⊤QKzj − Θ̂

⊤
QKzj

∥∥∥
2
≤ rz

∥∥∥ΘQK − Θ̂QK

∥∥∥
F
,

and covering ΘQK with the Frobenius norm, see e.g. Lemma 41.

Finally, we obtain the following covering number for FTR.

Proposition 17. Suppose ∥a2NN∥2 ≤ rm,a, ∥(W 2NN, b2NN)∥F ≤ Rm,w, and
∥∥∥W (h)

QK

∥∥∥
2,1

≤ rQK

for all h ∈ [H]. Further assume
∥∥∥z(i)

j

∥∥∥
2

≤ rz for all i ∈ [n] and j ∈ [N ]. Let R :=

max(rm,a, Rm,w, rz). Then,

log C(FTR, dF , ϵ) ≲mgHDe log(1 +R/ϵ)

+ min

(
r6zr

2
m,aR

2
m,wH

2r2QK log(HD2
e)

ϵ2
, HD2

e log
(
1 +

√
HrQKr

3
zrm,aRm,w

ϵ

))
.

Proof. The proof follows from a number of observations. First, given the parameterization in
the statement of the proposition, we have Lf = rm,aRm,w in Lemma 13. Moreover, we have
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RF ≤
√
HrQK and R2,1 ≤ HrQK in Lemma 16. The rest follows from combining the statements of

the previous lemmas.

Next, we will use the covering number bound to provide a bound for Rademacher complexity. Recall
that for a class of loss functions L, the empirical and population Rademacher complexities are defined
as

R̂n(L) := E

[
sup
ℓ∈L

1

n

n∑
i=1

ξiℓ(p
(i),y(i), j(i))

]
, Rn(L) := E(p,y,j)

[
R̂n(L)

]
respectively, where (ξi) are i.i.d. Rademacher random variables. Let the class of loss functions be
defined by

Lτ := {(p,y, j) 7→ (fTR(p)j − yj)
2 ∧ τ : fTR ∈ FTR}, (A.3)

for some constant τ > 0 to be fixed later. We then have the following bound on Rademacher
complexity.

Lemma 18. Suppose maxi∈[n],j∈[N ]

∥∥∥z(i)
j

∥∥∥
2
≤ rz . For the loss class Lτ given by (A.3), we have

R̂n(Lτ ) ≤ Õ

(
τ

√
C1 + (C2 ∧ C3)

n

)
,

where C1 = mgHDe, C2 = r6zr
2
m,aR

2
m,wH

2r2QK , and C3 = HD2
e .

Proof. Let C(L, dL∞, ϵ) denote the ϵ-covering number of L, where ℓ(p,y, j) = (f(p)j − yj)
2 ∧ τ

and ℓ′(p,y, j) = (f ′(p)j − yj)
2 ∧ τ . Then, for any α ≥ 0, by a standard chaining argument,

R̂n(Lτ ) ≲ α+

∫ τ

α

√
log C(L, dL∞, ϵ)

n
dϵ.

≲ α+

∫ τ

α

√
log C(F , dTR∞, ϵ/(2

√
τ))

n

≲ α+

∫ τ

α

√
C1 log(R

√
τ/ϵ)

n
dϵ+

{∫ τ

α

√
τC2 log(HD2

e)

nϵ2
dϵ

}
∧

{∫ τ

α

√
C3 log(1 + C4

√
τ/ϵ)

n
dϵ

}

≲ α+

√
τ2C1 log(R

√
τ/α)

n
+

{√
τC2 log(HD2

e)

n
log
( τ
α

)}
∧

{√
τ2C3 log(1 + C4

√
τ/α)

n

}
,

where (Ci)
3
i=1 are given in the statement of the lemma and C4 =

√
HrQKr

3
zrm,aRm,w. Choosing

α = 1/
√
n completes the proof.

Using standard symmetrization techniques, the above immediately yields a high probability upper
bound for the expected truncated loss of any estimator in ΘTR.

Corollary 19. Let Θ̂ = argminΘ∈ΘTR
R̂TR

n (Θ), where ΘTR is described in Proposition 17. Define
rz =

√
r2x + d(1 + 1/q) where rx is defined in Lemma 12. Let C1, C2, and C3 be defined as in

Lemma 18. Then, with probability at least 1− δ − (nN)−1/2 over Sn, we have

RTR
τ (Θ̂)− R̂TR

n (Θ̂) ≤ Õ

(
τ

√
(C1 + C2 ∧ C3)

n

)
+O

(
τ

√
log(1/δ)

n

)
,

where RRNN
τ (Θ̂) := Ep,j,y

[
(ŷTR(p; Θ̂)j − yj)

2 ∧ τ
]

Proof. The proof is a standard consequence of Rademacher-based generalization bounds, with the
additional observation that

1

n

n∑
i=1

(
ŷTR(p

(i); Θ̂)j(i) − y
(i)

j(i)

)2 ∧ τ ≤ R̂TR
n (Θ̂).
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The last step in the proof of the generalization bound is to bound RTR(Θ̂) with RTR
τ (Θ̂). This is

achieved by the following lemma.
Lemma 20. Define κ2 := Hr2m,aR

2
m,wr

2
z . Then, under Assumption 1, for τ ≍ κ2 log(κ2N

√
n) +

log(κ2
√
n)s, we have

RTR(Θ̂)−RTR
τ (Θ̂) ≤

√
1

n
.

Proof. For conciseness, define ∆y :=
∣∣∣ŷTR(p; Θ̂)j − yj

∣∣∣. By the Cuachy-Schwartz inequality, we
have

RTR(Θ̂) = E
[
∆2

y1
[
∆y ≤

√
τ
]]

+ E
[
∆2

y1
[
∆y >

√
τ
]]

≤ RTR
τ (Θ̂) + E

[
∆4

y

]1/2P(∆y ≥
√
τ
)1/2

.

Moreover,

E
[
∆4

y

]1/2 ≤ 2E
[
y4j
]1/2

+ 2E
[
ŷ(p; Θ̂)4j

]1/2
.

By Assumption 1, we have E
[
y4j
]1/2

≲ 1. Additionally, note that∣∣∣ŷ(p; Θ̂)j

∣∣∣ ≤ ∥a2NN∥2(
√
H∥W 2NN∥F max

l∈[N ]
∥zl∥2 + ∥b2NN∥2)

≤
√
Hrm,aRm,w(1 + max

l∈[N ]
∥zl∥2).

To bound maxl∈[N ]∥zl∥2, we use the subGaussianity of ∥xl∥2 characterized in Assumption 1.
Specifically, for all r ≥ 1

E
[
max
l∈[N ]

∥xl∥42

]
≤ E

[
max
l∈[N ]

∥xl∥4r2

]1/r
≤ E

[
N∑
l=1

∥xl∥4r2

]1/r

≤ N1/r E
[
∥x1∥4r2

]1/r
≲ N1/rC2

xd
2r2

≲ (Cxd log(N))2,

where the last inequality follows from choosing r = logN . As a result,

E
[
ŷ(p; Θ̂)4j

]1/2
≲ Hr2m,aR

2
m,wr

2
z log(N)2 =: κ2 log(N)2.

We now turn to bounding the probability. We have

P
(
∆y ≥

√
τ
)
≤ P

(
|yj | ≥

√
τ

2

)
+ P

(∣∣∣ŷ(p; Θ̂)j

∣∣∣ ≥ √
τ

2

)
≤ exp

(
−Ω(τ1/s)

)
+N exp

(
− Ω

( τ

Hr2m,aR
2
m,wr

2
z

))
,

where the second inequality follows from sub-Weibull concentration bounds for y and Lemma 12.
Choosing τ = Θ(κ2 log(κ2N

√
n) + log(κ2

√
n)s) completes the proof.

Proof of Theorem 10. The theorem follows immediately from the approximation guarantee of
Lemma 11, the generalization bound of Corollary 19, and the truncation control of Lemma 20.

A.3 Details on Limitations of Transformers with Few Heads

While Proposition 4 is only meaningful in the setting of d = Ω(q), the following proposition provides
an exact lower bound H ≥ q on the number of heads for all d, at the expense of additional restrictions
on the attention matrix.
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Proposition 21. Consider the qSTR data model. Suppose d = 1 and yi =
1√
q

∑q
j=1(x

2
tij −E[x2

tij ]).
Assume xi ∼ N (0, σ2

i ) independently, such that σi = 1 for i < N/2 and σi = 0 for i ≥ N/2.
Further, assume the attention weights between the data and positional encoding parts of the tokens

are fixed at zero, i.e. W
(h)
QK =

(
W (h)

x 0d×(q+1)de

0(q+1)de×d W (h)
ω

)
where W (h)

x ∈ Rd×d and W (h)
ω ∈

R(q+1)de×(q+1)de are the attention parameters, for i ∈ [H]. Then, there exists a distribution over
(ti)i∈[N ] such that for any choice of ΘTR, we have

1

N
E
[
∥y − ŷTR(p;ΘTR)∥22

]
≥ 1− H

q
.

Note that in our approximation constructions for learning qSTR, we always fixed the attention
weights between data and positional components to be zero, which is why we assume the same in
Proposition 21.

Proof of Proposition 21. We will simply choose ti = (1, . . . , q) deterministically for i ≥ N
2 and

draw ti from an arbitrary distribution for i < N/2. Note that we have

RTR(ΘTR) =
1

N

N∑
i=1

E
[
(yi − ŷTR(p;ΘTR)i)

2
]
≥ 1

N

N∑
i=N/2

E
[
(yi − ŷTR(p;ΘTR)i)

2
]
.

Let ϕ : RHDe → R denote the mapping by the feedforward layer. Fix some i ≥ N/2. Note that

ŷTR(p;ΘTR)i = ϕ(f
(H)
Attn(p;ΘQK)i)

= ϕ(

N∑
j=1

α
(1)
ij zj , . . . ,

N∑
j=1

α
(H)
ij zj)

= ϕ̃
( q∑

j=1

α
(1)
ij xj , . . . ,

q∑
j=1

α
(H)
ij xj , (zl)

N
l=q+1

)
,

for some real-valued function ϕ̃, where

α
(h)
ij =

e

〈
zi,W

(h)
QKzj

〉
∑N

l=1 e

〈
zi,W

(h)
QKzj

〉 ,
are the attention scores. Let A(i) ∈ RH×q be the matrix such that A(i)

hj = α
(h)
ij . Let x1:q =

(x1, . . . , xq)
⊤ ∈ Rq . Then,

RTR(ΘTR) ≥
1

N

N∑
i=N/2

E
[(

yi − ϕ̃
(
A(i)x1:q, (zl)

N
l=q+1

))2]

≥ 1

Nq

N∑
i=N/2

E
[
Var
(
∥x1:q∥2 |V (i)x1:q

)]
(A.4)

where V (i) ∈ RH×q is a matrix whose rows form an orthonormal basis of span(α(1)
i , . . . ,α

(H)
i )

where α
(h)
i = (α

(h)
i1 , . . . , α

(h)
iq )⊤ ∈ Rq (note that V (i) may have fewer than H rows, we consider

the worst-case for the lower bound which is having H rows). The second inequality follows from the
fact that zl is independent of x1:q for l ≥ q + 1, and the fact that best predictor of yi (in L2 error)

given A(i)x1:q is E
[
yi |V (i)x1:q

]
.

Next, thanks to the structural property of W (h)
QK in the assumption of the proposition and the fact that

xi = 0 for i ≥ N/2, α(h)
ij does not depend on (xl)l∈[q] for all h ∈ [H], i ≥ N/2, and j ∈ [q]. As a

result, V (i) is independent of x1:q . Therefore,

x1:q |V (i)x1:q ∼ N (V (i)⊤V (i)x1:q, Iq − V (i)⊤V (i)).

21



By Lemma 40, we have Var(∥x1:q∥2 |V (i)x1:q) = 2(q−H), which combined with (A.4) completes
the proof.

We now present the similarly structured proof of Proposition 4.

Proof of Proposition 4. The choice of distribution over (ti)i≥N/2 is similar to the one presented
above, i.e. we let ti = (1, . . . , q) deterministically for i ≥ N

2 . However, for i < N
2 , we draw ti such

that they are independent from x. Once again, we use the fact that

RTR(ΘTR) ≥
1

N

N∑
i=N/2

E
[
(yi − ŷTR(p;ΘTR)i)

2
]
.

Recall zi = (x⊤i , enc(i, ti)
⊤). Fix some i ≥ N/2, and define

α̃
(h)
ij = e

〈
enc(i,ti),W

(h,e,x)
QK xj

〉
+
〈
enc(i,ti),W

(h,e,e)
QK enc(j,tj)

〉
,

where we use the notation

W
(h)
QK =

W
(h,x,x)
QK W

(h,x,e)
QK

W
(h,e,x)
QK W

(h,e,e)
QK

,

for the query-key matrix of each head. Recall that xi = 0 for i < N/2, thus the attention weights are
given by

α
(h)
ij =

α̃
(h)
ij∑N

l=1 α̃
(h)
il

.

Recall from the proof of Proposition 21 that we denote the feedforward layer by ϕ : RHDe → R.
With this notation, we have

ŷTR(p;ΘTR)i = ϕ(

N∑
j=1

α
(1)
ij zj , . . . ,

N∑
j=1

α
(H)
ij zj)

= ϕ̃
( q∑

j=1

α
(1)
ij xj , . . . ,

q∑
j=1

α
(H)
ij xj , (α̃

(h)
ij )h=H,j=N

h=1,j=1 , (zj)
N
j=l+1

)
.

Therefore, using the fact that zj and α̃
(h)
ij are independent of x1:q for j ≥ l + 1, we have

RTR(ΘTR) =
1

N

N∑
i=N/2

E


yi − ϕ̃

( q∑
j=1

α
(1)
ij xj , . . . ,

q∑
j=1

α
(H)
ij xj , (α̃

(h)
ij )h=H,j=N

h=1,j=1 , (zj)
N
j=l+1

)2


≥ 1

Nqd

N∑
i=N/2

E
[
Var

(
∥x1:q∥2 |

(〈
α

(h,r)
i ,x1:q

〉)h=H,r=d

h=1,r=1
, (α̃

(h)
ij )h=H,j=q

h=1,j=1

)]

≥ 1

Nqd

N∑
i=N/2

E
[
Var

(
∥x1:q∥2 |

(〈
α

(h,r)
i ,x1:q

〉)h=H,r=d

h=1,r=1
,
(〈

w
(h)
i,j ,x1:q

〉)H,q

h=1,j=1

)]

=
1

Nqd

N∑
i=N/2

E
[
var
(
∥x1:q∥2 |V (i)x1:q

)]
,

where α
(h,r)
i ∈ Rqd such that

(α
(h,r)
i )jl =

{
α
(h)
ij , if l = r

0, if l ̸= r,

which yields
〈
α

(h,r)
i ,x1:q

〉
=
∑q

j=1 α
(h)
ij xjr, and w

(h)
i,j ∈ Rqd such that

(w
(h)
i,j )sl =

{(
W

(h,e,x)
QK

⊤
enc(i, ti)

)
l
, if s = j

0 if s ̸= j,
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which yields
〈
w

(h)
i,j ,x1:q

〉
=
〈
W (h,e,x)⊤ enc(i, ti),xj

〉
. Finally, V (i) is a matrix whose rows

form an orthonormal basis of span
((

α
(h,r)
i

)h=H,r=d

h=1,r=1
,
(
w

(h)
i,j

)h=H,j=q

h=1,j=1

)
. Namely, V (i) has at most

H(d+ q) rows. Recall that

x1:q |V (i)x1:q ∼ N (V (i)⊤V (i)x1:q, Iqd − V (i)⊤V (i)).

Once again, by Lemma 40, we conclude that var(∥x1:q∥2 |V (i)x1:q) ≥ 2(qd−H(q + d)), which
completes the proof.

B Details and Proofs of Section 4

Before presenting the proofs, we state the omitted setup and parameterization of the network in the
next section.

B.1 Complete Setup of RNNs

When introducing RNNs in Section 4, we used Lh-layer deep feedforward networks to implement
the transitions f→h (·;Θ→h ) and f←h (·;Θ←h ). These transitions are given by

f→h (·;Θ→h ) = W→
Lh

σ
(
W→

Lh−1 . . . σ(W
→
2 σ(W→

1 (·) + b→1 ) + b→2 ) . . .+ b→Lh−1
)
, (B.1)

with Θ→h = (W→
1 , b→1 , . . . ,W→

Lh−1, b
→
Lh−1,W

→
Lh

) and a similar equation for f←(·;Θ←h ). Recall
that the output of the RNN is denoted by

ŷRNN(p;ΘRNN) = (fy(h
→
1 ,h←1 , z1;Θy), . . . , fy(h

→
N ,h←N , zN ;Θy)) ∈ RN .

We now define the constraint set of this architecture. Let

ΘRNN =
{
Θ : ∥vec(Θ)∥2 ≤ R,

∥∥W→
Lh

∥∥
op . . .

∥∥W→
1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op . . .

∥∥W←
1,h

∥∥
op

≤ αN

}
,

(B.2)
where W→

1,h contains the first dh columns of W→
1 , and the conditions above are introduced to ensure

f→h and f←h are at most αN -Lipschitz with respect to the hidden state input. One way to meet this
requirement is to multiply W→

1,h by a factor of αN/
∏Lh

l=2∥W
→
l ∥op in the forward pass. Without this

Lipschitzness constraint, current techniques for proving uniform RNN generalization bounds will
suffer from a sample complexity linear in N , see e.g. [CLZ20].

For Theorem 5 we only require αN ≤ N−1. In particular, we can choose αN = 0 and fix W→
1,h =

W←
1,h = 0, which would simplify the parameterization of the network. Namely, in our construction

f→ and f← do not need to depend on h→ and h← respectively.

B.2 Overview of the Proof of Theorem 5

The following is the roadmap we will take for the proof of Section 4.1. The goal here is to implement
a bi-directional RNN in such a way that

h→i ≈
(
xt11[t1 < i], . . . ,xtq1[tq < i]

)
,

and
h←i ≈

(
xt11[t1 > i], . . . ,xtq1[tq > i]

)
.

Throughout this section, we will use the notation

Ψ(x, t, i) = (x⊤1[t1 = i], . . . ,x⊤1[tq = i])⊤.

We can obtain the hidden states above through the following updates

h→i+1 = h→i +Ψ(xi,ωt,ωi),

and
h←i−1 = h←i +Ψ(xi,ωt,ωi).

where

Ψ(xi,ωt,ωi)l =
xiσ(⟨ωi,ωtl⟩ − δ)

1− δ
= xi1[tl = i], ∀ l ∈ [q]
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where we recall ωt = (ωt1 , . . . ,ωtq ), and σ is ReLU. As a result, our network must approximate

f→h (h→i ,xi,ωt,ωi;Θ
→
h ) = f←h (h←i ,xi,ωt,ωi;Θ

←
h ) ≈ Ψ(xi,ωt,ωi).

A core challenge in this approximation is that if we simply control
∥f→h (h→i , zi;Θ

→
h )−Ψ(xi,ωt,ωi)∥2 ≤ ε, (B.3)

this error will propoagte through the forward pass, and we will have∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj ,ωt,ωj)

∥∥∥∥∥∥
2

≲ Nε.

As a result, we would like an implementation that satisfies the following

∥f→h (h→i , zi;Θ
→
h )l −Ψ(xi,ωt,ωi)l∥2 ≤

{
0 tl ̸= i

ε tl = i.
(B.4)

Note that

h→i =

i−1∑
j=1

f→h (h→j , zj ;Θ
→
h ).

Since for each l ∈ [q], tl = j is possible for at most one j ∈ [N ], (B.4) implies∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj ,ωt,ωj)

∥∥∥∥∥∥
2

≤ √
qε,

for all i ∈ [N ], hence, we can avoid dependence on N .

We can implmenet f→h to satisfy (B.3) with a depth three network, where the first two layers imple-
ments

〈
ωi,ωtj

〉
(as a sum of Lipschitz 2-dimensional functions, an example of their approximation

is given by [Bac17, Proposition 6]), and the third performs coordinate-wise product between xi and
σ(
〈
ωi,ωtj

〉
− 1/2) (which for each coordinate is a Lipschitz two-dimensional function). To ensure

f→h satisfies (B.4), we can pass the outputs to a fourth layer which rectifies its input near zero to be
exactly zero using ReLU activations.

To generate yi from h→i and h←i , we first calculate
hi = fhh(h

→
i ,h←i ,xi,ωi,ωt)

≈ h→i + h←i +Ψ(xi,ωt,ωi)

≈ (xt1 , . . . ,xtq ).

Finally, yi can be generated from hi by applying the two-layer neural network from Assumption 2
that approximates yi = g(xt).

Note that the construction above has a complexity poly(d, q, log(nN)) (both in terms of number and
weight of parameters), only depending on N up to log factors. As a result, by a simple parameter-
counting approach, the sample complexity of regularized ERM would also be (almost) independent
of N . We also simply use the encoding

zi = (xi,ωi,ωti1 , . . . ,ωtiq )
⊤,

for the RNN positive result. The scaling difference with the encoding for Transofrmers is only made
to simplify the exposition, as we no longer keep explicit dependence on d and q.

B.3 Approximations

As explained above, to implement f→h we first construct a depth three neural network (with two
layers of non-linearity) which approximately performs the following mapping

h
x
ωi

ωt1
...

ωtq

 7→


x

⟨ωi,ωt1⟩
...〈

ωi,ωtq

〉
 7→

2xσ(⟨ωi,ωt1⟩ − 1/2)
...

2xσ(
〈
ωi,ωtq

〉
− 1/2)

.
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The first mapping will be provided by

χ1 = A1σ(W 1χ0 + b1),

where χ0 = (h⊤,x⊤,ω⊤i ,ω
⊤
t1 , . . . ,ω

⊤
tq )
⊤ ∈ Rdh+d+(q+1)de , W 1 ∈ Rm1×(dh+d+(q+1)de), b1 ∈

Rm1 , and A1 ∈ R(d+q)×m1 , with m1 as the width of the first layer. We will use the notation

χ1 = (χx
1 , χ

ω
1 (1), . . . , χ

ω
1 (q))

to refer for the first d coordinates and the rest of the q coordinates of χ1 respectively, thus ideally
χx

1 = x and χω
1 (l) = ⟨ωi,ωtl⟩. The second mapping is provided by

χ2 = A2σ(W 2χ1 + b2),

where W 2 ∈ Rm2×(d+q), b2 ∈ Rm2 , and A2 ∈ Rdq×m2 . We will similarly use the notation
χ2 = (χ2(1), . . . ,χ2(q)), where our goal is to have χ2(l) ≈ 2xσ(⟨ωi,ωtl⟩ − 1/2). To implement
the first mapping, we rely on the following lemma.
Lemma 22. Let σ be the ReLU activation. For any ε > 0 and positive integer de, there exists
m = O(d3e(log(de/ε)/ε)

2), a ∈ Rm, W ∈ Rm×2de , and b ∈ Rm, such that

sup
ω1,ω2∈Sde−1

∣∣∣∣⟨ω1,ω2⟩ − a⊤σ

(
W

(
ω1

ω2

)
+ b

)∣∣∣∣ ≤ ε,

and
∥a∥2 ≤ O

(
d5/2e (log(de/ε)/ε)

3/2/
√
m
)
,
∥∥∥W⊤

∥∥∥
1,∞

≤ 1, ∥b∥∞ ≤ 1.

Proof. Consider the mapping e1j , e2j 7→ e1je2j . Note that when |e1j | ≤ 1 and |e2j | ≤ 1, this
mapping is

√
2-Lipschitz, and the output is bounded between [−1, 1]. Then, by Lemma 42, for every

εj > 0, there exists mj ≤ O((1/εj log(1/εj))
2), aj ∈ Rmj ,W j ∈ Rmj×2de , and bj ∈ Rmj , such

that

sup
|e1j |≤1,|e2j |≤1

∣∣∣∣∣e1je2j −
m∑
l=1

ajlσ
(〈
wjl, (ω

⊤
1 ,ω

⊤
2 )
⊤〉+ bjl

)∣∣∣∣∣ ≤ εj ,

∥aj∥2 ≤ O
(
(log(1/εj)/εj)

3/2/
√
mj

)
, ∥bj∥∞ ≤ 1, and ∥wjl∥1 ≤ 1. Specifically, the only non-

zero coordinates of wjl are the jth and de + jth coordinates.

Let εj = ε/de and m =
∑de

j=1 mj = O(d3e(log(de/ε)/ε)
2). Construct a, b ∈ Rm and W ∈

Rm×2de by concatenating (aj), (bj), and (W j) respectively. The resulting network satisfies

sup
ω1,ω2∈Sde−1

∣∣∣∣⟨ω1,ω2⟩ − a⊤σ

(
W

(
ω1

ω2

)
+ b

)∣∣∣∣ ≤ ε,

while ∥a∥2 ≤ O
(
d
5/2
e (log(de/ε)/ε)

3/2/
√
m
)
, ∥b∥∞ ≤ 1, and

∥∥∥W⊤
∥∥∥
1,∞

≤ 1, completing the

proof.

We can now specify A1,W 1, and b1 in our construction.
Lemma 23. For any ε > 0, let m̄1 = O(d3e(log(de/ε)/ε)

2) and m1 = 2d+ qm̄1. Then, there exist
A1 ∈ R(d+q)×m1 , W 1 ∈ Rm1×(dh+d+(q+1)de), and b1 ∈ Rm1 , given by Equations (B.5) to (B.9),
such that

χx
1 = x, |χω

1 (l)− ⟨ωi,ωtl⟩| ≤ ε,

for all h ∈ Rdh , x ∈ Rd, ωi, (ωtj )j∈[q] ∈ Sde−1, and l ∈ [q]. Furthermore, we have the following
guarantees∥∥∥W⊤

1

∥∥∥
1,∞

≤ O(1), ∥b1∥∞ ≤ O(1),
∥∥∥A⊤1 ∥∥∥

1,∞
≤ O(d5/2e (log(de/ε)/ε)

3/2).

Proof. We define the decompositions

W 1 =

(
W 11

W 12

)
, b1 =

(
b11
b12

)
, A1 =

(
A11

A12

)
, (B.5)
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where W 11 ∈ R2d×(dh+d+de), W 12 ∈ Rqm̄1×(dh+d+de), b11 ∈ R2d, b12 ∈ Rqm̄1 , A11 ∈ Rd×m1 ,
and A12 ∈ Rq×m1 . Let v1, . . . ,vd denote the standard basis of Rd, and notice that σ(z)−σ(−z) = z.
Therefore, we can implement the identity part of the mapping by letting

W 11 =


0dh

v⊤1 0⊤(q+1)de

0dh
−v⊤1 0⊤(q+1)de

...
...

0dh
v⊤d 0⊤(q+1)de

0dh
−v⊤d 0⊤(q+1)de

, (B.6)

as well as

b1 = 02d, and A11 =


1 −1 0 0 . . . 0 0⊤qm̄1

0 0 1 −1 . . . 0 0⊤qm̄1

...
...

...
...

...
...

...
0 . . . 0 0 1 −1 0⊤qm̄1

 (B.7)

Notice that
∥∥∥W⊤

11

∥∥∥
1,∞

= 1 and
∥∥∥A⊤11∥∥∥

1,∞
= 2. To implement the inner product part of the

mapping, we take the construction of weights, biases, and second layer weights from Lemma 22, and
rename them as W̃ 1 ∈ Rm̄1×2de , b̃1 ∈ Rm̄1 , and ã1 ∈ Rm̄1 . Let us introduce the decomposition
W̃ 1 =

(
W̃ 11 W̃ 12

)
, where W̃ 11, W̃ 12 ∈ Rm̄1×de . With this decomposition, we can separate the

projections applied to the first and second vectors in Lemma 22. We can then define

W 12 =


0m̄1×(dh+d) W̃ 11 W̃ 12 0m̄1×de

. . . 0m̄1×de

0m̄1×(dh+d) W̃ 11 0m̄1×de
W̃ 12 . . . 0m̄1×de

...
...

...
...

...
...

0m̄1×(dh+d) W̃ 11 0m̄1×de 0m̄1×de . . . W̃ 12

, (B.8)

as well as

b12 =

b̃1
...
b̃1

, and A12 =


0⊤2d ã⊤1 0⊤m̄1

. . . 0⊤m̄1

0⊤2d 0⊤m̄1
ã⊤1 . . . 0⊤m̄1

...
...

...
...

...
0⊤2d 0⊤m̄1

. . . 0⊤m̄1
ã⊤1

. (B.9)

From Lemma 22, we have
∥∥∥W⊤

12

∥∥∥
1,∞

≤ 1, ∥b12∥∞ ≤ 1, and∥∥∥A⊤12∥∥∥
1,∞

= ∥ã1∥1 ≤ O(d5/2e (log(de/ε)/ε)
3/2),

which completes the proof.

To introduce the construction of the next layer, we rely on the following lemma which establishes the
desired approximation for a single coordinate, the proof of which is similar to that of Lemma 22.

Lemma 24. Let σ be the ReLU activation. Suppose |h| ≤ rh∞, |x| ≤ rx∞ and |z| ≤ 1. Let

R :=

√
1 + rx∞

2 + rh∞
2. For any ε > 0, there exists m = O(R6(log(R/ε)/ε)3), a ∈ Rm,

W ∈ Rm×2, and b ∈ Rm, such that

sup
|h|≤rh∞,|x|≤rx∞,|z|≤1

∣∣h+ 2xσ(z − 1/2)− a⊤σ
(
W (h, x, z)⊤ + b

)∣∣ ≤ ε

and
∥a∥2 ≤ O

(
R6(log(R/ε)/ε)2/

√
m
)
,
∥∥∥W⊤

∥∥∥
1,∞

≤ R−1, ∥b∥∞ ≤ 1.

Additionally, if rh∞ = 0, we have the improved bounds

m = O
(
R4(log(R/ε)/ε)2

)
, ∥a∥2 ≤ O

(
R5(log(R/ε)/ε)3/2/

√
m
)
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Proof. Note that (h, x, z) 7→ h+ 2xσ(z − 1/2) is 2R-Lipschitz, and |h+ 2xσ(z − 1/2)| ≤ R. The
proof follows from Lemma 42 with dimension 3 when rh∞ ̸= 0 and dimension 2 otherwise.

With that, we can now construct the weights for the second mapping in the network.

Lemma 25. Suppose ∥χx
1 ∥∞ ≤ rx and maxl|χω(l)| ≤ 1. Let R :=

√
1 + r2x. Then, for every

ε > 0 and absolute constant δ ∈ (0, 1), there exists m̄2 ≤ O(R4(log(R/ε)/ε)3/2), m2 := qdm̄2,
and A2 ∈ Rdh×m2 , W 2 ∈ Rm2×(d+q), and b2 ∈ Rm2 given by Equations (B.10) and (B.11) such
that

∥χ2(l)− 2χx
1σ(χ

ω
1 (l)− 1/2)∥∞ ≤ ε,

for all such χ1 and l ∈ [q], where we recall χ2 = A2σ(W 2χ1 + b2). Moreover, we have∥∥∥A⊤2 ∥∥∥
1,∞

≤ O(R4(log(R/ε)/ε)3/2),
∥∥∥W⊤

2

∥∥∥
1,∞

≤ R−1, ∥b2∥∞ ≤ 1.

Proof. Let W̃ = (w̃21 w̃22), b̃, and ã be the weights obtained from Lemma 24, where
w̃21, w̃22, b̃, ã ∈ Rm̄2 . To construct W 2 and b2, we let

W 2 =



W 2(1, 1)
...

W 2(1, d)
...

W 2(q, 1)
...

W 2(q, d)


, b22 =



b2(1, 1)
...

b2(1, d)
...

b2(q, 1)
...

b2(q, d)


. (B.10)

where W 2(l, j) ∈ Rm̄2×(d+q) is given by

W 2(l, j) =
(
0m̄2×(j−1) w̃21 0m̄2×(d−j) 0m̄2×(l−1) w̃22 0m̄2×(q−l)

)
,

and b2(l, j) = b̃2. Consequently,
∥∥∥W⊤

2

∥∥∥
1,∞

≤ 1 and ∥b2∥∞ ≤ 1. Finally, we have

A2 =


ã⊤2 0⊤m̄2

. . . 0⊤m̄2

0⊤m̄2
ã⊤2 . . . 0⊤m̄2

...
...

...
...

0⊤m̄2
. . . 0⊤m̄2

ã⊤2

. (B.11)

Consequently, we obtain
∥∥∥A⊤2 ∥∥∥

1,∞
≤ O(R4(log(R/ε)/ε)3/2), completing the proof.

We are now ready to provide the four-layer feedforward construction of f→(h,x, t;Θ→h ).
Proposition 26. Let z = (x,ωi,ωt1 , . . . ,ωtq ). Then, for every ε > 0, there exists a feedforward
network with Lh = 4 layers given by

f→(h, z;Θ→h ) = WLh
σ
(
. . . σ

(
W 2σ

(
W 1(h

⊤, z⊤)⊤ + b1
)
+ b2

)
. . .
)

where W i ∈ Rmi×mi−1 , bi ∈ Rm
i for i ∈ {2, . . . , Lh − 1}, W 1 ∈ Rm1×dh+d+(q+1)de , b1 ∈ Rm1 ,

and WLh
∈ Rdh×mLh−1 that satisfies the following:

1. If tl = i, then ∥∥∥f→(h, z; Θ̂
→
h )l − x

∥∥∥
2
≤ ε

2. Else f→(h, z; Θ̂
→
)l = 0d,

for all l ∈ [q], h ∈ Rdh and ∥x∥2 ≤ rx. Additionally ∥W i∥F ≤ poly(rx, De, ε
−1) for all i ∈ [Lh]

and mi, ∥bi∥2 ≤ poly(rx, De, ε
−1) for all i ∈ [Lh − 1], where we recall De = d+ (q + 1)de.
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Proof. Let Ã1 ∈ R(d+q)×m1 , W̃ 1 ∈ Rm1×(dh+d+(q+1)de), b̃1 ∈ Rm1 be given by Lemma 23 with
error parameter ε1 and Ã2 ∈ Rdh×m2 , W̃ 2 ∈ Rm2×(d+q), b̃2 ∈ Rm2 be given by Lemma 25 with
error parameter ε2. Recall that

χ1 = Ã1σ
(
W̃ 1χ0 + b̃1

)
, χ2 = Ã2σ

(
W̃ 2χ1 + b̃2

)
.

By the triangle inequality,∥∥∥Ψ(x, t, i)− Ã2σ
(
W̃ 2χ1 + b̃2

)∥∥∥
∞

≤
∥∥∥Ψ(x, t, i)− Ã2σ

(
W̃ 2χ̄1 + b̃2

)∥∥∥
∞

+
∥∥∥Ã2σ

(
W̃ 2χ̄1 + b̃2

)
− Ã2σ

(
W̃ 2χ1 + b̃2

)∥∥∥
∞

≤ε2 +
∥∥∥Ã⊤2 ∥∥∥

1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

∥χ1 − χ̄1∥∞

≤ε2 +
∥∥∥Ã2

∥∥∥
1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

ε1,

where χ̄1 = (x⊤, ⟨ωi,ωt1⟩, . . . ,
〈
ωi,ωtq

〉
)⊤. By letting ε2 = ε/4, we obtain

m2,
∥∥∥Ã2

∥∥∥
F
,
∥∥∥W̃ 2

∥∥∥
F
,
∥∥∥b̃2∥∥∥

2
≤ poly(rx, De, ε

−1).

Similarly, we can let ε1 = ε/
(
4
∥∥∥Ã2

∥∥∥
1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

)
, which yields

m1,
∥∥∥Ã2

∥∥∥
F
,
∥∥∥W̃ 2

∥∥∥
F
,
∥∥∥b̃2∥∥∥

2
≤ poly(rx, De, ε

−1).

Let

W 2 = W̃ 2Ã1, W 1 = W̃ 1, b1 = b̃1, b2 = b̃2.

Then,
χ2 = Ã2σ(W 2σ(W 1(h

⊤z⊤)⊤ + b1) + b2),

satisfies ∥χ2 −Ψ(x, t, i)∥∞ ≤ ε/2 for all ∥x∥2 ≤ rx.

Recall that when tl ̸= i for some l ∈ [q], we would like to guarantee the output of the network to
be equal to Ψ(x, t, i)l = 0d. To do so, we rely on the fact that z 7→ σ(z − b)− σ(−z − b) is zero
for |z| ≤ b, and has an L∞ distance of b from the identity, i.e. |z − σ(z − b) + σ(−z − b)| ≤ b.
This mapping needs to be applied element-wise to χ2. Let W̃ 3 ∈ R2dh×dh , b3 ∈ R2dh , and
W 4 ∈ Rdh×2dh via

W̃ 3 =


v⊤1
−v⊤1

...
v⊤d
−v⊤d

, b3 = −ε

2
12dh

, W 4 =

(
1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
0 0 0 0 . . . 1 −1

)
.

As a result, χ3 = W 4σ(W̃ 3χ2 + b3) satisfies

|(χ3)j − (χ2)j | ≤
{
0 |(χ2)j | ≤ ε/2

ε/2 |(χ2)j | > ε/2
, ∀j ∈ [dh]. (B.12)

We thus make two observations. First, ∥χ3 − χ2∥∞ ≤ ε/2, and consequently
∥χ3(l)−Ψ(x, t, i)l∥∞ ≤ ε for all l ∈ [q]. Second, when tl ̸= i, we have Ψ(x, t, i)l = 0d

and |χ2(l)j | ≤ ε/2 for all j ∈ [d] since ∥χ2(l)−Ψ(x, t, i)l∥∞ ≤ ε/2. Consequently, by the first
case in (B.12), we have χ3(l)j = 0 for all j ∈ [d]. We can summarize these two observations as
follows

∥χ3(l)−Ψ(x, t, i)l∥∞ ≤
{
0 tl ̸= i

ε tl = i
,

which completes the proof.

With the above implementation of f→(h, z;Θ→h ), we have the following guarantee on h→i for all
i ∈ [N ].
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Corollary 27. Let f→h be given by the construction in Proposition 26, and suppose rh ≥ √
q(rx +√

dε). Then, h→i satisfies the following guarantees for all i ∈ [N ] and l ∈ [q]:

1. If tl ≥ i, then h→i (l) = 0d

2. If tl < i, then ∥h→i (l)− xtl∥∞ ≤ ε.

Proof. We can prove the statement by induction. Note that it holds for i = 1 since h→1 = 0d. For the
induction step, suppose it holds up to some i, and recall

h→i+1 = h→i + f→h (h→i , zi;Θ
→
h ).

• If tl ≥ i+ 1, then h→i (l) = 0d and f→h (h→j , zi;Θ
→
h ) = 0d by Proposition 26.

• If tl < i < i + 1, then ∥h→i (l)− xtl∥∞ ≤ ε by induction hypothesis, and
f→h (h→j , zj ;Θ

→
h ) = 0d.

• Finally, if tl = i < i+ 1, then h→i (l) = 0 and ∥f→h (h→i , zi;Θ
→
h )− xtl∥∞ ≤ ε.

Note that since
∥∥h→j ∥∥2 ≤ rh for all j ∈ [N ], the projection Πrh will always be identity through the

forward pass, concluding the proof.

By symmetry, the same construction for f←h would yield a similar guarantee on h←j .

The last step is to design fy(h
→,h←, z;Θy) such that

fy(h
→,h←, zi;Θy) ≈ g

(
h→ + h← + (x⊤i 1[t1 = i], . . . ,x⊤i 1[tq = i])⊤

)
.

The following proposition provides the end-to-end RNN guarantee for approximating simple qSTR
models.
Proposition 28. Suppose g satisfies Assumption 2. Then there exist RNN weights ΘRNN with
vec(ΘRNN) ∈ Rp (i.e. with p parameters) and rh ≥ √

qrx +
√
ε2NN/(rarw), such that

sup
i∈[N ]

∣∣g(xt1 , . . . ,xtq )− ŷ(p;ΘRNN)i
∣∣2 ≤ 4ε2NN (B.13)

for all t ∈ [N ]q and ∥xj∥2 ≤ rx for all j ∈ [N ]. Additionally, we have

∥vec(ΘRNN)∥2 ≤ poly(rx, De, rw, ra, ε
−1
2NN), p ≤ poly(rx, De,mg, rw, ra, ε

−1
2NN), (B.14)

and f→h , f←h do not depend on h→ and h←, namely the first dh columns of W→
1 and W←

1 that are
multiplied by h→ and h← respectively are zero.

Proof. As the proof of this proposition mostly follows from the previous proofs in this section, we
only state the procedure for obtaining the desired weights.

Let (vj)
dh
j=1 denote the standard basis of Rdh . Since σ(z) − σ(−z) = z, we can implement the

identity mapping in Rdh via a two-layer feedforward network with the following weights

W id =


v⊤1
−v⊤1

...
v⊤dh

−v⊤dh

, bid = 02dh
,Aid =

(
1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
0 0 0 0 . . . 1 −1

)
,

where W id ∈ R2dh×dh , bid ∈ R2dh , and Aid ∈ Rdh×2dh . Let W 1, b1, Ã1, W̃ 2, b2, Ã2 be
given as in the proof of Proposition 26, for achieving an L∞ error of ε̃, to be fixed later. Recall
zi = (x⊤i ,ω

⊤
i ,ω

⊤
t1 , . . . ,ω

⊤
tq )
⊤. In the following, we remove the zero columns of W 1 corresponding

to the h part of the input (see Lemma 23), which does not change the resulting function. Our
construction can then be denoted by

h→i
Aidσ(W id·)−−−−−−−−→ h→i

Aidσ(W id·)−−−−−−−−→ h→i ↘

h←i
Aidσ(W id·)−−−−−−−−→ h←i

Aidσ(W id·)−−−−−−−−→ h←i → h→i + h←i + χ2

a⊤
g σ(W g·+bg)−−−−−−−−−→ ŷRNN(p;ΘRNN)i

zi
Ã1σ(W 1·+b1)−−−−−−−−−→ χ1

Ã2σ(W̃ 2·+b2)−−−−−−−−−→ χ2 ↗
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Note that the addition above can be implemented exactly by using the fact that σ(z1 + z2 + z3)−
σ(−z1 − z2 − z3) = z1 + z2 + z3. Specifically, the weights of this layer are given by

W add =


v⊤1 v⊤1 v⊤1
−v⊤1 −v⊤1 −v⊤1

...
...

...
v⊤dh

v⊤dh
v⊤dh

−v⊤dh
−v⊤dh

−v⊤dh

, badd = 02dh
, Aadd = Aid,

where W add ∈ R2dh×3dh , badd ∈ R2dh , Aadd ∈ Rdh×2dh .

Let Θ→h (and similarly Θ←h ) be given by Proposition 26 with corresponding error εh. Using the
shorthand notation xt = (xt1 , . . . ,xtq ) ∈ Rdq and x̂t = h→i + h←i + χ2, we have

∥h→i + h←i + χ2 − x̂t∥2 ≤

∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj , t, j)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥h←i −
i+1∑
j=N

Ψ(xj , t, j)

∥∥∥∥∥∥
2

+ ∥χ2 −Ψ(xi, t, i)∥2

≤
√
qd(2εh + ε̃),

which holds for all input prompts p with ∥xj∥2 ≤ rx for all j ∈ [N ]. Finally, we have

sup
∥xj∥2≤rx, ∀j∈[N ]

∣∣g(xt)− a⊤g σ(W gx̂t + bg)
∣∣ ≤ sup
∥xj∥2≤rx, ∀j∈[N ]

∣∣g(xt)− a⊤g σ(W gxt + bg)
∣∣

+ sup
∥xj∥2≤rx, ∀j∈[N ]

∣∣a⊤g σ(W gxt + bg)− a⊤g σ(W gx̂t + bg)
∣∣

≤
√
ε2NN + rarw

√
qd(2εh + ε̃).

Choosing εh =
√
ε2NN/(4

√
qdrarw) and ε̃ =

√
ε2NN/(2

√
qdrarw), we obtain RNN weights that

saitsfy ∥vec(ΘRNN)∥2 ≤ poly(rx, De, ra, rw, ε
−1
2NN), completing the proof.

B.4 Generalization Upper Bounds for RNNs

Recall the state transitions

h→j+1 = Πrh

(
h→j + f→h (h→j , zj ;Θ

→
h )
)

h←j−1 = Πrh

(
h←j + f←(h←, zj ;Θ

←)
)
.

We will use the notation h→j (p;Θ→h ) and h←j (p;Θ←j ) to highlight the dependence of the hidden
states on the prompt p and parameters Θ→h and Θ←h . We then define the prediction function as
F (p;Θ→h ,Θ←h ,Θy) where

F (p;Θ→h ,Θ←h ,Θy)j = fy(h
→
j (p;Θ→h ),h←j (p;Θ←h ), zj ;Θy).

We can now define the function class

FRNN = {p, j 7→ F (p;Θ→h ,Θ←h ,Θy)j : Θ→h ,Θ←h ,Θy ∈ ΘRNN}.

We can then define our distance function by going over {p, j ∈ Sn},

d∞(F, F̂ ) = sup
p,j∈Sn

∣∣∣F (p;Θ→h ,Θ←h ,Θy)j − F (p; Θ̂
→
h , Θ̂

←
h ,Θy)j

∣∣∣.
We will further use the notation

fy(·;Θy) = W y
Ly

σ
(
W y

Ly−1 . . . σ(W
1
L1
(·) + by1) . . .+ byLy−1

)
∈ Fy

NN,Ly
,

and
f→h (·;Θ→h ) = W→

Lh
σ(W→

Lh−1 . . . σ(W
→
1 (·) + b→1 ) . . .+ b→Lh−1) ∈ F→NN,Lh

.

We similarly define F←NN,Lh
. The covering number of FRNN can be related to that of Fy

NN,Ly
, F→NN,Lh

,
and F→NN,Ly

, through the following lemma.
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Lemma 29. Suppose for every Θ→h ,Θ←h ,Θy ∈ ΘRNN we have∥∥∥W y
Ly

. . .W y
1

∥∥∥
op

≤ Cy
W ,

∥∥W→
Lh

∥∥
op . . .

∥∥W→
1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op . . .

∥∥W←
1,h

∥∥
op

≤ αN ,

where αN ≤ N−1. Then,

log C(FRNN, d∞, ϵ) ≤ log C(Fy
NN,Ly

, d∞, ϵ/2) + log C
(
F→NN,Lh

, d∞,
ϵ

4eCy
wN

)
+ log C

(
F←NN,Lh

, d∞,
ϵ

4eCy
wN

)
Proof. Throughout the proof, we will use the shorthand notation h→j = h→j (p;Θ→h ) and ĥ

→
j =

h→j (p; Θ̂
→
h ), with similarly define h←j and ĥ

←
j . We begin by observing

sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ;Θy)− fy(ĥ
→
j , ĥ

←
j , zj ; Θ̂y)

∣∣∣ ≤ E1 + E2

where

E1 := sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ;Θy)− fy(h
→
j ,h←j , zj ; Θ̂y)

∣∣∣
E2 := sup

p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ; Θ̂y)− fy(ĥ
→
j , ĥ

←
j , zj ; Θ̂y)

∣∣∣.
Then, we observe that E1 = d∞(fy(·;Θy), fy(·; Θ̂y)).Thus, we can ensure E1 ≤ ϵ/2 with a covering
{Θ̂y} of size C(Fy

NN,Ly
, d∞, ϵ/2). Hence, we move to E2.

Using the Lipschitzness of fy , we obtain

E2 ≤
∥∥∥W y

Ly
. . .W y

1

∥∥∥
op

(
sup
p,j

∥∥∥h→j − ĥ→j

∥∥∥
2
+ sup

p,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2

)
≤ Cy

W

(
sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
+ sup

p,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2

)
.

Further, by Lipschitzness of Πrh , we have

sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
≤ sup

p,j

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
+ sup

p,j

∥∥∥f→h (h→j−1, zj−1; Θ̂
→
h )− f→h (ĥ

→
j−1, zj−1; Θ̂

→
h )
∥∥∥
2︸ ︷︷ ︸

=:Eh1

+ sup
p,j

∥∥∥f→h (h→j−1, zj−1;Θ
→
h )− f→h (h→j−1, zj−1; Θ̂

→
h )
∥∥∥
2︸ ︷︷ ︸

=:Eh2

.

By the Lipschitzness of f→h , for the second term we have

Eh
1 ≤

∥∥∥Ŵ→
Lh

. . . Ŵ
→
1,h

∥∥∥
op

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
≤ αN

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
.

Moreover, we have Eh
2 ≤ d∞(f→h (·;Θ→h ), f→h (·; Θ̂

→
h )). Consequently, we obtain

sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
≤ (1 + αN ) sup

p,j

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
+ d∞(f→h (·;Θ→h ), f→h (·; Θ̂

→
h ))

≤
j−2∑
l=0

(1 + αN )ld∞(f→h (·;Θ→h ), f→(·; Θ̂
→
h ))

≤ (1 + αN )j−1 − 1

αN
d∞(f→h (·;Θ→h ), f→h (·; Θ̂

→
h ))

≤ eNd∞(f→h (·;Θ→h ), f→h (·; Θ̂
→
h )).
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We can similarly obtain an upper bound on supp,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2
. Hence, we have

E2 ≤ eCy
wN
{
d∞(f→h (·;Θ→h ), f→h (·; Θ̂

→
h )) + d∞(f←h (·;Θ←h ), f←h (·; Θ̂

←
h ))

}
.

Therefore, by constructing ϵ/(2eCy
wN) coverings {Θ̂

→
h } and {Θ̂

←
h } which have sizes

C(F→NN,Lh
, ϵ/(4eCy

wN)), and, C(F←NN,Lh
, ϵ/(4eCy

wN))

respectively, we complete the covering of FRNN.

The next step is to bound the covering number of the class of feedforward networks, as performed by
the following lemma.
Lemma 30. Let

FNN,L = {x 7→ WLσ(WL−1σ(. . .W 2(σ(W 1x+ b1) . . .+ bL−1) : ΘNN ∈ ΘNN},
where ΘNN = (W 1, b1, . . . ,WL−1, bL−1,WL) and vec(ΘNN) ∈ Rp. Further, define the distance
function

d∞(f, f ′) = sup
∥x∥≤R

|f(x)− f ′(x)|, ∀f, f ′ ∈ FNN,L.

Suppose ∥W l∥F, ∥bl∥2 ≤ R for all l. Then, for any absolute constant depth L = O(1), we have

log C(FNN,L, d∞, ϵ) ≤ p log(1 + poly(R)/ϵ).

Proof. Let x0 = x, xl = σ(W lxl−1 + bl) for l ∈ [L− 1], and xL = WLxL−1. Also let (x̂l) be
the corresponding definitions under weights and biases (Ŵ l) and (b̂l). First, we remark that for
l ∈ [L− 1],

∥xl∥2 ≤ ∥W l∥op∥xl−1∥2 + ∥bl∥2 (B.15)

≤
l∏

i=1

∥W i∥op∥x0∥2 +
l−1∑
i=0

∥bl−i−1∥2
i∏

j=0

∥W l−j∥op + ∥bl∥2

≤ poly(R), (B.16)

where we used the fact that L is an absolute constant. Next, for l ∈ [L− 1], we have

∥xl − x̂l∥2 ≤
∥∥∥W lxl−1 − Ŵ lx̂l−1

∥∥∥
2
+
∥∥∥bl − b̂l

∥∥∥
2

≤ ∥W l∥op∥xl−1 − x̂l−1∥2 + ∥x̂l−1∥2
∥∥∥W l − Ŵ l

∥∥∥
op
+
∥∥∥bl − b̂l

∥∥∥
2

≤ poly(R)
{
∥xl−1 − x̂l−1∥2 +

∥∥∥W l − Ŵ l

∥∥∥
F
+
∥∥∥bl − b̂l

∥∥∥
2

}
.

Once again, using the fact that L is an absolute constant and by expnaind the above inequality, we
obtain

∥xl − x̂l∥2 ≤ poly(R)

{
l∑

i=1

∥∥∥W i − Ŵ i

∥∥∥
F
+
∥∥∥bi − b̂i

∥∥∥
2

}
.

Finally, we have the bound

∥xL − x̂L∥2 ≤ ∥WL∥op∥xL−1 − x̂L−1∥2 + ∥x̂L−1∥2
∥∥∥WL − ŴL

∥∥∥
op

≤ poly(R)
∥∥∥vec(ΘNN)− vec(Θ̂NN)

∥∥∥
2
.

Consequently, we have

log C(FNN,L, d∞, ϵ) ≤ log C({Θ ∈ Rp : ∥Θ∥2 ≤ poly(d, q)}, ∥·∥2, ϵ/poly(R))

≤ p log(1 + poly(R)/ϵ),

where the last inequality follows from Lemma 41.

Therefore, we immediately obtain the following bound on the covering number of FRNN.
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Corollary 31. Suppose ΘRNN ⊆ {Θ ∈ Rp : ∥vec(Θ)∥2 ≤ R} and
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and

j ∈ [N ]. Then,
log C(FRNN, d∞, ϵ) ≤ p log(1 + poly(R)N/ϵ).

We can now proceed with standard Rademacher complexity based arguments. Similar to the argument
in Appendix A.2, we define a truncated version of the loss by considering the loss class

LRNN
τ = {(p,y, j) 7→ (fRNN(p)j − yj)

2 ∧ τ : fRNN ∈ FRNN},

where the constant τ > 0 will be chosen later. We then have the following bound on the empirical
Rademacher complexity of LRNN

τ .

Lemma 32. In the same setting as Corollary 31 and with τ ≥ 1, we have

R̂n(LRNN
τ ) ≤ O

τ

√
p log(RNnτ

)
n

.

Proof. By a standard discretization bound for Rademacher complexity, for all ϵ > 0 we have

R̂n(LRNN
τ ) ≤ ϵ+ τ

√
2 log C(LRNN

τ , d∞, ϵ)

n

≤ ϵ+ τ

√
2 log C(FRNN, d∞, ϵ/(2

√
τ))

n

≤ ϵ+ τ

√
2p log(1 + poly(R)N

√
τ/ϵ)

n
,

where the second inequality follows from Lipschitzness of (·)2 ∧ τ . We conclude the proof by
choosing ϵ = 1/

√
n.

We can directly turn the above bound on the empirical Rademacher complexity into a bound on
generalization gap.

Corollary 33. Let Θ̂ = argminΘ∈ΘRNN
R̂RNN

n (Θ). Suppose ΘRNN ⊆ {Θ ∈ Rp : ∥vec(Θ)∥2 ≤ R},
and additionally

√
3Cxed log(nN) + q + 1 ≤ R. Then, for every δ > 0, with probability at least

1− δ − (nN)−1/2 over the training set, we have

RRNN
τ (Θ̂)− R̂RNN

τ (Θ̂) ≤ O

(
τ

√
p log(RNnτ)

n
+ τ

√
log(1/δ)

n

)
.

Proof. We highlight that for the specified R, Lemma 12 guarantees
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and

j ∈ [N ] with probability at least 1− (nN)−1/2. Standard Rademacher complexity generalization
arguments applied to Lemma 32 complete the proof.

Note that R̂RNN
τ (Θ̂) ≤ R̂RNN

n (Θ̂) which is further controlled in the approximation section by Propo-
sition 28. Therefore, the last step is to demonstrate that choosing τ = poly(d, q, log n) suffices to
achieve a desirable bound on RRNN(Θ̂) through RRNN

τ (Θ̂).

Lemma 34. Consider the setting of Corollary 33, and additionally assume R ≥ rh. Then, for some
τ = poly(R, log n), we have

RRNN(Θ̂)−RRNN
τ (Θ̂) ≤

√
1

n
.

.

Proof. The proof of this lemma proceeds similarly to the proof of Lemma 20. By defining

∆y :=
∣∣∣ŷRNN(p; Θ̂)j − yj

∣∣∣
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and following the same steps (where we recall j ∼ Unif([N ])), we obtain

RRNN(Θ̂) = E
[
∆2

y1[∆y ≤
√
τ ]
]
+ E

[
∆2

y1[∆y >
√
τ ]
]

≤ RRNN
τ (Θ̂) + E

[
∆4

y

]1/2P(∆y ≥
√
τ
)1/2

,

where

E
[
∆4

y

]1/2 ≤ 2E
[
y4j
]1/2

+ 2E
[
ŷRNN(p; Θ̂)4j

]1/2
and

P
(
∆y >

√
τ
)
≤ P

(
|yj | ≥

√
τ

2

)
+ P

(∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≥ √
τ

2

)
From Assumption 1, we have E

[
y4j
]1/2

≲ 1 and P(|yj | ≥
√
τ/2) ≤ e−Ω(τ1/s). For the prediction of

the RNN, we have the following bound (see (B.16) for the derivation)∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≤ Ly∏
l=1

∥W y
l ∥op

∥∥(h→j ,h←j , zj)
∥∥
2
+

Ly−1∑
i=0

∥∥∥byLy−i−1

∥∥∥
2

i∏
l=0

∥∥∥W y
Ly−l

∥∥∥
op
.

As a result, ∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≤ poly(R)(1 + rh + ∥zj∥).

As a result, by the fact that rh ≤ R and Assumption 1, after taking an expectation, we immediately
have

E
[
ŷRNN(p; Θ̂)4j

]1/2
≤ poly(R).

On the other hand, from Lemma 12 (with n = N = 1), we obtain

P
(∣∣∣ŷRNN(p; Θ̂)

∣∣∣ ≥ √
τ

2

)
≤ e−Ω(τ/ poly(R))

Therefore, for some τ = poly(R, log n) we can obtain the bound stated in the lemma.

We can summarize the above facts into the proof of Theorem 5.

Proof of Theorem 5. From the approximation bound of Proposition 28, we know that for some
R = poly(d, q, ra, rw, ε

−1
2NN, log(nN)) and the constraint set

ΘRNN =
{
Θ : ∥vec(Θ)∥2 ≤ R,

∥∥W→
Lh

∥∥
op . . .

∥∥W→
1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op . . .

∥∥W←
1,h

∥∥
op

≤ αN

}
with any αN ≤ N−1, we have R̂RNN(Θ̂) ≲ ε2NN. The proof is then completed by letting rh =

√
qrx+√

ε2NN/(rarw), invoking the generalization bound of Corollary 33, and the bound on truncation error
given in Lemma 34, with R = poly(d, q, ra, rw, ε

−1
2NN, log(nN)).

B.5 Proof of Proposition 6

The crux of the proof of Proposition 6 is to show the following position, which provides a lower
bound on the prediction error at any fixed position in the prompt.
Proposition 35. Consider the same setting as in Proposition 6. There exists an absolute constant
c > 0, such that for any fixed j ∈ [N ], if

E
[
(ŷRNN(p)j − yj)

2
]
≤ c,

then

dh ≥ Ω
( N

log(1 + L2∥U∥2op)

)
, and ∥U∥2op ≥ Ω

( N

L2 log(1 + dh)

)
.

We shortly remark that the statement of Proposition 6 directly follows from that of Proposition 35.
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Proof of Proposition 6. Let c be the constant given by Proposition 35. Suppose that

1

N
E
[
∥ŷRNN(p)− y∥22

]
≤ c.

Then,

min
j∈[N ]

E
[
(ŷRNN(p)j − yj)

2
]
≤ 1

N

N∑
j=1

E
[
(ŷRNN(p)j − yj)

2
]
≤ c.

As a result, there exists some j ∈ [N ] such that E
[
(ŷRNN(p)j − yj)

2
]
≤ c. We can then invoke

Proposition 35 to obtain lower bounds on dh and ∥U∥op, completing the proof of Proposition 6.

We now present the proof of Proposition 35.

Proof of Proposition 35. Let hj = (U→h→j ,U←h←j ) ∈ R2dh , and define

Φ(hj) :=
(
fy(hj ,xj , (1), j), . . . , fy(hj ,xj , (j−1), j), fy(hj ,xj , (j+1), j), . . . , fy(hj ,xj , (N), j)

)⊤
∈ RN−1.

In other words, Φ : R2dh → RN−1 captures all possible outcomes of ŷRNN(p)j depending on the
value of tj (excluding the case where tj = j). Ideally, we must have fy(hj ,xj , (k), j) ≈ g(xk).

Let p(1), . . . ,p(P ) be an i.i.d. sequence of prompts, then modify them to share the jth input token,
i.e. x(i)

j = x
(1)
j for all i ∈ [P ], with P to be determined later. Note that by our assumption on prompt

distribution, this operation does not change the marginal distribution of each p(i). Similarly, define

g(i) := (g(x
(i)
1 ), . . . , g(x

(i)
j−1), g(x

(i)
j+1), . . . , g(x

(i)
N ))⊤ ∈ RN−1

for each prompt. We also let h(i)→
j ,h(i)←

j be the corresponding hidden states obtained from passing

these prompts through the RNN, and define h
(i)
j using them. Note that g(1), . . . , g(P ) is an i.i.d.

sequence of vectors drawn from N (0, IN−1).

We now define two events E1 and E2, where

E1 =
{
∀ i ̸= k,

∥∥∥g(i) − g(k)
∥∥∥
2
≥ εg

√
N − 1

}
,

and

E2 =

{
P∑
i=1

1

[∥∥∥Φ(h(i)
j )− g(i)

∥∥∥
2
≥ ε

√
N

δ

]
≤ 2δ2P

}
,

where δ ∈ (0, 1) will be chosen later. In other words, E1 is the event in which g(i) are “packed” in
the space, while E2 is the event where the RNN will be “wrong” at position j on at most 2δ2 fraction
of the prompts. We will now attempt to lower bound P(E1 ∩ E2).

Note that g(i) − g(k) (d)
=

√
2g where g ∼ N (0, IN−1). By a union bound we have

P
(
EC

1

)
≤
∑
i̸=k

P
(∥∥∥g(i) − g(k)

∥∥∥
2
≤ εg

√
N − 1

)
≤ P 2P

(√
2∥g∥2 ≤ εg

√
N − 1

)
≤ P 2P

(
∥g∥2 − E[∥g∥2] ≤

( εg√
2
− c
)√

N − 1

)
≤ P 2e−(c−εg/

√
2)2(N−1)/2,

for all εg ≤ c
√
2, where c > 0 is an absolute constant such that c

√
N − 1 ≤ E[∥g∥], and the last

inequality holds by subGaussianity of the norm of a standard Gaussian random vector. From here on,
we will choose εg = c/

√
2 (and simply denote εg ≍ 1), which implies P

(
EC

1

)
≤ P 2e−c

2(N−1)/8.

To lower bound P(E2), consider a random prompt-label pair p,y and the corresponding g. Note that
in the prompt p, the index tj is drawn independently of the rest of p, and has a uniform distribution
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in [N ]. Let p[tj 7→ k] denote a modification of p where we set tj equal to k, and let y[tj 7→ k] be
the labels corresponding to this modified prompt. We then have

1

N
∥Φ(hj)− g∥22 =

1

N

∑
k ̸=j

(
ŷRNN(p[tj 7→ k])j − g(xk)

)2
≤ 1

N

N∑
k=1

(
ŷRNN(p[tj 7→ k])j − y(p[tj 7→ k])j

)2
= Etj

[
(ŷRNN(p)j − yj)

2
]

As a result, via a Markov inequality, we obtain

P
(

1

N
∥Φ(hj)− g∥22 ≥ ε2

δ2

)
= P

(
Etj

[
(ŷRNN(p)j − yj)

2
]
≥ ε2

δ2

)
≤

δ2 E
[
(ŷRNN(p)j − yj)

2
]

ε2

≤ δ2.

Going back to our lower bound on P(E2), define the Bernoulli random variable

z(i) = 1

[∥∥∥Φ(h(i)
j )− g(i)

∥∥∥
2
≥ ε

√
N

δ

]
.

Note that (z(i)) are i.i.d. since h
(i)
j and g(i) do not depend on xj . Then, by Hoeffding’s inequality,

P
(
EC

2

)
= P

 P∑
j=1

z(i) ≥ 2δ2P

 ≤ e−2Pδ4 .

We now have our desired lower bound on P(E1 ∩ E2), given by

P(E1 ∩ E2) ≥ 1− P
(
EC

1

)
− P

(
EC

2

)
≥ 1− e−2Pδ4 − P 2e−c

2(N−1)/8.

Suppose δ ≥ e−c
′N for some absolute constant c′ > 0. Then, choosing P = ⌊ec′′N⌋ for some

absolute constant c′′ > 0 would ensure P(E1 ∩ E2) > 0, and allows us to look at this intersection.

Let I = {i : z(i) = 0}. On E1, and for i, k ∈ I with i ̸= k we have∥∥∥Φ(h(i)
j )− Φ(h

(k)
j )
∥∥∥
2
≥
∥∥∥g(i) − g(k)

∥∥∥
2
−
∥∥∥Φ(h(i)

j )− g(i)
∥∥∥
2
−
∥∥∥Φ(h(k)

j )− g(k)
∥∥∥
2

≥ εg
√
N − 1− 2ε

√
N

δ
=: L

√
Nεh.

Note that from the Lipschitzness of fy , we have
∥∥∥Φ(h(i)

j )− Φ(h
(k)
j )
∥∥∥
2
≤ L

√
N

rh

∥∥∥h(i)
j − h

(k)
j

∥∥∥
2
. As

a result, the set
{
h
(i)
j : i ∈ I

}
is an rhεh-packing for {h : ∥h∥2 ≤

√
2∥U∥oprh}. Using Lemma 41,

the log packing number can be bounded by

log I ≤

{
dh log

(
1 +

2
√
2∥U∥op

εh

)}
∧

{
2∥U∥2op

ε2h

(
1 + log

(
1 +

Mε2h
2∥U∥2op

))}
.

On E1 ∩E2, we have I ≥ (1− 2δ2)P ≥ (1− 2δ2)ecN for some absolute constant c > 0. Therefore,

log(1− 2δ2) + cN

log(1 + 2
√
2∥U∥op/εh)

≤ dh,

and
ε2h
(
log(1− 2δ2) + cN

)
2 + 2 log(1 + dhε2h/(2∥U∥2op))

≤ ∥U∥2op.

Choosing δ = 1/2 and recalling εg ≍ 1, we obtain εh ≳ (1 − Cε)/L for some absolute constant
C > 0, which concludes the proof.
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B.6 Proof of Theorem 7

We first provide an estimate for the capacity of two-layer feedforward networks to interpolate n
samples.

Lemma 36. Suppose {x(i)}ni=1
i.i.d.∼ N (0, Id) and let y(i) = ⟨u,xti⟩ for arbitrary ti ∈ [N ] and

u ∈ Sd−1. Then, there exists an absolute constant c > 0 such that for all m ≥ n and with probability
at least c, there exist data dependent weights a, b ∈ Rm and W ∈ Rm×d, such that

a⊤σ(Wx(i) + b) = y(i), ∀ i ∈ [n]

and
∥a∥22 + ∥W ∥2F + ∥b∥22 ≤ O(n3).

Proof. The proof of Lemma 36 is an immediate consequence of two lemmas.

1. Lemma 37 shows that the inputs x(1), . . . ,x(n) can be projected to sufficiently separated
scalar values with a unit vector v.

2. Lemma 38 perfectly fits n univariate samples using a two-layer ReLU neural network. When
invoking this lemma, we use ∥z∥2 = O(

√
n) and ϵ = Ω(1/n2) as given by Lemma 37.

The only missing piece is to upper bound ∥y∥2 appearing in the final bound of Lemma 38. To that
end, we apply the following Markov inequality,

P
(
∥y∥22 ≥ 6n

)
≤

E
[
∥y∥22

]
6n

≤ 1

6
.

As the statement of Lemma 37 holds with probability at least 1
3 , this suggests that the statement of

Lemma 36 holds with probability at least 1
6 , concluding the proof.

Lemma 37. Suppose {x(i)}ni=1
i.i.d.∼ N (0, Id). Then, with probability at least 1/3, there exists some

v ∈ Sd−1 (dependent on {x(i)}) such that for all i ̸= j,∣∣∣v⊤x(i) − v⊤x(j)
∣∣∣ = Ω

(
1

n2

)
. (B.17)

and
∑n

i=1(v
⊤x(i))2 = O(n).

Proof. The proof follows the probabilistic method. Sample v ∼ Unif(Sd−1) independent of {x(i)}.
For each i ̸= j, let

ai,j = u⊤(x(i) − x(j))

and note that ai,j |v ∼ N (0, 2). We apply basic Gaussian anti-concentration to place a lower bound
on the probability of any ai,j being close to zero,

P(∃i, j s.t. |ai,j | ≤ ϵ) ≤
∑
i ̸=j

P(|ai,j | ≤ ϵ) =
∑
i ̸=j

E[P(|ai,j | ≤ ϵ |v)] ≤ n2ϵ√
π

≤ 1

3
,

where the last inequality follows by taking ϵ =
√
π/(3n2). Furthermore,

P

(
n∑

i=1

(v⊤x(i))2 ≥ 3n

)
≤
∑n

i=1 E
[
(v⊤x(i))2

]
3n

=
1

3
,

by Markov’s inequality. Combining the two events completes the proof.

Lemma 38. Consider some z = (z(1), . . . , z(n))⊤ ∈ Rn and y = (y(1), . . . , y(n))⊤ ∈ Rn, such
that

∣∣z(i) − z(j)
∣∣ ≥ ϵ for all i ̸= j. For simplicity, assume ϵ ≤ 1. Then, there exists a two-layer ReLU

neural network

g(t) =

m∑
j=1

ajσ(wjt+ bj)
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that satisfies g(z(i)) = y(i) for all i ∈ [n], m = n, and

∥a∥22 + ∥w∥22 + ∥b∥22 = O

∥y∥2
√

n+ ∥z∥22
ϵ

. (B.18)

Proof. Without loss of generality, we assume that z(1) ≤ · · · ≤ z(n). Then, we define the neural
network g as follows:

g(t) =

n∑
i=1

a′iσ(w
′
it− b′i) = y(1)σ(t− z(1) + 1) +

(
y(2) − y(1)

z(2) − z(1)
− y(1)

)
σ(t− z(1))

+

n∑
i=3

(
y(i) − y(i−1)

z(i) − z(i−1)
− y(i−1) − y(i−2)

z(i−1) − z(i−2)

)
σ(t− z(i−1)).

One can verify by induction that g(z(i)) = y(i) for every i by noting that the slope of g is

(y(i) − y(i−1))/(z(i) − z(i−1))

between (z(i−1), y(i−1)) and (z(i), y(i)). From the above, we have w′i = 1,
∥∥b′∥∥2

2
≲ ∥z∥22 + 1, and

∥a′∥22 ≲ ∥y∥22/ϵ2. For α =
(
(∥z∥22 + n)ϵ2/∥y∥22

)1/4
, let u = αu′, w = w′/α, and b = b′/α. By

homogeneity, the neural network with weights (u,w, b) has identical outputs to that of (u′,w′, b′)
and satisfies (B.18), completing the proof.

We are now ready to present the proof of the sample complexity lower bound for RNNs.

Proof of Theorem 7. First, consider the case where dh < n. Note that as a function of Uh =
(U→h→,U←h←), fy is L-Lipschitz with

L =
∥∥WLy

∥∥
op

∥∥WLy−1
∥∥

op . . . ∥W 2∥op.

Using the AM-GM inequality,(
L2∥U∥2op

)1/Ly

≤ 1

Ly
∥vec(Θ)∥22 ≤ eN

c/Ly .

As a result, we have L∥U∥op ≤ eN
c/2. By invoking Proposition 26, to obtain population risk less

than some absolute constant c3 > 0, we need

dh ≥ Ω

(
N

log(1 + L2∥U∥2op)

)
≥ Ω(N1−c).

This implies n ≥ dh ≥ Ω(N1−c). By taking c1 in the theorem statement to be less than 1− c, we
obtain a contradiction. Therefore, we must have either a population risk at least c3 or dh ≥ n.

Suppose now that dh ≥ n. We show that with constant probability, we can construct an RNN that
interpolates the n training samples with norm independent of n. We simply let Θ→h = 0, Θ←h = 0,
U = 0, and describe the construction of WLy

, . . . ,W 2,W y, and (bl) in the following. Using the
construction of Lemma 36, we can let

W y =

(
W 0n×dE

0(m−n)×d 0(m−n)×dE

)
, b1 =

(
b

0m−n

)
, W 2 =

 a⊤ 0⊤m−n
−a⊤ 0⊤m−n

0(m−2)×n 0(m−2)×(m−n)

,

where W ∈ Rn×d, and a, b ∈ Rn are given by Lemma 36. Then,

W⊤
2 σ(W yx

(i)

j(i)
+ by) = (y

(i)

j(i)
,−y

(i)

j(i)
, 0, . . . , 0)⊤.

For (W l)
Ly−1
l=3 , we let (Wl)11 = (Wl)22 = 1, and choose the rest of the coordinates of W l to be

zero. Therefore, the output of the lth layer is given by

(σ(y
(i)

j(i)
), σ(−y

(i)

j(i)
), 0, . . . , 0)⊤.
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For the final layer, we let WLy = (1,−1, 0, . . . , 0). Using the fact that σ(z) − σ(−z) = z, we
obtain

fy(U
→h→j ,U←h←j , z

(i)

j(i)
;Θy) = y

(i)

j(i)

We have found Θ such that R̂RNN
n (Θ) = 0 and ∥vec(Θ)∥22 ≤ O(n3) (recall that Ly ≤ O(1)). As a

result, Θ̂ε must also satisfy
∥∥∥vec(Θ̂ε)

∥∥∥2
2
≤ O(n3).

On the other hand, notice that as a function of Uh = (U→h→,U←h←), fy is L-Lipschitz with

L =
∥∥WLy

∥∥
op

∥∥WLy−1
∥∥

op . . . ∥W 2∥op.

From Proposition 6, using the fact that ∥·∥op ≤ ∥·∥F and the AM-GM inequality, we obtain

1

Ly
∥vec(Θ)∥22 ≥

(
L2∥U∥2op

)1/Ly

≥ Ω

((
N

log dh

)1/Ly
)

to achieve population risk less than some absolute constant c3 > 0. Recall that log dh ≤ N c for
some c < 1. The proof is completed by noticing that unless n ≥ Ω(N c1) for some absolute constant
c1 > 0,

∥∥∥vec(Θ̂ε)
∥∥∥
2

will always be less than the lower bound above, with some absolute constant
probability c2 > 0 over the training set.

C Auxiliary Lemmas

Lemma 39. Suppose A ∈ Rd1×d2 and B ∈ Rd2×d3 . Then, for all r, s ≥ 1 and p, q ≥ 1 such that
1/p+ 1/q = 1, we have

∥AB∥r,s ≤ ∥A∥r,p∥B∥q,s.

Proof. First, we note that for any vector b ∈ Rd2 we have

∥Ab∥r =

∥∥∥∥∥∥
d2∑
j=1

bjA:,j

∥∥∥∥∥∥
r

≤
d2∑
j=1

|bj |∥A:,j∥r ≤ ∥A∥r,p∥b∥q,

where the last inequality holds for all conjugate indices p, q and follows from Hölder’s inequality.
We now have

∥AB∥sr,s =
d3∑
j=1

∥AB:,j∥sr ≤
d3∑
j=1

∥A∥sr,p∥B:,j∥sq = ∥A∥r,p∥B∥q,s.

The next lemma follows from standard Gaussian integration.

Lemma 40. Suppose x ∼ N (µ,Σ). Then Var(∥x∥2) = 2 tr(Σ⊤Σ) + 4µ⊤Σµ.

The following lemma combines two different techniques for establishing a packing number over
the unit ball, the first construction uses volume comparison, whereas the second construction uses
Maurey’s sparsification lemma, both of which are well-established in the literature.

Lemma 41. Let P denote the ϵ-packing number of the unit ball in Rd. We have

logP ≤
{
d log

(
1 +

2

ϵ

)}
∧
{

1

ϵ2
(1 + log(1 + 2dϵ2))

}
.

Finally, the lemma below allows us to approximate arbitrary Lipschitz functions with two-layer
feedforward networks.

Lemma 42 ([Bac17, Propositions 1 and 6]). Suppose f : Rd → R satisfies |f(x)| ≤ LR and
|f(x)− f(x′)| ≤ L∥x− x′∥2 for all x,x′ ∈ Rd with ∥x∥2 ≤ R and ∥x′∥2 ≤ R and some
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constants L,R > 0. Then, for every ε > 0, there exists a positive integer m and W ∈ Rm×d,
b ∈ Rm, and a ∈ Rm, such that

sup
∥x∥2≤R

∣∣f(x)− a⊤σ(Wx+ b)
∣∣ ≤ ε.

Additionally, we have

m ≤ Cd

(LR(1 + log(LR/ε))

ε

)d
,
∥∥∥W⊤

∥∥∥
2,∞

≤ 1

R
, ∥b∥∞ ≤ 1, ∥a∥2 ≤ CdLR√

m
·
(
LR(1 + log(LR/ε))

ε

)d+1
2

.

D Proof of Theorem 9

Let u be sampled uniformly from Sd−1 independently from p = (t1,x), and note that we have

sup
u∈Sd−1

E
[
(yj − fA(Sn)(t1,WA(Sn)x)j)

2
]
≥ Eu∼Unif(Sd−1),j,y,p∼P

[
(yj − fA(Sn)(t1,WA(Sn)x)j)

2
]
,

for all A ∈ A. From this point, we will simply use f for fA(Sn) and W for WA(Sn). Next, we argue
that the output weights of any algorithm in A satisfy

wk =

n∑
i=1

α
(i)
k x(i), ∀k ∈ [m1],

for some coefficients (α(i)
k )i∈[n],k∈[m1]. This is straightforward to verify for A ∈ ASP, as

∇wk
L̂FFN(f,W ) ∈ span(x(1), . . . ,x(n)).

For A ∈ AERM, note that L̂FFN only depends on wk through its projection on span(x(1), . . . ,x(n)).
As a result, any minimum-norm ε-ERM would satisfy wk ∈ span(x(1), . . . ,x(n)).

Note that for n ≤ Nd, the span of x(1), . . . ,x(n) is n-dimensional with probability 1 over
Sn. Let v(1), . . . ,v(n) denote an orthonormal basis of span(x(1), . . . ,x(n)), and let V =
(v(1), . . . ,v(n))⊤ ∈ Rn×Nd. Recall that for the simple-1STR model considered here, yj = y =〈
u,xtq

〉
for j ∈ [N ]. Then,

Eu,y,j,p

[
(yj − f(t1,Wx)j)

2
]
≥ Eu,t1,V x[Var(y |u, t1,V x)] = Eu,t1,V x[Var(⟨P t1u,x⟩ |u, t1,V x)],

where P t1 ∈ RNd×d has the form
(
0d, . . . , Id︸ ︷︷ ︸

t1

, . . . ,0d

)⊤
. The conditioning above comes from the

fact that via training, f and W can depend on u, but the prediction depends on x only through V x.
Consequently, we replace the predicition of the FFN by the best predictor having access to u, t1, and
V x. Note that t1, u, and V x are jointly independent, and the joint distribution

(
⟨P t1u,x⟩,V x

)
is

given by N
(
0,

(
1 V P t1u

u⊤P⊤t1V
⊤ In

))
, thus we have

Var(⟨P t1u,x⟩ |u, t1,V x) = 1− ∥V P t1u∥
2
.

In particular,

Eu[Var(⟨P t1u,x⟩ |u, t1,V x)] = 1− 1

d

n∑
i=1

∥∥∥P⊤t1v(i)
∥∥∥2,

and

Eu,t1 [Var(⟨P t1u,x⟩ |u, t1,V x)] = 1− 1

Nd

N∑
t1=1

n∑
i=1

∥∥∥P⊤t1v(i)
∥∥∥2

= 1− 1

Nd

n∑
i=1

∥∥∥v(i)
∥∥∥2 = 1− n

Nd
.
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E Experimental Details and Additional Results
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Figure 3: Number of samples required to get to test
MSE loss 0.88 while training with online AdamW for
the quadratic qSTR model explained in Appendix E
with N = 7. The gap increases with larger q. A closer
theoretical analysis capturing the effect of large q can be
an interesting direction for future work.

In this section, we provide the details of our
experimental setup, as well as additional results
on the effect of q in Figure 3.

Architectures. We use a Transformer com-
posed of a multihead attention layer with q
heads, where each heads observes the entire
d+(q+1)de-dimensional input token, followed
by a fully connected ReLU layer with width
100. For the RNN, we use a simple bidirectional
RNN with a hidden state size 500× q, and a lin-
ear readout layer. For the FFN, we use a depth-3
fully connected ReLU network, where the first
layer has width Ndq and the second layer has
width 1000. The output layer of the FFN has
width N to match the input sequence.

Optimization. For Figures 1 and 3 we use
online AdamW with weight decay 0.1, where in Figure 1 we use a learning rate of 10−3 and in
Figure 3 we use a learning rate of 10−4. Each optimization step uses an independent batch size of 64
samples, and we track the test MSE loss using an independent set of 10,000 samples. For Figure 2 we
use AdamW with weight decay 0.2 and learning rate 10−3 on a fixed training set of 50,000 samples.

Data Generating Model. In all experiments, we sample x ∼ N (0, INd). For Figures 1 and 2 we
have q = 1 and define g(x1) = ⟨u,x1⟩ for a unit-norm u uniformly sampled from the unit sphere.
For Figure 3 we let g(x1, . . . ,xq) =

1√
q

∑q
i=1 He2(⟨ui,xi⟩) where He2(z) = (z2 − 1)/

√
2 is the

normalized second Hermite polynomial. We use a non-linear g as this is a more challenging setting
where e.g. Transformers require q heads by Theorem 4.

The code to reproduce all our experiments is provided at: https://github.com/mousavih/
transformers-separation.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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image generators, or scraped datasets)?
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faith effort.
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Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Justification: Our contributions are theoretical and we do not introduce new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Answer: [NA]

Justification: Our contributions are theoretical and we do not perform this type of experiment.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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