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A Dataset documentation1

(1) Our dataset, KD-DTI, is about to speed up the research of discovering drug, target and their2

interaction from the literature, which is an important topic. Our dataset is built upon DrugBank and3

TTD. After the confirmation from the owners of DrugBank, to use our dataset, one should register4

an account for DrugBank to extract the drug and target names related to DrugBank. For TTD, we5

confirm with the owner, and no license is required.6

(2) Any researchers about machine learning, natural language processing, biology and medicine7

might benefit from our dataset.8

(3) Currently, the dataset is only visible to reviewers through the private URL. After the review9

process, we will release our dataset through Github or a publicly available website. Our dataset will10

be maintained for a long time.11

(4) We have confirmed with the owners of DrugBank and TTD for re-distribution.12

(5) The licence of the dataset is the Computational Use of Data Agreement (C-UDA) License.13

(6) We will update our dataset regularly according to the feedback of users.14

B Detailed patterns for data filtration15

The detailed pattern are summarized in Table 1.16

C Study on regularization techniques17

We explore various combinations of dropout and label smoothing based on Transformer +18

PubMedBERT-Fuse. The F1 scores of the validation set are reported in Table 2. The best re-19

sult is achieved when dropout and label smoothing are set as 0.3 and 0.2 respectively. However, the20

training F1 score is 70.29, which is significantly larger than the validation set. We keep increasing21

dropout and label smoothing, and found that the validation performance cannot be further improved.22

This shows that using basic techniques to improve generalization (i.e. dropout, label smoothing) can23

bring limited improvement, and we need more effective regularization techniques for the DTI triplet24

extraction task.25
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Input: A query q and the retrival resultsR(q,D) = {rj}.

Reliable patterns
P1 ∃rj ∈ R(q,D) s.t. rj and q are exactly the same

(except for parentheses, cases, and punctuation marks);
P2 ∃rj ∈ R(q,D) s.t. rj and q have > 20 characters or ≥ 3 words in common;

Positive patterns
P3 There are at least 2 elements inR matching variant formats of q (e.g., +s, +ed, +ing);
P4 There are at least 2 elements r· inR s.t each r and q has > 8 characters in common,

or at most 10% different characters;
P5 |R(q,D)| > 3;

Negative patterns
P6 Each r inR has < 8 characters, or r is a meaningless word like “other”, “unknown”, etc.

Table 1: Matching patterns between a query and a paper.

(dr,ls) 0.1 0.2 0.3

0.2 18.05 22.24 21.97
0.3 20.06 23.33 21.45
0.4 20.93 20.14 19.86
0.5 18.71 18.97 18.35

Table 2: Results of the F1 on the validation set. dr and ls stand for dropout and labeling smoothing
respectively.

D Main results with standard deviation26

Figure 1 presents the standard deviation of results on DrugBank and TTD. On DrugBank, the standard27

deviation of each model is around 1.5. On TTD, the standard deviation scores are smaller and usually28

less than 1.0.29
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Figure 1: Main results with standard deviation. “TF” denotes Transformer.
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Title: Assessment of the abuse liability of ABT-288, a novel histamine H3 receptor antagonist.
Abstract: RATIONALE: Histamine H3 receptor antagonists, such as ABT-288, have been shown to possess
cognitive-enhancing and wakefulness-promoting effects. On the surface, this might suggest that H3 antagonists
possess psychomotor stimulant-like effects and, as such, may have the potential for abuse. OBJECTIVES: The
aim of the present study was to further characterize whether ABT-288 possesses stimulant-like properties and
whether its pharmacology gives rise to abuse liability. METHODS: The locomotor-stimulant effects of ABT-288
were measured in mice and rats, and potential development of sensitization was addressed. Drug discrimination
was used to assess amphetamine-like stimulus properties, and drug self-administration was used to evaluate
reinforcing effects of ABT-288. The potential development of physical dependence was also studied. RESULTS:
ABT-288 lacked locomotor-stimulant effects in both rats and mice. Repeated administration of ABT-288 did
not result in cross-sensitization to the stimulant effects of d-amphetamine in mice, suggesting that there is
little overlap in circuitries upon which the two drugs interact for motor activity. ABT-288 did not produce
amphetamine-like discriminative stimulus effects in drug discrimination studies nor was it self-administered by
rats trained to self-administer cocaine. There were no signs of physical dependence upon termination of repeated
administration of ABT-288 for 30 days. CONCLUSIONS: The sum of these preclinical data, the first of their
kind applied to H3 antagonists, indicates that ABT-288 is unlikely to possess a high potential for abuse in the
human population and suggests that H3 antagonists, as a class, are similar in this regard.

Prediction: (Drug: “ABT-288”, Target: “Histamine H3 receptor”, Interaction: “antagonist”)
Annotation: (Drug: “ABT-288”, Target: “Histamine H3 receptor”, Interaction: “antagonist”)

Title: Mechanisms of Glucose Lowering of Dipeptidyl Peptidase-4 Inhibitor Sitagliptin When Used Alone or
With Metformin in Type 2 Diabetes: A double-tracer study.
Abstract: OBJECTIVE To assess glucose-lowering mechanisms of sitagliptin (S), metformin (M), and the two
combined (M+S).RESEARCH DESIGN AND METHODS We randomized 16 patients with type 2 diabetes
mellitus (T2DM) to four 6-week treatments with placebo (P), M, S, and M+S. After each period, subjects received
a 6-h meal tolerance test (MTT) with [(14)C]glucose to calculate glucose kinetics. Fasting plasma glucose
(FPG), fasting plasma insulin, C-peptide (insulin secretory rate [ISR]), fasting plasma glucagon, and bioactive
glucagon-like peptide (GLP-1) and gastrointestinal insulinotropic peptide (GIP) was measured.RESULTS FPG
decreased from P, 160± 4 to M, 150± 4; S, 154± 4; and M+S, 125± 3 mg/dL. Mean post-MTT PG decreased
from P, 207 ± 5 to M, 191 ± 4; S, 195 ± 4; and M+S, 161 ± 3 mg/dL (P < 0.01]. The increase in mean
post-MTT plasma insulin and in ISR was similar in P, M, and S and slightly greater in M+S. Fasting plasma
glucagon was equal (65-75 pg/mL) with all treatments, but there was a significant drop during the initial 120
min with S 24% and M+S 34% (both P < 0.05) vs. P 17% and M 16%. Fasting and mean post-MTT plasma
bioactive GLP-1 were higher (P < 0.01) after S and M+S vs. M and P. Basal endogenous glucose production
(EGP) fell from P 2.0 ± 0.1 to S 1.8 ± 0.1 mg/kg min, M 1.8 ± 0.2 mg/kg min [both P < 0.05 vs. P), and M+S
1.5 ± 0.1 mg/kg min (P < 0.01 vs. P). Although the EGP slope of decline was faster in M and M+S vs. S, all
had comparable greater post-MTT EGP inhibition vs. P (P < 0.05).CONCLUSION SM+S combined produce
additive effects to 1) reduce FPG and postmeal PG, 2) augment GLP-1 secretion and β-cell function, 3) decrease
plasma glucagon, and 4) inhibit fasting and postmeal EGP compared with M or S monotherapy.

Prediction: (Drug: “Sitagliptin”, Target: “Dipeptidyl Peptidase 4”, Interaction: “inhibitor”)
Annotation: (Drug: “Sitagliptin”, Target: “Dipeptidyl Peptidase 4”, Interaction: “inhibitor”), (Drug: “C”,
Target: “C-peptide”, Interaction: “part of”)

Table 3: Case study of triplet generation on unseen sample.

E Case study30

We perform a case study to investigate whether a model trained on the KD-DTI dataset is able31

to discover unseen Drug-Target-Interaction triplets and handle unseen paper. To achieve this, we32

train a generative model on KD-DTI and make predictions on unseen samples from another dataset,33

ChemProt, which contains human annotation of chemical-protein relation (a kind of drug-target34

interaction).We use Transformer+PubMedBERT-Fuse for case study.35

As shown in Table 3, in the first case, the entire triplet is correctly extracted, while both the drug36

and whole triplet are unseen in KD-DTI. In the second case, we successfully extract one of the two37

annotated triplets. We attribute the missing of the second triplet to the irregular format of drug “C”38

and the presence of distracting items, such as “P” and “M”.39
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F Broader impact40

We propose a new dataset for biomedical knowledge discovery. We believe that this dataset can speed41

up the research of bioNLP and machine learning. For negative impact, after the success of automatic42

knowledge discovery, it might cause some unemployment of the related researchers and engineers.43

G Distribution of interactions44

In the Figure 2, we present a details statistic of interactions included in the corpus.45
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Figure 2: Distribution of interactions.
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