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ABSTRACT

Saliency methods seek to provide human-interpretable explanations for the output
of machine learning model on a given input. A plethora of saliency methods ex-
ist, as well as an extensive literature on their justifications/criticisms/evaluations.
This paper focuses on heat maps based saliency methods that often provide expla-
nations that look best to humans. It tries to introduce methods and evaluations for
masked-based saliency methods that are intrinsic — use just the training dataset
and the trained net, and do not use separately trained nets, distractor distributions,
human evaluations or annotations. Since a mask can be seen as a “certificate”
justifying the net’s answer, we introduce notions of completeness and soundness
(the latter being the new contribution) motivated by logical proof systems. These
notions allow a new evaluation of saliency methods, that experimentally provides
a novel and stronger justification for several heuristic tricks in the field (T.V. reg-
ularization, upscaling).

1 INTRODUCTION

Why did the deep net give a certain answer on a particular input, and can we trust the answer?
Saliency methods try to provide explanations, and are thus of great interest from viewpoint of human
explainability, fairness, robustness, etc. This paper restricts attention to methods that return an
importance score for each coordinate of the input —usually visualized as a heat map— that captures
its importance to the final decision.1 We refer the reader to Samek et al. (2019) for an extensive
survey and Section 2 for a short account of such methods and controversies.

There are two important components in the research on saliency: saliency methods that produce such
heat maps for explanations, and saliency evaluation metrics that aim to test and compare saliency
methods. Numerous saliency methods have been proposed to learn such heat maps. Some methods
learn maps through “credit attribution” to individual input coordinates by using methods reminiscent
of backpropagation (Binder et al., 2016; Selvaraju et al., 2019), while some are derived using careful
axiomatization of credit assignment using the idea of Shapley values from cooperative game theory
(Lundberg & Lee, 2017b; Yeh et al., 2020). Some recent methods train another deep net to produce
heat maps (Dabkowski & Gal, 2017; Phang et al., 2020). Given the proliferation of saliency methods,
an ecosystem of evaluation metrics has emerged to evaluate the quality of explanations produced by
saliency methods, either through human evaluations (Adebayo et al., 2018), comparison to certain
ground truth explanations (Zhang et al., 2018) or other evaluations that do not require any external
annotation or supervision (Dabkowski & Gal, 2017) Petsiuk et al. (2018).

In this paper we restrict attention to a class of evaluations we refer to as intrinsic, that aim to evaluate
saliency maps based on whether they are good explanations for the model prediction. These only
involve computations using the provided heat map and the net, and do not involve extrinsic factors
such as human judgements or retraining. A popular idea in such evaluations (see Section 3 for
references) is to create a new composite input —or sequence of such inputs— using the heat map
and the original input, and to evaluate the original net on this composite input. For example, if
M is a binary vector with 1’s in the k coordinates with the highest values in the heat map, then
x�M (with � denoting coordinate-wise multiplication) can be viewed as a composite input2 (aka

1Heat maps suffice for recognition/classification tasks; other tasks may require more complex explanations.
2When x is an image the zeroes in this masked input are often replaced with gray values.
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Figure 1: Masked CIFAR-10 images generated by our procedure with λTV = 0.01 shows the
artifacts exist for masks generated for wrong labels. More examples can be find in Figure 7 in
Appendix. The base classifier outputs the correct label (ship and bird) with probability at least 0.99,
and outputs the wrong label (cat and frog) with probability only at most 10−5. With the generated
masks, the AUC metric for the correct label remains high (around 0.94 and 0.90), which corresponds
to completeness. But the AUC metric for the wrong label rises tremendously (around 0.18 for cat
mask, 0.71 for frog mask.) This suggests violation of soundness.

“masked input”) that can be fed into the original net. By varying k one obtains a sequence of masks
M . Although there is an issue of distribution shift due to the net never having trained on composite
inputs, in practice, especially for image data, trained nets work fine on masked inputs. (This is also
exploited in Shapley value based saliency methods.)

Inspired by logical reasoning, we identity a key component missing in existing intrinsic evaluations:
soundness of the saliency method. In simple terms, checking soundness for mask-based explanations
entails verifying that it is impossible for the method to produce well-performing (in the composite-
input evaluations) heat maps corresponding to the incorrect labels, i.e. labels not predicted as the
most likely by the model. By contrast current masking evaluations focus on a property akin to
completeness3 in logic: the heat map “justifies” the correct label, i.e. the label judged to be most
likely by the model. We argue that soundness can be a useful criterion in addition to completeness.

The soundness issue in practice is illustrated in Figure 1 using CIFAR-10 images. For both images,
a simple saliency method (Section 4) can be used to construct masked inputs that can cause the clas-
sifier net to output the wrong label (w.r.t. model prediction) with significant probability, in addition
to constructing a good mask for the correct label. The soundness condition we suggest requires that
the acceptance probability on composite input should not grossly outstrip the acceptance probability
on the unmasked input; see Section 3.1.

The soundness requirement is important for a variety of reasons. First, when using the classifier
in the wild—as opposed to on a dataset with images of centered main objects— we will encounter
multiple salient objects in the image, and the net may not have high confidence in a single label.
Then it would be reasonable for saliency methods to find evidence for all the labels present in the
image. But a more subtle reason is why human overseers —who figure nowhere in an intrinsic
evaluation— should consider the heat map as a demonstration of correctness of the classification.
Soundness can be viewed as a reassurance for the human overseer that there is no way to cheat the
evaluation in case of a wrong label.

Many past works allude to difficulty of the soundness concept, mentioning that computations to find
the “best” mask end up finding artifacts that can even justify labels that are obviously incorrect. To
avoid artifacts the computation to find masks/heat maps use a suitable regularization (usually TV)
to discourage masking procedures from uncovering artifacts. However, Figure 1 illustrates that TV
regularization is not a full solution to removing artifacts.

Other contributions: Motivated by the distinction between completeness and soundness, the pa-
per makes following other contributions.

• A new single number metric named consistency score that evaluates the completeness and sound-
ness simultaneously. It measures the probability that the saliency map for the model prediction
has the best quality compared to all other labels. See Section 3.2 for a formal definition.

3In the literature devoted to saliency methods based upon backpropagation-like procedure, such as GRA-
DIENT � INPUT or LRP, the term completeness is used in a slightly different sense: the sum of the heat map
values has to be equal to the logit value for the label.
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• A saliency method in Section 4 that bears similarity to prior works that learns masks through
optimization, but with subtle differences. One of the differences is based on the logic of soundness:
we learn a mask by trying to maximize the probability for the given label, rather than matching
the probability, and learn the best mask for all labels this way.

• In previous works, “tricks” like TV penalty and upscaling of masks (Fong & Vedaldi, 2017;
Dabkowski & Gal, 2017) are motivated by their ability to avoid “artifacts” and make the saliency
maps visually look better. These justifications, however, are not in the spirit of an intrinsic evalu-
ation of saliency maps. In this paper, we provide a novel intrinsic justification for these choices of
TV penalty and upscaling, by showing that they improve the saliency maps by making them more
sound, as empirically demonstrated in Section 6. We complement this finding with a theoretical
result in Section 5 that proves that TV regularization can help with soundness in a simple linear
classification setting.

Paper outline: Section 2 discusses prior works on saliency methods and evaluations. Section 3
delves further into the concept of completeness and soundness in the context of saliency evaluation,
and describes our proposed metric of consistency score. Section 4 describes our saliency method and
how it differs from prior approaches. Finally Section 5 describes various supportive experiments.

2 PRIOR APPROACHES

We delegate a more thorough description of prior work to Appendix E, but mention some common
saliency and saliency evaluation methods here. Saliency methods aim to explain a model’s decision
about an input. Saliency evaluation methods aim to evaluate the goodness of a saliency method.

Saliency methods include backpropagation based approaches such as Gradient� Input (Shrikumar
et al., 2017), LRP (Binder et al., 2016), GradCAM (Selvaraju et al., 2019), Smooth-Grad (Smilkov
et al., 2017). Another line of work is masking methods which include techniques based on averaging
over randomly sampled masks (Petsiuk et al., 2018), optimizing over meaningful mask perturbations
(Fong & Vedaldi, 2017), and real time image saliency using a masking network (Dabkowski & Gal,
2017). Pixels that have been removed from the image by the mask may be replaced by greying out,
by Gaussian blurring as in (Fong & Vedaldi, 2017), or with infillers such as CA-GAN (Yu et al.,
2018) used in (Chang et al., 2018; Phang et al., 2020), or DFNet (Hong et al., 2019). De Cao et al.
(2020) find masks using differentiable masking. Boolean logic is another approach for saliency
methods (Ignatiev et al., 2019b;a; Macdonald et al., 2019; Mu & Andreas, 2020; Zhou et al., 2018).

Arguments about saliency. As saliency methods have arisen, discussion about them has occurred
e.g. in (Seo et al., 2018; Fryer et al., 2021; Gu et al., 2018; Sundararajan & Najmi, 2020).

Saliency evaluation methods. Extrinsic evaluation metrics include the WSOL metric, and Pointing
Game metric proposed by Zhang et al. (2018) and ROAR (Hooker et al., 2019). Other more intrinsic
methods include early saliency evaluation techniques like MorF and LerF (Samek et al., 2016),
Insertion and Deletion game proposed by Petsiuk et al. (2018), which involve either inserting
pixels in order of most importance or deleting pixels in order of most importance. BAM (Yang
& Kim, 2019) creates saliency maps by pasting object pixels from MSCOCO (Lin et al., 2014)
The Saliency Metric proposed by Dabkowski & Gal (2017) thresholds saliency values above some
α chosen on a holdout set, finds the smallest bounding box containing these pixels, upsamples
and measures the ratio of bounding box area to model accuracy on the cropped image, s(a, p) =
log(max(a, 0.05))− log(p) where a is the area of the bounding box and p is the class probability of
the upsampled image.

Controversies. There is extensive discussion of validity of saliency evaluation methods;
e.g., (Brunke et al., 2020)(Petsiuk et al., 2018).

3 MASKING EXPLANATIONS AND COMPLETENESS/SOUNDNESS

A running theme in saliency methods/evaluations is that the salient pixels should be sufficient to
convince us about the model’s output, regardless of contents of the other pixels. For instance, grey-
ing out (or setting them to average pixel value) non-salient pixels should have very little effect on the
output. This idea appears in many saliency methods (Dabkowski & Gal, 2017; Phang et al., 2020)
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(and evaluation metrics (Petsiuk et al., 2018)), including Shapley values and mask-based explana-
tions. This motives the following definition of a masked-based explanation.

Definition 3.1 (Masking Explanation). A masking explanation for input x is a distribution ∆ over
subsets S of input coordinates (“salient sets of x”) as well as an input modification process Γ that
generates a distribution of modified inputs x̃ ∼ Γ(x, S) under the constraint that x̃ matches x on
every coordinate in set S. We use Γ(x,∆) to denote the distribution of x̃ produced by Γ when the
input is x and the set S is sampled from ∆.

A salient set S could be the direct output of any saliency method, or the output heat map passed
through a potentially randomized discretization (e.g., the insertion game in Section 3.3), leading to
a distribution ∆ over sets S. Simple examples of the input modification process Γ that stay in the
intrinsic framework are: greying out the pixels outside S, replacing them by pixels from a Gaussian
blurring of x (Fong & Vedaldi, 2017). Another example of Γ —albeit non-intrinsic and hence not
used in this paper— uses a conditional image generative model to produce new pixel values in S
conditional on pixels in S being consistent with x (Agarwal & Nguyen, 2020; Chang et al., 2018).
Definition 3.1 can also be changed to allow Γ to change the values of pixels in S. In our proposed
method in Section 4, we consider another distribution Γ, which replaces pixels outside of S with
pixels from a random image from the training set4. This amounts to grafting the salient pixels of
x on top of a random image, reminiscent of BAM evaluations (Yang & Kim, 2019) for saliency
methods.

3.1 COMPLETENESS AND SOUNDNESS

We now describe completeness and soundness for saliency evaluations. In a multiclass classification
setting, denote by f(x, a) the probability for label a returned by the model on input x. The prediction
of the model on input x is ŷ(x) := arg maxa∈C f(x, a), where C denotes all classes. For p ∈ [0, 1],
a masking explanation (∆,Γ) for input x is said to p-validate the label a ∈ C if

Ex̃∼Γ(x,∆)[f(x̃, a)] ≥ p. (1)

We say that a masking explanation x p-validates the model prediction if it p-validates ŷ(x).

Definition 3.2 (Completeness and Soundness). Fix an input modification process Γ. A saliency
method given f, x and any label a ∈ C produces a distribution ∆(x, a) over salient sets. Let
p = f(x, a). For α, β ≤ 1, the method is α-complete on f, x if for all labels a ∈ C the masking
explanation (∆(x, a),Γ) p-validates the label a for x with p = α · f(x, a), and the method is β-
sound on f if for all labels a ∈ C the masking explanation (∆(x, a),Γ) cannot p-validate the label
a with p > 1

β max{f(x, a), ε}5.

This captures the idea that we want the method to be able to validate the model prediction ŷ(x) but
not other labels. It is worth noting that the saliency method that declares all pixels to be salient is
α-complete and β-sound with α = β = 1, but its size is too large to provide any useful information.
Thus one should ask the saliency method to search over the salient sets of smaller sizes. But artifacts
for wrong labels may occur at small size (Figure 1), which hurts soundness. For this reason we put
explicit or implicit constraints on the salient sets (e.g., TV regularization) and ask saliency methods
to be α-complete and β-sound with α, β as close to 1 as possible. Ideally we should adjust the
constraints to achieve a good tradeoff between completeness and soundness. In our experiments, we
find that standard “tricks” like TV regularization and mask upscaling provide such good tradeoffs,
as observed in Table 3 and Figure 2.

Important note. In the logic setting, from where we borrow the concept of soundness, one has to
search among all possible proofs to ensure that there is indeed no valid proof for any false propo-
sition. Similarly, our soundness metric is non-vacuous only if the saliency method “makes its best
efforts” to find masking explanations for every label. Otherwise the saliency method could for in-
stance ignore the value of a return the mask for ŷ which can p-validate ŷ(x) with a high value of p
and thus not validate any other label, leading to a false notion of soundness. If the saliency method
behaves like this on the wrong label (i.e., is not working at producing an explanation) then as a

4We think other random image distributions should work too.
5The constant ε is used to avoid blowing up due to tiny probabilities.
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backup the evaluation can use some default method to produce saliency explanations for those la-
bels. Our method for mask-based explanations, described later, is simple and not tied to any specific
philosophy or a-priori definition of saliency. It can produce explanations for all labels.

3.2 CONSISTENCY SCORE FOR EVALUATING COMPLETENESS AND SOUNDNESS

Inspired by the notions of completeness and soundness, we propose to use a single number metric
that evaluates the completeness and soundness simultaneously over a data distribution.
Definition 3.3 (Consistency Score). Let X be the distribution of input x and Γ be an input modifi-
cation process. For a saliency method that produces salient sets ∆(x, a) on input x and label a, we
define the “saliency score” for (x, a) as g∆(x, a) = Ex̃∼Γ(x,∆(x,a))[f(x̃, a)], i.e. average probability
the model assigns to a labels for modified versions of x using the label-specific salient sets ∆(x, a).
The consistency score for the saliency method is defined as the probability that the saliency score is
consistent with the model prediction, i.e.,

Pr
x∼X

[
arg max

a
g∆(x, a) = ŷ(x)

]
. (2)

It is easy to see that if a saliency method is 1-complete and 1-sound on all inputs, then the consis-
tency score is 1. The following lemma shows that even α-completeness and β-soundness can imply
consistency if there is a gap between the probabilities for the largest and second largest labels.
Lemma 3.4. If a saliency method is α-complete and β-sound on input x and the ratio between the
output probabilities for the largest label ŷ(x) and second largest labels f(x,ŷ(x))

max{maxa6=ŷ(x){f(x,a)},ε} is

larger than 1
αβ , then the saliency method is consistent with the model on input x.

Proof. By α-completeness, the saliency method p-validates ŷ(x) with p = α · f(x, ŷ(x)). Since
f(x,ŷ(x))

max{maxa 6=ŷ(x){f(x,a)},ε} >
1
αβ , p has the lower bound p > 1

β max{maxa6=ŷ(x){f(x, a)}, ε} for
all a 6= ŷ(x). Then β-soundness implies that the saliency method cannot p-validate a, and hence
consistency. Therefore Ex̃∼Γ(x,∆(x,a))[f(x̃, a)] is maximized when a = ŷ(x).

3.3 CONNECTION TO POPULAR AREA-UNDER-THE-CURVE EVALUATIONS OF HEAT MAPS

As mentioned, our approach requires the method to output salient sets whereas existing methods of-
ten return a heatmap of saliency values. However, popular Area-Under-the-Curve (AUC) evaluation
metrics (Petsiuk et al., 2018) of saliency methods can be reinterpreted in terms of our completeness
and soundness. An example is the insertion game:

AUC of Insertion game: For s = 1 to d take the top s saliency values, and plot the probability
given by model to label a on the input where the top s pixels of x are retained and remaining pixels
are assigned values from the input modification process Γ. Return AUC.

Lemma 3.5. Given a saliency heatmap with AUC ρ for label a, we can convert it into a masking
explanation that ρ-validates the label a.

Proof. Given a heatmap, produce the salient set S by picking s uniformly at random from 1 to d
and letting S be coordinates corresponding to top s saliency values. Let ∆ be the distribution of the
produced salient sets. Then Ex̃∼Γ(x,∆)[f(x̃, a)] = ρ by definition.

4 PROCEDURES TO FIND MASKING EXPLANATIONS

Based on the definition 3.1 of masking explanations, we propose a very simple method to find
saliency masks with good empirical completeness and soundness scores. We introduce our methods
in this section concisely. The detailed intuitions and implementations are provided in Appendix B.

Our method bears similarity to prior work on learning mask based saliency maps, but with subtle
differences. The key difference from Dabkowski & Gal (2017); Phang et al. (2020) is that we do
not use a neural network to learn the mask and the difference from Fong & Vedaldi (2017); Agarwal
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Figure 2: Plot of model output probability as more pixels from the original image are retained using
learned masks. The remaining pixels are replaced with gray. Different curves correspond to different
values of TV regularization (λTV ). Larger area-under-curve (AUC) for the left figure (best label)
suggests good completeness, while lower AUC for the right figure suggests good soundness. Plots
suggest that adding TV significantly helps with soundness, while only slightly hurting completeness.

& Nguyen (2020); Chang et al. (2018) is that we use a different input modification process Γ (see
Definition 3.1) to infill other pixels during training: given x and S, generate a hybrid inputs whereby
the pixels in the set S match with x and the pixels outside S are set to those of a random image
drawn from the training set X . We chose this over replacing with gray pixels due to its superior
performance on various metrics. The final crucial difference is that our method can find a mask for
every input-label pair (x, a) and does so by trying to maximize the probability assigned to label a
on modified images, as opposed to trying to match the model probability for a.

As is standard, we relax the domain of masks M from binary {0, 1}hw to continuous [0, 1]hw, and
optimize M for input x and label a based on the following natural objective6

L(M ; (x, a)) = Ex̄∼X [− log(f(M � x+ (1−M)� x̄, a))] + λ1‖M‖1, (3)

where the part of x on M is superimposed onto a distractor x̄ ∼ X as x̃ = M � x+ (1−M)� x̄,
and the `1 norm penalty on M helps to reduce the size of masks.

We further employ Total-Variation (TV) penalty (Fong & Vedaldi, 2017) and upscaling of the mask
from a lower resolution one (Petsiuk et al., 2018) by learning a low-resolution mask at scale s,
M ∈ [0, 1]hw/s

2

, to minimize the following

L(M ; (x, a)) = Ex̄∼X
[
− log(f(M×s � x+ (1−M×s)� x̄, a))

]
+ λTV TV (M×s) + λ1‖M×s‖1

(4)

where M×s ∈ Rhw is obtained by upscaling M by a factor of s ∈ {1, 4} via bilinear interpolation.

While the motivation cited for these two “tricks” is to avoid artifacts, it is not clear whether artifacts
are a bad thing, since they might be relevant to the net’s decision-making. Indeed, in our experi-
ments, we show that while TV penalty or upscaling does produce better looking masks, they lead
to a drop in the completeness metric. However we also show that adding such tricks leads to signif-
icant improvement in the soundness metric, thus providing a novel justification for the use of such
tricks, beyond just the heuristic argument of getting rid of artifacts. In Section 5 we also provide
theoretical justification for why TV penalty can help with soundness, even for the simple case of
linear predictors on non-image data.

5 CLARIFYING BENEFIT OF TV REGULARIZATION

Our experiments show that the main benefit of TV regularization in saliency methods is that it
improves soundness. Here we sketch a simple example showing how this benefits even for simple
linear models on non-image data. Details appear in Appendix F. Consider S, a dataset of labeled
data (x, y) where labels y are binary, and a linear classifier with weight w and margin γ > 0.
Assume inputs are of unit norm and with bounded `∞ norm and so is w. The saliency method has to

6A standard way to maximize probability is to minimize the negative log probability
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Table 1: We compute AUC of insertion game with gray infilling as masking explanation. The last
two columns are the mask-model consistency conditioned on whether the base classifier predicts
the ground truth. The best two of each column are marked bold. From the table, our method with
upscaling factor s = 4 achieves the best consistency.

Deletion ↓ Insertion Saliency Consistency Consistency Consistency
(gray) ↑ Metric ↓ Score ↑ (correct)↑ (incorrect) ↑

Gradient � Input 0.42 0.56 0.31 0.841 0.977 0.27
Real time saliency 0.48 0.66 -0.85 0.857 0.980 0.34

Fong & Vedaldi (2017) 0.64 0.63 -0.41 0.845 0.990 0.23
Phang et al. (2020) 0.43 0.76 -0.27 0.871 0.985 0.39

Ours (s = 1) 0.52 0.68 -0.91 0.862 0.968 0.41
Ours (s = 4) 0.47 0.57 -0.66 0.880 0.980 0.46

Random 0.45 0.45 -0.35 0.829 0.964 0.26

return a single subset S of salient coordinates to validate the label. The input modification process
Γ will assign 0 to all coordinates outside S. Question is whether the decision can be validated using
a small S. A priori this seems impossible. Furthermore imposing a TV constraint seems to help
nothing, because the solution has no obvious continuity structure.

But now assume we randomly permute the coordinates. This (paradoxically) turns out to make a big
difference! For simplicity we consider salient sets among intervals, in other words sets of TV ≤ 2.

Theorem 5.1. For any (x, y) ∈ S , after random shuffle following holds for any L1 = Ω( 1
γ2 log 1

δ ),
L2 = Ω( 1

γ2 log d
δ ), where probability is over the random shuffle:

1. (Completeness) With probability 1− δ, there is an interval of length L1 that validates y;

2. (Soundness) With probability 1− δ, no interval of length L2 can validate −y.

6 EXPERIMENTS

In this section, we present results for our mask learning procedures described in Section 4 and our
consistency score metric described in Definition 3.3. We also analyze the role of TV penalty and
upsampling. Experiments involving consistency score are computationally infeasible to perform on
ImageNet as it contains 1000 classes. Therefore, these experiments are performed either on CIFAR-
10 or Imagenette (Howard, 2020), a 10-class ImageNet subset. Even for CIFAR-10 and Imagenette,
since consistency score requires computing 10 times more saliency maps than other metrics, we
test it on 1000 randomly drawn images from original test set. We also run experiments that do not
involving consistency score on various datasets (including ImageNet and CIFAR-100) with various
models. Results are shown in Appendix D. Details of training procedure (beyond those in Section 4)
are also in the Appendix D.

6.1 FULL COMPARISON TO EXISTING METRICS AND METHODS ON IMAGENETTE

We compare our procedure to other methods including Real Time Saliency (Dabkowski & Gal,
2017), Gradient � Input (Shrikumar et al., 2017), Fong & Vedaldi (2017) and Phang et al. (2020)
on Imagenette. Apart from our new consistency score metric, we calculate the Deletion Game and
Insertion Game metrics using the code provided by https://github.com/eclique/RISE,
and Saliency metric (SM), an another intrinsic evaluation metric from Dabkowski & Gal (2017).
Detailed description of the different metrics can be found in the Appendix.

For our method, we use the learned mask M from optimizing the objective function in Equation (7)
with λTV = 0.01 and s = {1, 4} as the saliency map. For fairness, we use the identical ResNet50
pretrained on ImageNet as the base classifier for every saliency method. The salient sets used in
our consistency score follows the Insertion game. Insertion scores were calculated by replacing
remaining pixels with gray. We normalize the maps so that all values lie in [0, 1] before use.

To get a sense what the numbers mean, we also include the performance of a random mask, where
the score for each pixel is sampled independently from standard normal distribution. The results are
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Table 2: Completeness and soundness for each saliency methods, averaged over test samples. Com-
pleteness are computed on labels that the model predicts, and soundness are computed on the rest
wrong labels. For soundness, we compute both the average among the wrong labels and the min-
imum one among them. Consistency scores are listed in the last column for a comparison. The
best two of each column are marked bold. Consistency scores are highly correlated to complete-
ness/soundness in the table.

Completeness of Average soundness of Worst soundness of Consistency
model prediction wrong labels wrong labels Score

Gradient � Input 0.54 0.98 0.83 0.841
Real time saliency 0.56 0.98 0.85 0.857

Fong & Vedaldi (2017) 0.53 0.95 0.61 0.845
Phang et al. (2020) 0.71 0.98 0.87 0.871

Ours (s = 1) 0.85 0.95 0.61 0.862
Ours (s = 4) 0.83 0.99 0.89 0.880

Random 0.35 0.96 0.70 0.829

Table 3: Consistency scores for different λTV in CIFAR-10. The last two rows are the mask-model
consistency conditioned on whether the base classifier predicts the ground truth. The best one in
each row is marked bold. λTV = 0.1 performs the best in both situations.

λTV 0 0.001 0.01 0.1
Consistency Score 0.46 0.37 0.49 0.62

Consistency (correct) 0.47 0.38 0.51 0.64
Consistency (incorrect) 0.24 0.21 0.16 0.36

shown in Table 1. For the deletion metric, we note that most methods have comparable or worse
performance than the random mask, which suggests that the metric does not give us much signal
about the goodness of the saliency maps. For the Insertion scores and saliency metric, our method
performs decently since these metrics mostly depend on variety of the completeness condition.

For our consistency score metric, most previous methods perform well on consistency score when
the base classifier predicts the ground truth. However, their performance on samples that the base
classifier predicts incorrectly is not as good as ours. Our method shows that soundness can be im-
proved without much affecting performance on other known metrics. Note that our metric assumes
that testing methods take effort to generate different masks for each possible label. Saliency methods
like Phang et al. (2020) actually inherent advantage on our metric by not doing that. Considering
that our method bears similarity to prior work but outperforms them on consistency score even with
arguable disadvantage, it implies there is room for improvement on soundness for previous works.

Table 1 also shows that upscaling improves the consistency score. As mentioned in Section 4,
upscaling was used in previous work to avoid artifacts and produce better looking masks. Our
experiment shows a new explanation for the upscaling that it improves the soundness of the masking.

To verify the connection between completeness/soundness and consistency score, we compute the
completeness and soundness (with ε = 10−3) for test samples, and report the average in Table 2. It
shows completeness/soundness and consistency score are highly correlated.

6.2 EFFECT OF TV REGULARIZATION

In this subsection, we test our theoretical prediction from Section 5 that TV penalty improves sound-
ness. We first visually inspect the masks learned by our procedure as we increase the TV regular-
ization strength7 in Figure 3. Masked images at 10 % sparsity are depicted in odd columns and the
full masks are shown in even columns. We plot the AUC insertion metric with blur evaluated on
the non-sparsely masked images on the y axis of each plot. We find that as we increase the TV
regularization strength, the model can still find a saliency map for the correct label with high AUC
score, however the AUC score for the mask learned to fit the second most confident label drops
significantly. This, in conjunction with Lemma 3.5, suggests that the TV regularization method has
slightly worse completeness but much higher soundness. Figure 2 plots the model output proba-

7Similar images for scaling factors can be found in Appendix D
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Figure 3: Top: Masking validating the correct label of ImageNet images using Section 4. Pixels out-
side the salient set S are rendered as grey. Size of S (as % of total pixels) appears below the images.
Value of TV regularizer shown above each column corresponding to (0,.001,.01,.1). Original image
rendered in last column. True labels with original model probabilities are shown in the rightmost
column. Insertion metric when the mask is found by the procedure in Section 4 shown on y axis
Bottom: Masking validating the second-best label, which appears on the right along with original
model probability of that label. Insertion metric when the mask is found by fitting the second best
label under the procedure in Section 4 is shown on the y label of each plot. We find that increasing
the TV regularizer makes the resulting assignment more sound.

bility for CIFAR-10 as more pixels from the original image are retained using the mask. Our high
level finding is again that adding TV penalty and upsampling significantly aid soundness, while only
slightly hurting completeness. To formally justify the effect of TV penalty, we measure our consis-
tency score of different level of TV penalty on CIFAR-10. To further challenge the completeness
and soundness, the salient sets of our consistency score follows the Insertion game but only takes
sets of size 0.2d to 0.6d (d is the number of pixels). Table 3 shows the result.

7 CONCLUSIONS

Saliency explanations of ML models has proved nebulous and generated many controversies. By
taking rooted in intrinsic definitions such as completeness/soundness and consistency score, this
paper has tried to provide greater rigor to the intrinsic approaches to saliency. Other new contri-
butions include clarifying the role of TV regularization (it hurts completeness slightly but greatly
improves soundness); extensive experimental evaluations that bring new understanding using con-
sistency score; and a simple saliency method for producing mask-based explanations whose perfor-
mance is broadly competitive with good existing methods, and sometimes better.

The soundness notion is clearly useful for localization of objects in the image, and for classification
in the wild –where multiple objects appear over the image. This was hinted in our evaluation on a
prior small dataset (see Appendix C). It may have other applications to handling distribution shift
and other types of robustness, but such explorations are left for future work.
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A BACKPROP-BASED METHODS ARE SENSITIVE TO HOW THE CIRCUIT IS
IMPLEMENTED.

Gradient. Gradient and Gradient � Input are the most simple backpropagation-style saliency
methods, but when the ReLU net has nonzero bias terms then their saliency maps may not cor-
respond to assignments that are either minimal or validating. Suppose we have inputs x ∈ {0, 1}d
and the model predicts a 0-1 label that equals to OR(x1, . . . , xd). This can be implemented by a
single-neuron two-layer ReLU network with bias 1 in both layers:

OR(x1, . . . , xd) = 1− ReLU

(
1− 10 ·

d∑
i=1

xi

)
=: f1(x), (5)

For x̂ ∈ {0, 1}d, if x̂ 6= 0, then 1 − 10 ·
∑d
i=1 xi ≤ 1 − 10 × 1 = −9 and we can verify that

f1(x) = 1 holds locally in a neighborhood of x̂ in Rd. Thus the gradient is zero, ∇f1(x̂) = 0,
which means Gradient attributes the output to each coordinate equally with 0. This suggests that the
saliency map given by Gradient may not have anything to do with validating partial assignments, let
alone minimal certificate. The same argument can be applied to Gradient � Input.

Furthermore, any functionality can be implemented as a ReLU circuit in many different ways, and
the gradient will in general depend on the implementation of the function. Earlier we talked about
an implementation of the function OR(x1, . . . , xd) but here is a different one:

OR(x1, . . . , xd) = x1 + ReLU(f1(x2, . . . , xd)− 10x1) =: f2(x)

When x̂1 = 1, we always have ∇f2(x̂) = (1, 0, . . . , 0) 6= ∇f1(x̂). However, an algorithm for
finding the minimal certificate should only depend on f , not the specific implementation of the
function f .
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LRP. Layerwise Relevance Propagation (LRP) propagates the model prediction f(x) backwards
subject to a conservation property: the relevance score received by a neuron must be (approximately)
redistributed to the lower layer in equal amount. With epsilon rule (Bach et al., 2015), if the rele-
vance scores of neurons in layer ` + 1 are R`+1,1, . . . , R`+1,m, then the j-th neuron in layer ` has
the following relevance score:

R`,j =

m∑
k=1

zj,k
sgn(zk)(|zk|+ ε)

R`+1,k, where zj,k = ajwj,k, zk =
∑
j

zj,k.

Here aj is the output of the j-th neuron in layer `, and wj,k is the weight for the link between the
j-th neuron at layer ` and the k-th neuron at layer ` + 1. The relevance score for the model output
is f(x), and the relevance score for neurons can be computed by this formula from higher layers to
lower layers, and LRP returns the relevance scores of the model input as the saliency map.

For the above OR example, for x̂ 6= 0, the output of ReLU in (equation 5) is zero, so the hidden
neuron receives 0 relevance score (a1 = 0), and LRP also gives 0 as the saliency map. This means
LRP has the same issue in finding the minimal certificate as Gradient. When the implementation
of OR is changed from f1(x) to f2(x), the saliency map produced by LRP changes from 0 to
( 1

1+ε , 0, . . . , 0) when x̂1 = 1. This means LRP also depends on the implementation, which is
undesirable.

B INTUITIONS AND IMPLEMENTATIONS OF PROCEDURES TO FIND MASKING
EXPLANATIONS

As introduced in Section 3.3, for evaluation we may interest in random binary masks due to its
connection to AUC, but in our method for finding masking explanations we only focus on deter-
ministic masks. Given a network f , image x ∈ Rc×hw and class a, we wish to find a binary mask
M ∈ {0, 1}hw such that when the part of x on M is superimposed onto a distractor x̄ ∼ X as
x̃ = M � x+ (1−M)� x̄, the output probability of the model f(x̃, a) is high for the class a. This
corresponds to the case where ∆ is a singleton that assigns probability 1 to M and Γ(x,M) is the
distribution of x̃8. As in Section 3.1 we compute the average probability assigned to class a over
the sampling of the distractor x̄, i.e. we are interested in making Ex̄∼X [f(x̃, a)] high. To avoid the
hard problem of optimizing over the hypercube {0, 1}hw, a typical strategy (also employed in prior
work) is to relax the domain of M to be [0, 1]hw. Since we do not wish to learn masks of very large
size, a `1 norm penalty on M (corresponding to size of the mask), leading to the following natural
objective function9

L(M) = Ex̄∼X [− log(f(M � x+ (1−M)� x̄, a))] + λ1‖M‖1 (6)

However most masking-based methods employ additional “tricks” in order to avoid “artifacts” in the
produced saliency maps, like Total-Variation (TV) penalty (Fong & Vedaldi, 2017) and upscaling of
the mask from a lower resolution one (Petsiuk et al., 2018). We also employ the same strategy by
learning a low-resolution mask at scale s, M ∈ Rhw/s2 , to minimize the following

L(M) = Ex̄∼X
[
− log(f(M×s � x+ (1−M×s)� x̄, a))

]
+ λTV TV (M×s) + λ1‖M×s‖1

(7)

where M×s ∈ Rhw is obtained by upscaling M by a factor of s ∈ {1, 4} via bilinear interpolation.

While the motivation cited for these “trick” is to avoid artifacts, it is not clear whether artifacts are
a bad thing, since they might be relevant to the net’s decision-making. Indeed, we show that while
TV penalty or upscaling does produce better looking masks, they lead to a drop in the completeness
metric. However we show that adding such tricks leads to significant improvement in the soundness
metric, thus providing a novel justification for the use of such tricks, beyond just the heuristic ar-
gument of getting rid of artifacts. In Section 5 we also provide theoretical justification for why TV
penalty can help with soundness, even for the simple case of linear predictors on non-image data.

8We slightly abuse the use of notation to use M as a set over coordinates rather than a binary mask.
9A standard way to maximize probability is to minimize the negative log probability
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We optimize the objective in Equation (7) by parametrizing M as a sigmoid of real valued weights
W ∈ Rhw/s2 , i.e. M = σ(W ), and run Adam (Kingma & Ba, 2014) optimizer for 2000 steps with
learning rate 0.05 and by sampling 10 distractor images at every step, for different values of λTV
and upscaling factor s. We report the effect of λTV qualitatively in Figure 3 and quantitatively on
various intrinsic saliency metrics in Table 10.

C PRACTICAL BENEFITS OF SOUNDNESS FOR IMAGES OF MULTIPLE
OBJECTS

Images may have multiple plausible labels. In Figure 4, images that previously used in Gu et al. 2018
can have both elephants and zebras present, but it may not be always clear from the model output if
there is such a case, since the model can be much more confident on one label, e.g., elephant, than
one would expect it to be. For this reason, finding masking explanations validating other labels, e.g.,
zebra, could provide more information on how the model makes the prediction.

Figure 4: Images containing both elephant(s) and zebra(s), and the corresponding masked ones
generated by our method and the best-performing CA model in Phang et al. (2020). The masks
by Phang et al. (2020) are identical for different labels, and contains both elephant and zebra. In
contrast, our method outputs descent masks for elephant and zebra accordingly.

D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section we expand upon the experiments in Section 6 and complement them with more
experiments on the ImageNet, CIFAR-10 and CIFAR-100 datasets. For each of the datasets we
test the following:

• Visualization: For various values of TV regularization (and upscaling for ImageNet), we
visualize the mask and also what part of the image a sparse version of the mask highlights.
We do so for masks learned for the correct label and also for the second most probable
label as predicted by the model. The common trend is that while TV regularization (and
upscaling) make the masks more human interpretable, it also makes it harder to find a good
mask (partial assignment) for the wrong label, thus improving soundness.

• AUC curve: We plot the output model probability for a masked input as more pixels
from the original image are selected. The 4 plots denote replacing remaining pixels with
grey pixels or pixels from a random image, and masks to fit the correct or wrong label.
Again, we find the TV regularization and upsampling help with soundness. For mask M , if
M̄(p) denotes the discrete mask with top p fraction of the pixels from M picked. We plot
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Ex
[
Ex′∼Γ[f(M̄(p)� x+ (1− M̄(p))� x′, a)]

]
v/s p, where Γ is either a random image

or a grey image, and a is either the correct label for x or the second best label.
• Completeness/soundness: We evaluate completeness and soundness metrics as defined in

Definition 3.2. In particular, for every input x, we evaluate completeness for the correct la-
bel a and soundness for the wrong (second best) label a′. For any mask M , we define AUC
as AUC(M ; (x, a)) = Ep

[
Ex′∼Γ[f(M̄(p)� x+ (1− M̄(p))� x′, a)]

]
. Completeness

and soundness are defined as

Cδ(M) = E(x,a)

[
min

{
AUC(M ; (x, a))

min{f(x, a), δ}
, 1

}]
(8)

Sε(M) = E(x,a′)

[
min

{
max{f(x, a′), ε}
AUC(M ; (x, a′))

, 1

}]
(9)

where a is the correct label and a′ is the wrong label and f(x, a) is the model probability
for label a for input x. δ and ε can be any reasonable constant to stabilize the value.

• Intrinsic metrics: We evaluate our masks on other intrinsic metrics from prior work, and
compare to baseline saliency methods. Our baselines include Gradient � Input (Shrikumar
et al., 2017), Smooth-Grad (Smilkov et al., 2017), Real Time Saliency (Dabkowski & Gal,
2017) (for ResNet-50 on ImageNet), and Random indicating a random Gaussian mask as a
control. We use Captum (Kokhlikyan et al., 2020) for Gradient � Input and Smooth-Grad
implementations and the original author code10 for Real Time Saliency. When calculating
the Saliency Metric (SM) (Dabkowski & Gal, 2017) we tune the threshold δ on a holdout
set of size 100 with δ between 0 and 5 in increments of 0.2 as in prior work.
For the saliency method of Fong & Vedaldi (2017) that we only used on the Imagenette, we
adapt the most popular implementation on GitHub11. The implementation contains minor
deviations from the original paper as described on its main page. For Phang et al. (2020),
we used their best CA model pretrained and provided in original author code12.

D.1 CIFAR-10 EXPERIMENTS

We also run our method from Section 4 on the CIFAR-10 dataset using a pretrained ResNet-164
architecture13. For all experiments we learn a mask M ∈ R32×32, thus using a scaling factor
of s = 1 (no upscaling). We train masks for 1600 images that were correctly classified by the
pretrained ResNet-164 using regularization parameter λTV ∈ {0, 0.001, 0.01, 0.1}. We use a (fixed)
L1 regularization value of .001 for all masks.

We visualize the masks learned for the correct label in Figure 6a and in Figure 6b we visualize the
same for the second best label predicted by the ResNet-164 model. We also visualize the masks for
all labels for some randomly picked images in Figure 7 to demonstrate the commonness of artifact,
especially for the wrong labels. The AUC curves in Figure 5 suggest a similar trend to that of
ImageNet, adding TV regularization results in only a mild drop in completeness, but significantly
improves soundness. Evaluation of our masks, compared to some gradient baselines, on intrinsic
metrics can be found in Table 5. We place a downarrow after the name of the metric to indicate
a lower value is considered better and an uparrow when a higher value is considered better. We
evaluate on a randomly selected subset of 1000 data points where the model had correct top 1
accuracy. We report the completeness and soundness results for CIFAR-10 in Table 4 for TV values
in (0.0,0.001,0.01,0.1) calculated using a ResNet-164 model.

D.2 CIFAR-100 EXPERIMENTS

We run the same experiment for CIFAR-100 using the corresponding ResNet164 model. We visu-
alize the masks learned for the correct label in Figure 9a and in Figure 9b we visualize the same for
the second best label predicted by the ResNet-164 model. The AUC curves in Figure 13 suggest a

10https://github.com/PiotrDabkowski/pytorch-saliency
11https://github.com/jacobgil/pytorch-explain-black-box
12https://github.com/zphang/saliency_investigation
13https://github.com/bearpaw/pytorch-classification. The ResNet-110 model in this

repository is actually a ResNet-164 model.
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Table 4: Completeness and soundness for a ResNet-164 CIFAR-10 as defined in Equation (9). Each
column contains a tuple (Grey/Noise, TV 0.0/ TV 0.001/ TV 0.01/ TV 0.1). Grey indicates pixels
were greyed during calculation. Noise indicates they were replaced with other images. TV indicates
a TV regularization value of 0.0, 0.001, 0.01, or 0.1.

Grey TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1
Correct label completeness (C0.8) 0.92 0.91 0.84 0.79

Second label soundness (S0.2) 0.27 0.28 0.34 0.38
Noise TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1

Correct label completeness (C0.8) 0.90 0.88 0.81 0.75
Second label soundness (S0.2) 0.30 0.31 0.37 0.42

Figure 5: [CIFAR-10] AUC curves with as the fraction of pixels retained from the original images
based on the mask varies from 0 to 1.0 on the X-axis. The probabilities assigned by the model
(averaged over 1600 images) on the Y-axis. Left: Mask learned for ground truth label, probabilities
for ground truth label while replacing remaining pixels with grey. Center Left: Mask learned
for ground truth label, probabilities for ground truth label while replacing remaining pixels with
other image pixels. Center Right: Mask learned for second best label, probabilities for second
best label while replacing remaining pixels with grey. Right: Mask learned for second best label,
probabilities for second best label while replacing remaining pixels with other image pixels. We
see that increasing TV regularization results in only a mild drop in completeness, but significantly
improves soundness.

Table 5: Performance of our method on CIFAR-10 and some baselines on various intrinsic saliency
metrics proposed in prior work. We find that while both our masks (learned with and without TV)
have very good performance on the insertion metric. The deletion and saliency metrics are uninfor-
mative in this case, since all methods are as good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Smooth-Grad Random
(λTV = 0.01) (λTV = 0) saliency

Deletion ↓ 0.32 0.37 0.59 0.31 0.26
Insertion (blur) ↑ 0.60 0.88 0.94 0.66 0.36
Insertion (grey) ↑ 0.51 0.83 0.92 0.55 0.26
Saliency Metric ↓ 0.22 0.22 0.22 0.23 0.22

similar trend to that of ImageNet, adding TV regularization results in only a mild drop in complete-
ness, but significantly improves soundness. Evaluation of our masks, compared to some gradient
baselines, on intrinsic metrics can be found in Table 7. We place a downarrow after the name of the
metric to indicate a lower value is considered better and an uparrow when a higher value is consid-
ered better. We evaluate on a randomly selected subset of 1000 data points where the model had
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(a)

(b)

Figure 6: Details in Appendix D.1 Panel 6a Partial statistical assignments validating the correct
label of CIFAR-10 images using the procedure outlined in Section 4 on ResNet-164. Columns
(1,3,5,7) depict masked images at 30 (retained) % mask sparseness. Columns (2,4,6,8) depict the
original mask. TV values shown above. Original image shown in rightmost column. Model proba-
bility of correct label for masked images on y axis. Panel 6b Partial statistical assignments validating
the second most probable label of CIFAR-10 images using the procedure outlined in Section 4 on
ResNet-164. Columns (1,3,5,7) depict masked images at 30 % mask sparseness. Columns (2,4,6,8)
depict the original mask.TV values shown above. Original image shown in rightmost column. Model
probability of second best label for masked images on y axis.

Table 6: Completeness and soundness for a ResNet-164 CIFAR-100 as defined in Equation (9).
Each column contains a tuple (Grey/Noise, TV 0.0/ TV 0.001/ TV 0.01/ TV 0.1). Grey indicates
pixels were greyed during calculation. Noise indicates they were replaced with other images. TV
indicates a TV regularization value of 0.0, 0.001, 0.01, or 0.1.

Grey TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1
Correct label completeness (C0.8) 0.78 0.74 0.66 0.60

Second label soundness (S0.2) 0.39 0.42 0.50 0.54
Noise TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1

Correct label completeness (C0.8) 0.72 0.70 0.65 0.58
Second label soundness (S0.2) 0.46 0.47 0.51 0.56

correct top 1 accuracy. When calculating the saliency metric we tune the threshold δ on a holdout
set of size 100 with δ between 0 and 5 in increments of 0.2.

We report the completeness and soundness results for CIFAR-100 in Table 6 for TV values in
(0.0,0.001,0.01,0.1) calculated using a ResNet-164 model.
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(a) Our method with no TV regularization

(b) Our method with TV regularization λTV = 0.01

Figure 7: A demonstration of artifacts created by masking. Pixels (partially) masked out are filled
with gray based on the fractions they are masked out. Masks generated without or only with low
level regularization can easily produce artifacts. It is more common and/or severe for the wrong
label than correct label.
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Figure 8: [CIFAR-100] AUC curves with as the fraction of pixels retained from the original images
based on the mask varies from 0 to 1.0 on the X-axis. The probabilities assigned by the model
(averaged over 1600 images) on the Y-axis. Left: Mask learned for ground truth label, probabilities
for ground truth label while replacing remaining pixels with grey. Center Left: Mask learned
for ground truth label, probabilities for ground truth label while replacing remaining pixels with
other image pixels. Center Right: Mask learned for second best label, probabilities for second
best label while replacing remaining pixels with grey. Right: Mask learned for second best label,
probabilities for second best label while replacing remaining pixels with other image pixels. We
see that increasing TV regularization results in only a mild drop in completeness, but significantly
improves soundness.

Table 7: Performance of our method on CIFAR-100 and some baselines on various intrinsic saliency
metrics proposed in prior work. We find that while both our masks (learned with and without TV)
have very good performance on the insertion metric. The deletion and saliency metrics are uninfor-
mative in this case, since all methods are as good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Smooth-Grad Random
(λTV = 0.01) (λTV = 0) saliency

Deletion ↓ 0.10 0.17 0.10 0.29 0.11
Insertion (blur) ↑ 0.36 0.71 0.82 0.39 0.20
Insertion (grey) ↑ 0.27 0.62 0.76 0.29 0.11
Saliency Metric ↓ 0.77 0.77 0.77 0.79 0.77

D.3 EXPERIMENTS ON IMAGENET

D.3.1 RESNET-18

In Figure 10a we depict the the masks for TV values in {0.0, 0.01} for a ResNet-18 model on
ImageNet for the ground truth label and in Figure 10b we depict the same for the second best label.
We also experiment with the effect of upsampling (US) the mask, whereby we learn a mask of size
(56,56) and upsample to size (224,224). We use a fixed L1 regularization value of 2e-5. We depict
our results on ImageNet and ResNet-18 in Table 9

For the deletion metric, we note that most methods have comparable or worse performance than
the random mask, which suggests that the metric does not give us much signal about the goodness
of the saliency maps. On the insertion metric, we find that mask learned by not adding the TV
penalty significantly beats other methods. The mask learned using TV penalty, on the other hand,
has impressive performance on both the insertion AUC and saliency metric (SM).

Completeness and Soundness on ImageNet and ResNet-18 We report our results in Table 8 for
TV values in (0, 0.01) for both greying (Grey) and replacing with other image pixels (Noise). Addi-
tionally, we investigate the effect of upsampling (US) where we derive a (56,56) and upsample by a
factor of 4 to a (224, 224) mask.
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(a)

(b)

Figure 9: Details in Appendix D.2 Panel 9a Partial statistical assignments validating the correct
label of CIFAR-100 images using the procedure outlined in Section 4 on ResNet-164. Columns
(1,3,5,7) depict masked images at 30 (retained) % mask sparseness. Columns (2,4,6,8) depict the
original mask. TV values shown above. Original image shown in rightmost column. Model proba-
bility of correct label for masked images on y axis. Panel 9b Partial statistical assignments validating
the second most probable label of CIFAR-100 images using the procedure outlined in Section 4 on
ResNet-164. Columns (1,3,5,7) depict masked images at 30 % mask sparseness. Columns (2,4,6,8)
depict the original mask.TV values shown above. Original image shown in rightmost column. Model
probability of second best label for masked images on y axis.

Table 8: Completeness and soundness for a ResNet-18 model on ImageNet as defined in Equa-
tion (9). Each column contains a tuple (Grey/Noise, TV 0.0/ TV 0.001/ TV 0.01/ TV 0.1). Grey
indicates pixels were greyed during calculation. Noise indicates they were replaced with other im-
ages. no US indicates the full (224,224) mask was derived. US indicates a (56, 56) mask was derived
then upsampled by a factor of 4. TV indicates a TV regularization value of 0.0 or 0.01.

Grey TV = 0.0 TV = 0.01 US TV = 0.0 US TV = 0.01
Correct label completeness (C1) 0.93 0.82 0.75 0.72

Second label soundness (S0) 0.21 0.39 0.51 0.57
Noise TV = 0.0 TV = 0.01 US TV = 0.0 US TV = 0.01

Correct label completeness (C1) 0.85 0.71 0.61 0.60
Second label soundness (S0) 0.24 0.40 0.53 0.57

Effect of ensembling. In order to investigate the effect of ensembling we plot maps in Figure 12
as we vary the number of maps that are ensembled over as K ∈ {1, 2, 4}, where we learn multiple
masks such that each of them are individually statistical assignments. We do not upsample (using a
scale of 1.0) and we use a fixed L1 regularization of 2e-5 and a fixed TV regularization of 0.0.

D.3.2 RESNET-50

We present our results on ImageNet and ResNet-50 in Table 10. Using the same pretrained ResNet-
50 model as Dabkowski & Gal (2017) lets us compare our method to their real-time saliency method
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(a)

(b)

Figure 10: Details in Appendix D.3.1. US stands for upsampled mask, where we derive a (56,56)
mask and interpolate to (224,224). Panel 10a Partial statistical assignments validating the correct la-
bel of ImageNet images using the procedure outlined in Section 4 on ResNet-50. Columns (1,3,5,7)
depict masked images at 30 (retained) % mask sparseness. Columns (2,4,6,8) depict the original
mask. TV values shown above. Original image shown in rightmost column. Model probability
of correct label for masked images on y axis. Panel 10b Partial statistical assignments validating
the second most probable label of ImageNet images using the procedure outlined in Section 4 on
ResNet-50. Columns (1,3,5,7) depict masked images at 30 % mask sparseness. Columns (2,4,6,8)
depict the original mask.TV values shown above. Original image shown in rightmost column. Model
probability of second best label for masked images on y axis. We find, unsurprisingly, that adding
TV regularization and upsampling make the mask more continuous and “human interpretable” and,
more importantly, make it harder to find masks that can get high probability for the second best
label, thus ensuring higher soundness.

Table 9: Performance of our method on ImageNet and ResNet-18 model and some baselines on
various intrinsic saliency metrics proposed in prior work. We find that while both our masks (learned
with and without TV) have very good performance on the insertion metric, the mask learned with
TV has much better performance on the saliency metric. The deletion metric is uninformative in
most cases, since most methods are as good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Smooth-Grad Random
(λTV = 0.01) (λTV = 0) saliency

Deletion ↓ 0.1054 0.1337 0.2080 0.0757 0.1336
Insertion (blur) ↑ 0.4443 0.7936 0.8507 0.5062 0.3118
Insertion (grey) ↑ 0.3056 0.6742 0.9213 0.3518 0.1325
Saliency Metric ↓ 0.3149 0.1507 0.3156 0.3157 0.3156

directly on intrinsic metrics. Dabkowski & Gal (2017) do not evaluate on insertion/deletion metrics,
so we evaluate these using their pretrained mask model.
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Figure 11: Results of randomizing the last layer of a ResNet-18 model on ImageNet data for the pro-
cedure described in Section 4. US indicates a (56, 56) map was learned and upsampled to (224, 224).
We find the maps of this randomized network are less visually coherent than the analogous maps of
a pre-trained model.

Figure 12: Effect of ensembling Partial statistical assignments validating the correct label of Ima-
geNet and ResNet-18 images as we vary K, the number of maps. Details in Appendix D.3.1.

Table 10: Performance of our method on ImageNet and ResNet-50 model and some baselines on
various intrinsic saliency metrics proposed in prior work. We find that while both our masks (learned
with and without TV) have very good performance on the insertion metric, the mask learned with
TV has much better performance on the saliency metric. The deletion metric is uninformative in
most cases, since most methods are as good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Real Time Random
(λTV = 0.01) (λTV = 0) saliency

Deletion ↓ 0.1451 0.1832 0.2067 0.1851 0.1843
Insertion (blur) ↑ 0.5434 0.8363 0.8673 0.6857 0.3562
Insertion (grey) ↑ 0.3716 0.7401 0.8857 0.4873 0.1835
Saliency Metric ↓ 0.2549 0.2019 0.2604 0.2943 0.2584
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Figure 13: ImageNet data. Left: AUC curves as fraction of pixels used varies from 0 to 1.0 for
ground truth label when replacing with grey. Center Left: AUC curves as fraction of pixels used
varies from 0 to 1.0 for ground truth label when replacing with other images. Center Right: AUC
curves as fraction of pixels used varies from 0 to 1.0 for second best label when replacing with
grey. Right: AUC curves as fraction of pixels used varies from 0 to 1.0 for second best label when
replacing with other images.

D.4 EFFECT ON SANITY CHECKS

Inspired by (Adebayo et al., 2018) we randomize the last layer of a ResNet-18 network and visually
inspect the resulting saliency maps in Figure 11. We find that the maps appear less coherent than
those of a pre-trained model. We use a fixed L1 regularization of 2e-5 and depict maps with and
without upsampling (US) at TV values of (0, 0.01).

E ADDITIONAL BACKGROUND INFORMATION

E.1 SALIENCY METHODS

We give a partial list of extant saliency methods here. We broadly categorize explanations into
three categories: Back-propagation based explanations, axiomatic methods, and masking methods.
Backpropagation based explanations shape credit as it is propagated backwards through the neural
network according to certain rules. These approaches include Layerwise Relevance Propagation
(Binder et al., 2016) which satisfies completeness, Rect-Grad which thresholds internal neuron
activations (Kim et al., 2019), and DeepLIFT which satisfies the summation to delta rule.

Axiomatic methods. Axiomatic methods decompose the ouput (typically the logit) according to
certain axioms like fairness in Shapley based methods SHAP (Lundberg & Lee, 2017a) and concept-
SHAP (Yeh et al., 2020). We also include gradient based approaches like Gradient ∂S

∂x (Baehrens
et al., 2010) which calculates the partial derivative of the logit with respect to the input. Gradient
� Input (Shrikumar et al., 2017) ∂S∂x · x, which elementwise multiplies the gradient explanation by
the input, and Grad-CAM (Selvaraju et al., 2019) which takes the gradient of the logit with respect
to the feature map of the last convolutional unit of a DNN. Smooth-Grad (Smilkov et al., 2017),
which averages the Gradient � Input explanation over several noisy copies of the input x + η,
where η is some Gaussian. The previous methods are intrinsic in the sense that they aim to explain
the model decision. The last category of saliency maps, namely masking methods, also aim to ex-
plain the model decision, but they frequently aim to do so in a way that is interpretable by a human.
Contrastive methods, such as contrastive layerwise propagation Gu et al. (2018), also modify LRP
by constructing class specific saliency maps, with the goal of object localization, i.e. in an image
of an elephant and zebra, the saliency map for elephant should have high overlap with the elephant,
and similarly for the corresponding map for zebra.

Masking Methods. Masking Methods are often evaluated using a pointing game or WSOL metric,
which measures overlap with human labeled bounding boxes or explanations. These masking meth-
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ods include techniques based on averaging over randomly sampled masks (Petsiuk et al., 2018), op-
timizing over meaningful mask perturbations (Fong & Vedaldi, 2017), and real time image saliency
using a masking network (Dabkowski & Gal, 2017). Pixels that have been removed from the image
by the mask may be replaced by greying out, by Gaussian blurring as in Fong & Vedaldi (2017),
or with infillers such as CA-GAN (Yu et al., 2018) used in Chang et al. (2018), or DFNet (Hong
et al., 2019). De Cao et al. (2020) find masks using differentiable masking. Taghanaki et al. (2019)
introduce a method that results in more accurate localization of discriminatory regions via mutual
information.

Pruning and information theory Khakzar et al. (2019) improve attribution via pruning. Schulz
et al. (2019) improve attribution by adding noise to intermediate feature maps.

Saliency and Boolean Logic. Previous work has also drawn connections between saliency and
notions in logic. Ignatiev et al. (2019b) relates saliency explanations and adversarial examples by a
generalized form of hitting set duality. Ignatiev et al. (2019a) develops a constraint-agnostic solution
for computing explanations for any ML model. Macdonald et al. (2019) develop a rate distortion
explanation for saliency maps and prove a hardness result. Mu & Andreas (2020) find a procedure
for explaining neurons by identifying compositional logical concepts. Zhou et al. (2018) describe
network dissection, which provides labels for the neurons of the hidden representations. We are
unaware of frameworks like Section 3.

Arguments about saliency. For discussion including pro/cons of various methods some starting
points are Seo et al. (2018) Fryer et al. (2021) Gu et al. (2018) Sundararajan & Najmi (2020).

Phang et al. (2020) We describe separately the masking procedure used by Phang et al. (2020).
They begin by taking a pretrained model on ImageNet. The masker has access to the internal rep-
resentations of the pre-trained model, and tries to maximize masked in accuracy and masked out
entropy. They do not provide the ground truth label to the masker.

E.2 SALIENCY EVALUATION METHODS

Saliency evaluation methods attempt to evaluate the quality of a saliency map. Many interpret
the heatmap values as a priority order of saliency. Extrinsic evaluation metrics include the WSOL
metric, which aim to measure overlap of the saliency map with a human annotated bounding box and
the Pointing Game metric proposed by Zhang et al. (2018) in which a pixel count as a hit if it lies
within a bounding box and a miss otherwise, and the metric is # Hits

# Hits + #Misses . Other more intrinsic
methods include early saliency evaluation techniques like MorF and LerF Samek et al. (2016),
which involve removing pixels either in the order of highest importance or lowest importance and
observing the area of the resulting curve. Insertion and Deletion Games of Petsiuk et al. (2018)
uses this too. The deletion game measures the drop in class probability as important pixels are
removed, while the insertion game measures the rise in class probability as important pixels are
added. (Our AUC discussion in Section 3 relates to this.) Remove and Retrain (ROAR) is a
saliency evaluation method proposed by Hooker et al. (2019). Input features are ranked and then
removed according to a saliency map. A new model is trained on the modified training set, and
a larger degradation in accuracy on the modified test set compared to the original model on the
original test set is regarded as a better saliency method. (NB: retraining makes this a non-intrinsic
method.) Previous work has also introduced datasets specifically designed to test saliency methods.
BAM Yang & Kim (2019) creates saliency maps by pasting object pixels from MSCOCO Lin et al.
(2014) into scene images from MiniPlaces Zhou et al. (2017). The Saliency Metric proposed by
Dabkowski & Gal (2017) thresholds saliency values above some α chosen on a holdout set, finds
the smallest bounding box containing these pixels, upsamples and measures the ratio of bounding
box area to model accuracy on the cropped image, s(a, p) = log(max(a, 0.05))− log(p) where a is
the area of the bounding box and p is the class probability of the upsampled image.

Controversies. There is extensive discussion of validity of saliency evaluation methods;
e.g., Brunke et al. (2020)Petsiuk et al. (2018).

E.3 SALIENCY COMPUTATIONS AND UNDERLYING MEANINGS OF SALIENCY

For simplicity this discussion assumes the datapoints are images and the classifier is a deep net. The
heatmap in the saliency method is trying to highlight the contribution of individual pixels to the final
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answer. This is analogous to how a human may highlight relevant portions of the image with a plan.
(Classic saliency methods in vision are inspired by studies of human cognition.) Saliency methods
operationalize this intuitive definition in different ways, and we try to roughly categorise these as
follows.

Variational interpretation. These interpret saliency in terms of effect on final output due to
change in a single pixel –captured either via partial derivative of output with respect to pixel value
(i.e., effect of infinitesimal change), or via change of output when this pixel is set to 0 or to a ran-
dom (or ”gray”) value. Examples include Gradient, Gradient � Input Shrikumar et al. (2017),
Occlusion

Credit attribution guided by gradient. These use the gradient to guide the assignment of saliency
values. The gradient is interpreted as propagating values from the output to the input layer, and the
values are partitioned/recombined at internal nodes of the net following some conservation princi-
ples. A key goal is to ensure completeness, which means that the sum of the attributions equal the
logit value. Examples include LRP, DeepLIFT Shrikumar et al. (2017), Rect-Grad Let ali be the
activation of some node in layer l, and Rl+1

i be the backpropagated gradient up to ali. Rect-grad
replaces the vanilla chain rule, Rl = 1[ai > 0] with the rule that Rli = 1[Rl+1

i ai > τ ] for some
threshold τ . Hence, during a backward pass preference is given to nodes with large margin.

Ensembling on top of above two ideas. Ensembling methods combine saliency estimates over
multiple inputs an an attempt to reduce noise in the final map. Examples include Smooth-Grad,
Occlusion based methods, etc. We also include Shapley Values in this list.

The Shapley value aims to fairly distribute credit among a coalition of N players. In the context
of image saliency, each coordinate of the image input may be seen as a player, and the Shapley
value computes

∑
S⊆N \{i}

|S|!(n−|S|−1)!
n! (v(S ∪{i})−v(S)). It can be interpreted as the marginal

contribution of player i, over all possible orderings of the coalition. In this sense, it can be seen as
an ensembling method, as it averages over all possible random permutations.

analysis of saliency methods Previous work has analyzed ensembling methods like Smooth-grad,
and found that it does not smooth the gradient Seo et al. (2018). They conclude that Smooth-Grad
does not make the gradient of the score function smooth. Rather Smooth-grad is approximately the
sum of a standard saliency map and higher order terms and the standard deviation of the Gaussian
noise. It has also been found that Shapley values, despite having a uniqueness result, can differ
in the way they depend on the model, data, etc Sundararajan & Najmi (2020). Fryer et al. (2021)
highlight several nuances that should be taken into account when considering Shapley values. They
introduce Shapley values as averaging over submodels, and note that ”the performance of a feature
across all submodels may not be indicative of the particular performance of that feature in the set
of optimal submodels.”. They provide specific cases where satisfying the axioms of Shapley values
works against the goal of feature selection.

F CLARIFYING BENEFIT OF TV REGULARIZATION

This section illustrates Definitions 3.1 and 3.2 using linear classifiers. It also shows how TV regu-
larizers help ensure soundness even in this setting.

Let S be a dataset of labeled data (x, y) where the inputs are of unit norm and labels are binary,
i.e., ‖x‖2 = 1, y ∈ {±1}. The model in question is a linear classifier f(x) := sgn(〈w,x〉)
parameterized by the weight vector w ∈ Sd−1, and it achieves the perfect accuracy on the set S with
a margin γ := min(x,y)∈S y 〈w,x〉 > 0. We assume that the coordinates of x and w are uniformly
bounded by 10√

d
, i.e., ‖x‖∞ ≤ 10√

d
, ‖w‖∞ ≤ 10√

d
(10 can be changed to any other constant).

Let Γ be the input modification process that sets all non-salient pixels to 0. We are interested in
masking explanations with deterministic salient set, i.e., ∆ assigns probability 1 to some salient set
S. According to Section 3.1, a masking explanation validates label a if Ex̃∼Γ(x,∆)[1[f(x̃)=a]] is
high. A simple calculation shows that this expectation equals to 1[a

∑
i∈S wixi>0], and thus the goal

is to find S so that a
∑
i∈S wixi > 0.

As we do not consider the full salient set informative, we are interested in masking explanations
with size constraint |S| = L for some 1 ≤ L ≤ d. There is a simple saliency method that achieves
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this goal: Given an input x and a label a ∈ {±1}, sort the coordinates according to awixi and take
the highest L coordinates as the salient set S.

It is easy to see that this method always produces S with a
∑
i∈S wixi > 0. Letting a = y proves the

completeness. However, this method does not satisfy soundness: a salient set S with a
∑
i∈S wixi >

0 can also be found for a 6= y!

Now we see how the TV constraint helps to ensure soundness (with good probability). A vec-
tor can be seen as a 1D image, and the TV of a salient set S can be defined by TV(S) :=∑d−1
i=1

∣∣1[i∈S] − 1[i+1∈S]

∣∣. For simplicity, we consider salient sets with TV at most 2. This means
S is just an interval. Given the size and TV constraints |S| = L, TV(S) ≤ 2, it is easy to come
out with the following saliency method: search over all the intervals of length L and if an interval
S satisfies a

∑
i∈S wixi > 0, return it as the salient set. Fortunately, this method does satisfy both

completeness and soundness, which is justified by the following theorem.
Theorem F.1. For any (x, y) ∈ S , if we shuffle the coordinates of w and those of x according to
the same random permutation, then

1. For L = Ω( 1
γ2 log 1

δ ), with probability 1− δ, there is an interval of length L that validates
y;

2. For L = Ω( 1
γ2 log d

δ ), with probability 1− δ, no interval of length L can validate −y.

Proof. Let S be any fixed interval of length L, then the distribution of
∑
i∈S wixi is identical to

the distribution of the sum of L i.i.d. random variables drawn from {w1x1, . . . , wdxd} without
replacement. Note that dyw1x1, . . . , dywdxd are d numbers with mean γ, and their absolute values
are bounded by 102 = O(1). By Chernoff bound,

Pr

[
1

L

∑
i∈S

dywixi − γ < −ε

]
≤ e−O(ε2|S|).

Set ε = γ ensures that y
∑
i∈S wixi > 0 with probability e−O(γ2|S|). We can fix any interval S

to prove Item 1. Taking union bounds over all intervals of length L, the probability of existing an
interval of length L that validates −y should be no greater than

∑
|S|=L e

−O(ε2L) ≤ d2e−O(γ2L),
which proves Item 2.

This shows that such masking explanations make sense to humans: if the model predicts y, then we
can find an interval of length Ω̃(1/γ2) so that computing the inner product only in that interval leads
to the same prediction; otherwise if the model does not predict y, such interval cannot be found.
Thus it is sufficient to convince humans that the model predicts y by only revealing the existence of
such interval and the coordinate values in it.

Although the example given in this section is simple, the conceptual message is clear: saliency
methods may not guarantee soundness in itself, but adding regularity constraints such as TV can
mitigate this soundness issue effectively.
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