
HGA-FL

Supplementary: Hierarchical Global Asynchronous
Federated Learning Across Multi-Center

A. Common Properties

Properties 1 The F is L-smooth with Lipschitz constant L if

∥∇F (u)−∇F (v)∥ ≤ L∥u− v∥ ∀u,v. (20)

F (v) ≤ F (u) + ⟨∇F (u),v − u⟩+ L

2
∥y − u∥2 ∀u,v. (21)

For any vectors vi, vj and i, j ∈ Z+ and a constant Ω > 0, it has:

∥
m∑
i=1

vi∥2 ≤ m(

m∑
i=1

∥vi∥2), (22)

∥vi + vj∥2 ≤ (1 + Ω) ∥vi∥2 +
(
1 + Ω−1

)
∥vj∥2 . (23)

B. Proof of Proposition 1

Proposition 1. For any step tj within the sub-center update, we denote ηsG
tj
j = w

tj
j −w

tj−1
j

following the sub-center client model update rule (4). The surrogate learning rate ηs of sub-
center satisfies:

η2s ≤
2 + 2L2

α2
. (24)

Proof Referring from (Acar et al., 2021) Appendix B.1, for the local proximal gradient
and the model update in sub-center j, it has the following

w
tj
j = γ

tj
j −

1

α
h
tj
j , γ

tj
j =

1

Nj

∑
i∈[nj ]

w
tj
j,i , (25)

where w
tj
j is the sub-model at sub-center fusion step tj .

And from the property analysis in (Acar et al., 2021) the state h
tj
j becomes the average

gradient across clients when w
tj
j converges,

h
tj
j =

1

Nj

∑
i∈[nj ]

∇Fj,i(w
tj
i ). (26)

Therefore, the model change for sub-center is given by

w
tj+1
j − w

tj
j = γ

tj+1
j − γ

tj
j +

1

α
(h

tj
j − h

tj+1
j ). (27)
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By utilizing lemma 2 from FedDyn (Acar et al., 2021), we derive the expected value as
follow:

E
[
γ
tj
j − γ

tj−1
j

]
=

1

αNj

∑
i∈[nj ]

E
[
−∇fj,i(w

tj
j,i)
]
. (28)

Here, we can define the general model change equation as

∆t
j =

tj∑
q=tj−R

ηsG
q
j =

tj∑
q=tj−R

(γq+1
j − γqj +

1

α
(hqj − hq+1

j )), (29)

where ∆t
j denote the model parameter accumulated difference of sub-center j by sub-center

rounds R at global step t.
Referring from (27) with α ≥ 1 and inequality (23), we have

E∥wtj
j − w

tj−1
j ∥2 ≤ 2E∥γtjj − γ

tj−1
j ∥2 + 2E∥htj−1

j − h
tj
j ∥

2, (30)

and with L-smooth attribute (20) and (25), we have

E∥htj−1
j − h

tj
j ∥

2 ≤ L2E∥γtjj − γ
tj−1
j ∥2. (31)

We define ηs as the sub-center model update step size rate and G
tj
j is the surrogate unbiased

estimate gradient of sub-center j. The ∇Fj(w
tj
j ) is the gradient from each sub-center j

update. From above and (30), we have:

E∥wtj
j − w

tj−1
j ∥2 = E∥ηsG

tj
j ∥

2 = η2sE∥∇Fj(w
tj
j )∥

2 (32)

≤ 2

α2N2
j

∥
∑
i∈[nj ]

E
[
−∇Fj,i(w

tj
j,i)
]
∥2 + 2E∥htj−1

j − h
tj
j ∥

2. (33)

Combining (33), (30), (28) and (31), we have

E∥wtj
j − w

tj−1
j ∥2 ≤ 2E∥γtjj − γ

tj−1
j ∥2 + 2L2E∥γtjj − γ

tj−1
j ∥2, (34)

Following above (34) with (28) and (32), we have

E∥ηsG
tj
j ∥

2 ≤ 2 + 2L2

α2
∥ 1

Nj

∑
i∈[Nj ]

E
[
∇Fj,i(w

tj
j,i)
]
∥2 (35)

Therefore, we have following bound for Proposition 1

η2s ≤
2 + 2L2

α2
. (36)

We apply η2s to all sub-centers for the theoretical proof.
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C. Properties for Global Convergence

C.1. Bounds on buffered aggregation

In buffered model aggregations, only a subset of sub-center models with buffer size K
participate in the model fusion process. We have wt+1 = wt − ηg

1
K∆t + ηgv

t, vt =

1
K

∑
j∈[Ht]

(ct −∆
t−Γt

j

j ), ct = 1
M

∑M
j=1 c

t
j and ctj = ∆

t−ζtj
j from Algorithm 1.

Lemma 1 For any subset K ⊆ m in the global buffer with |Ht| = K and |m| = M , the
following upper bound holds for the assumption of diversity across sub-center:

1

K

K∑
j=1

E[∥∇Fj(w)−∇F (w)∥2] ≤ M

K
σ2
g . (37)

Proof
Referring to Assumption 7, we have

1

K

K∑
j=1

E[∥∇Fj(w)−∇F (w)∥2]

≤ M

K
· 1

M

M∑
j=1

E[∥∇Fj(w)−∇F (w)∥2] ≤ M

K
σ2
g .

According to the Lemma 3 of FedAdam (Reddi et al., 2021), with r ∈ {0, . . . , R − 1} and
Lemma 1, the expectation difference between lower level (sub-center) model wt,r

j from global

buffer and global wt after R internal rounds of sub-center, can be reformed to following:

1

K

K∑
j=1

E[∥w
t−Γt

j ,r

j −wt−Γt
j |2] ≤ 5Rη2s(σ

2
s + 6R · M

K
σ2
g) + 30R2η2sE∥∇F (wt−Γt

j )∥2, (38)

with sub-center step rate ηs ≤ 1
8RL to satisfy global buffer aggregation and follow Assump-

tion 6 and 7.
Given same conditions as above, for all sub-center model in the state variable cj :

1

M

M∑
j=1

E[∥w
t−ζtj ,r

j −wt−ζtj |2] ≤ 5Rη2s(σ
2
s + 6Rσ2

g) + 30R2η2sE∥∇F (wt−ζtj )∥2. (39)

Extending from (Wang et al., 2023) Lemma G.1 and Inequality of G.16 following (Reddi
et al., 2021) and Lemma 1, We derive the bound for the summation of gradients of a subset
of sub-center models from global buffer:

K∑
j=1

∥
R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )∥2 ≤ 15KR3L3η2s

(
σ2
s + 6R

M

K
σ2
g

)
+
(
90KR4L2η2s +3KR2

) ∥∥∥∇F (wt−Γt
j )
∥∥∥2 + 3MR2σ2

g . (40)
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Similar to (39), we can also reformulate (40) using ζ and obtain the bound of summation
gradient from state variable:

M∑
j=1

∥
R−1∑
r=0

∇Fi(w
t−ζtj ,r

j )∥2 ≤ 15MR3L3η2s
(
σ2
s + 6Rσ2

g

)
+
(
90MR4L2η2s

+3MR2
) ∥∥∥∇F (wt−ζtj )

∥∥∥2 + 3MR2σ2
g . (41)

C.2. Bounds for stale model

From (Wang et al., 2023) Equation E.5, it gives a expected bound for current model at step
t and stable model at step t− τ ti :

E
[∥∥∥wt −wt−τ ti

∥∥∥2] = E

∥∥∥∥∥∥
t−1∑

q=t−τ ti

(
wq+1 −wq

)∥∥∥∥∥∥
2

≤ τmax

t−1∑
q=t−τ ti

E
[∥∥wq+1 −wq

∥∥2] , (42)

where τ ti denotes the delayed model i at time step t. In our case, we substitute τ with Γ
and ζ which represent the model delays in the global buffer and state variables. And the w
can be either client worker model or sub-center fusion model.

C.3. Sub-center stale model bounded properties

With the diversity assumption of the sub-center and global gradient

E∥∇Fj(w
t)−∇F (wt)∥ ≤ σ2

g . (43)

From the smoothness property from (20), we have ∥∇Fj(w
t−Γt

j ) − ∇Fj(w
t−Γt

j ,r

j )∥ ≤

L∥wt−Γt
j −w

t−Γt
j ,r

j ∥ and ∥∇Fj(w
t−ζtj )−∇Fj(w

t−ζtj ,r

j )∥ ≤ L∥wt−ζtj −w
t−ζtj ,r

j ∥ , which can be
expanded by (38) and (39).

Also, from Wang et al. (2023) Equation E.5 with (42), we have bound the difference

between sub-center model wt−Γt
j in the buffer and global model, and also the bound between

state model wt−ζtj and global model at time step t− Γt
j and t− ζtj respectively.

E∥wt − wt−Γt
j∥2 = E∥

t−1∑
q=t−Γt

j

(wq+1 − wq)∥2 ≤ Γmax

t−1∑
q=t−Γt

j

E∥wq+1 − wq∥2, (44)

E∥wt − wt−ζtj∥2 = E∥
t−1∑

q=t−ζtj

(wq+1 − wq)∥2 ≤ ζmax

t−1∑
q=t−ζtj

E∥wq+1 − wq∥2. (45)
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D. Global Convergence Analysis

For our HGA-FL algorithm 1, we have following inequality from the smoothness (21)

E[F (wt+1)]− F (wt)

≤ E
〈
∇F (wt), wt+1 − wt

〉
+

L

2
E∥wt+1 − wt∥2 (46)

= − ηgE[
〈
∇F (wt),

1

K
∆t − vt

〉
]︸ ︷︷ ︸

T1

+
η2gL

2
E∥∆t − vt∥2︸ ︷︷ ︸

T2

, (47)

where ∆t =
∑

j∈[Ht]
∆

t−Γt
j

j =
∑

j∈[Ht]

∑R−1
r=0 ∇Fj(w

t−Γt
j ,r

j ). Detail variable assigments check
Section 2.3.

D.1. Expanding for T1

For polarization identities vector inner produce equation ⟨a, b⟩=1
2 [∥a∥

2 + ∥b∥2 − ∥a − b∥2]
with Equation (29), at each global fusion time step t, the T1 can extend to be

T1 = −ηgE

〈∇F (wt) ,
2

K

∑
j∈[Ht]

t−1∑
q=t−Γt

j

ηsG
q
j −

1

M

M∑
j=1

t−1∑
q=t−ζtj

ηsG
q
j

〉
= −ηgηsRE

〈∇F (wt) ,
2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )− 1

MR

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )

〉 .

(48)

Thus, the T1 can be expanded to

T1 = −
ηgηsR

2
E∥∇F (wt)∥2 (49)

−
ηgηsR

2
E∥ 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )− 1

MR

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2

︸ ︷︷ ︸
T1.2

(50)

+
ηgηsR

2
E∥∇F (wt)− 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j ) +
1

MR

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2.

︸ ︷︷ ︸
T1.3

(51)

D.1.1. Expanding the terms in T1

We define the common terms in T1 and T2

V t =
K + 1

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )− 1

MR

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j ). (52)
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With above bound of
∑Mj

i=1 ∥
∑R−1

k=0 ∇Fj(w
t,r
j )∥2 , the T1.2 can be

T1.2 = −
ηgηsR

2
E∥V t∥2. (53)

D.2. Expanding for T2

We observe that T1.2 and T2 have the same term, and

T2 =
L

2
E∥ηg∆t − ηgv

t∥2 =
Lη2gη

2
sR

2

2
E∥V t∥2. (54)

From above T2 expanding, with inequalities (22) and (23), we have inequality bound for
E∥wt+1 − wt∥2:

E∥wt+1 − wt∥2 ≤
4η2gη

2
s

K
E
∑

j∈[Ht]

∥
R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )∥2 +
η2gη

2
s

M
E

M∑
j=1

∥
R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2.

(55)

D.2.1. Combining T1.2 and T2

Thus, with T1.2 + T2, we have

T1.2 + T2 =
Lη2gη

2
sR

2 − ηgηsR

2
E∥V t∥2

=
Lη2gη

2
sR

2 − ηgηsR

2
E∥ 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )− 1

MR

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2

≤
4(Lη2gη

2
sR− ηgηs)

2K2R
E∥

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )∥2 +
Lη2gη

2
sR− ηgηs

2M2R
E∥

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2.

(56)

where require ηs satisfying ηs ≤
√
2

αNj
≤ 1

8RL from (38)
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D.2.2. Expanding T1.3

T1.3 =
ηgηsR

2
E∥ 1

M

M∑
j=0

∇F (wt) +
1

MR

M∑
j=0

R−1∑
r=0

∇Fj(w
t)− 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t)

+
2

KR

∑
j∈[Ht]

R−1∑
r=0

(∇Fj(w
t−Γt

j )−∇Fj(w
t−Γt

j ,r

j ))− 1

MR

M∑
j=1

R−1∑
r=0

(∇Fj(w
t−ζtj
j )−∇Fj(w

t−ζtj ,r

j ))

+
2

KR

∑
j∈[Ht]

R−1∑
r=0

(∇Fj(w
t)−∇Fj(w

t−Γt
j ))− 1

MR

M∑
j=1

R−1∑
r=0

(∇Fj(w
t)−∇Fj(w

t−ζtj
j ))∥2

≤ ηgηsRE∥ 1

M

M∑
j=0

∇F (wt) +
1

MR

M∑
j=0

R−1∑
r=0

∇Fj(w
t)− 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t)∥2

+
2ηgηs4

K

∑
j∈[Ht]

R−1∑
r=0

E∥∇Fj(w
t−Γt

j )−∇Fj(w
t−Γt

j ,r

j )∥2

+
2ηgηs
M

M∑
j=1

R−1∑
r=0

E∥∇Fj(w
t−ζtj
j )−∇Fj(w

t−ζtj ,r

j )∥2

+
2ηgηs4

K

∑
j∈[Ht]

R−1∑
r=0

E∥∇Fj(w
t)−∇Fj(w

t−Γt
j )∥2

+
2ηgηs
M

M∑
j=1

R−1∑
r=0

E∥(∇Fj(w
t)−∇Fj(w

t−ζtj
j ))∥2, (57)

where last the inequalities holds by the ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.
Therefore, using smoothness (20) with the bound inequalities of (42) , (44) and (45), we

can extend T1.3,

T1.3 ≤ ηgηsRE∥ 1

M

M∑
j=0

∇F (wt) +
1

MR

M∑
j=0

R−1∑
r=0

∇Fj(w
t)− 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t)∥2

+
2ηgηs4L

2

K

∑
j∈[Ht]

R−1∑
r=0

E∥wt−Γt
j − w

t−Γt
j ,r

j ∥2 + 2ηgηsL
2

M

M∑
j=1

R−1∑
r=0

E∥w
t−ζtj
j − w

t−ζtj ,r

j ∥2

+
2ηgηs4L

2

K
·RKΓmax

t−1∑
q=t−Γt

j

E∥wq+1 − wq∥2 + 2ηgηsL
2

M
·RMζmax

t−1∑
q=t−ζtj

E∥wq+1 − wq∥2,

(58)

where the inequality holds by applying the bound of parameter difference for the delayed
sub-center model (44) and (45).
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D.3. Expanding convergence inequality

By expanding and simplifying T1 and T2 in (47) with (38), (39), (23) and (22), using
polarization identity ⟨a, b⟩=1

2 [∥a∥
2 + ∥b∥2 − ∥a− b∥2] with Eq. (29) of ∆t

j , we have:

E[F (wt+1)]− F (wt)

≤ −ηgηsR

2
E∥∇F (wt)∥2

+ ηgηsR · ( E∥ 1

M

M∑
j=0

∇F (wt) +
1

MR

M∑
j=0

R−1∑
r=0

∇Fj(w
t)− 2

KR

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t)∥2 )

︸ ︷︷ ︸
T3

+
2ηgηs4L

2

K

∑
j∈[Ht]

R−1∑
r=0

E∥wt−Γt
j − w

t−Γt
j ,r

j ∥2 + 2ηgηsL
2

M

M∑
j=1

R−1∑
r=0

E∥w
t−ζtj
j − w

t−ζtj ,r

j ∥2

+ 8ηgηsRL2Γmax

t−1∑
q=t−Γt

j

E∥wq+1 − wq∥2 + 2ηgηsRL2ζmax

t−1∑
q=t−ζtj

E∥wq+1 − wq∥2

+
4(Lη2gη

2
sR− ηgηs)

2K2R
E∥

∑
j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )∥2 +
Lη2gη

2
sR− ηgηs

2M2R
E∥

M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2,

(59)

D.4. Expanding for T3.

From the T1.3 term above and bound diversity variance, with the same proof process of T1.3

(58) we simplify T3 and have

T3 = E∥∇F (wt) +∇F (wt)− 1

M

M∑
j=0

(∇F (wt)−∇Fj(w
t))

− 2∇F (wt) +
2

K

∑
j∈Ht

(∇F (wt)−∇Fj(w
t))∥2

≤ 1

M

M∑
j=0

E∥(∇F (wt)−∇Fj(w
t))∥2 + 4

K

∑
j∈[Ht]

E∥(∇F (wt)−∇Fj(w
t))∥2

≤ σ2
g +

4M

K
σ2
g =

K + 4M

K
σ2
g , (60)

where last inequality holds by variance diversity of partial models aggregation assumption
of Lemma 1.
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D.5. Simplify for convergence inequality.

With summing over t = 1 to T for both sides, we have

E[F (wT+1)]− F (w1)

≤ −ηgηsR

2

T∑
t=1

E∥∇F (wt)∥2 +
T∑
t=1

ηgηsR ·
K + 4M

K
σ2
g + 8ηgηsRL2(5Rη2s(σ

2
s + 6R · M

K
σ2
g)T

+ 30R2η2s

T∑
t=1

E∥∇F (wt)∥2) + 2ηgηsRL2(5Rη2s(σ
2
s + 6Rσ2

g)T + 30R2η2s

T∑
t=1

E∥∇F (wt)∥2)

+ 8ηgηsRL2Γ2
max

T∑
t=1

E∥wt+1 − wt∥2 + 2ηgηsRL2ζ2max

T∑
t=1

E∥wt+1 − wt∥2

+
4(Lη2gη

2
sR− ηgηs)

2K2R

T∑
t=1

E∥
∑

j∈[Ht]

R−1∑
r=0

∇Fj(w
t−Γt

j ,r

j )∥2

+
Lη2gη

2
sR− ηgηs

2M2R

T∑
t=1

E∥
M∑
j=1

R−1∑
r=0

∇Fj(w
t−ζtj ,r

j )∥2, (61)

where the inequality holds by the bounds of accumulated gradients from partial sub-centers
(j ∈ Ht) and full clients respectively at certain time step point through (38) and (39).

To simplify (59) with T3, using (40) and Lemma G.1 in (Wang et al., 2023) with the

bound of (55) and delay summation gradients bounds:
∑T

t=1 E∥∇F (wt−Γt
j )∥2 ≤

∑T
t=1 E∥∇F (wt)∥2

and
∑T

t=1 E∥∇F (wt−ζtj )∥2 ≤
∑T

t=1 E∥∇F (wt)∥2, then we reformulate (59) as:

E[F (wT+1)]− F (w1)

≤ −ηgη̂sR

2

T∑
t=1

E∥∇F (wt)∥2 + ηgη̂sR ·
K + 4M

K
σ2
gT + 8ηgη̂sRL2(5Rη̂2s(σ

2
s + 6R · M

K
σ2
g)T

+ 30R2η̂2s

T∑
t=1

E∥∇F (wt)∥2) + 2ηgη̂sRL2 · (5Rη̂2s(σ
2
s + 6Rσ2

g)T + 30R2η̂2s

T∑
t=1

E∥∇F (wt)∥2)

+ (2ηgη̂sRL2η2g η̂
2
s(4Γ

2
max + ζ2max) +

Lη2g η̂
2
sR− ηgη̂s

2R
)·

(15R3L3η̂2s · 4(σ2
s + 6R

M

K
σ2
g)T + 15R3L3η̂2s(σ

2
s + 6Rσ2

g)T

+ 3R2(
4M

K
+ 1)σ2

gT )

+ (2ηgη̂sRL2η2g η̂
2
s(4Γ

2
max + ζ2max) +

Lη2g η̂
2
sR− ηgη̂s

2R
) · (90R4L2η̂2s + 3R2) · 5

T∑
t=1

∥∇F (wt)∥2.

(62)

In the inequality of above, we define η̂2s = 2+2L2

α2 and η2s ≤ η̂2s , where we have established

that the sub-center aggregation satisfies η2s ≤ 2+2L2

α2 from Inequality (36).
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D.6. Analysis for Convergence Constraint and Leaning Rate

We extract coefficient from the terms which contain ∥∇F (wt)∥2 from the above convergence
inequality (62), and have:

C∇ = −ηgη̂sR

2
+ 10ηgη̂sRL2 · 30R2η̂2s + 5(2ηgη̂sRL2η2g η̂

2
s(4Γ

2
max + ζ2max)

+
Lη2g η̂

2
sR− ηgη̂s

2R
)(90R4L2η̂2s + 3R2). (63)

To ensure convergence and uphold the upper bound for inequality (62), we can have a
constraint based on the third term on the right-hand side of (63):

2ηgη̂sRL2η2g η̂
2
s(4Γ

2
max + ζ2max) +

Lη2g η̂
2
sR− ηgη̂s

2R
≤ 0. (64)

From first and second terms on the right-hand side of (63), we also establish a constraint
that satisfies :

10ηgη̂sRL2 · 30R2η̂2s ≤
ηgη̂sR

2
. (65)

We then obtain:

η̂2s ≤
1

600R2L2
, (66)

where the η̂s (upper bound of ηs) holds the condition of constraint η2s ≤ 2+2L2

α2 and ηs ≤ 1
8RL

from (38). From bound of (66) and above constraints, we further obtain

α ≥ 10
√
6(2 + 2L2)LR, (67)

where α also holds the constraint α ≥ 20L and α ≥ 1 from sub-center convergence rate
(17).

Therefore we obtain the bound for ηg from above constraints

ηg ≤
5
√
6(
√
16(4Γ2

max + ζ2max) + 1− 1)

4(4Γ2
max + ζ2max)

. (68)

D.7. General Convergence Rate

With the aforementioned constraints (67) and (68) where η̂2s = 2+2L2

α2 , we exchange the
terms on both sides of the inequality (62) and further simplify it. Then we consequently
have general convergence rate:

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ 2α

C · ηgRT
(F (w1)− E[F (wT+1)]) + 5RL2(4− 3L) · BC2

α2K
σ2
s

+ 60R3L5η2g(4Γ
2
max + ζ2max) ·

BC4

α4K
σ2
s + 15R2L4ηg ·

BC3

α3K
σ2
s

+ 12R2L2η2g(4Γ
2
max + ζ2max) ·

(4M +K)C2

α2K
σ2
g + 3RLηg ·

(4M +K)C

αK
σ2
g , (69)

where C =
√
2 + 2L2 and B = 5K + (24M + 6K)R. This finishes the proof of Theorem

1. The α ≥ 10
√
6(2 + 2L2)LR from Ineq. (67) also hold the constrain α ≥ 20L from the

bound Ineq. (17).
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D.8. Extending convergence analysis

Therefore, by choosing ηg = 1√
T

and η̂s =
√

K
R , i.e., 2+2L2

α2 = K
R with α =

√
(2+2L2)R

K from

(69), the algorithm convergence rate has

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ 2√
T
√
KR

(F (w1)− E[F (wT+1)])

+ 5RL2K(4− 3L) · σ2
s

5K + (24M + 6K)R

KR

+ 60R3L5 1

T
K2(4Γ2

max + ζ2max)σ
2
s

5K + (24M + 6K)R

KR2

+ 15R2L4 1√
T
K
√
K · σ2

s

5K + (24M + 6K)R

KR
√
R

+ 12R2L2 1

T
K(4Γ2

max + ζ2max) · σ2
g

4M +K

KR

+ 3RL
1√
T

√
K · σ2

g

4M +K

K
√
R

. (70)

Thus, we have the proof of Corollary 1. For nonconvex case, by choosing ηg = 1√
T

and

α =

√
(2+2L2)R

K , we can have convergence rate of HGA-FL algorithm 1 satisfies

1

T

T∑
t=1

E∥∇F (wt)∥2 = O
(
F (w1)− F ∗
√
TKR

)
+O

(
60RL5(4Γ2

max + ζ2max)KBσ2
s

T

)
+O

(
12RL2(4Γ2

max + ζ2max)(4M +K)σ2
g

T

)

+O

(
15L4

√
KRBσ2

s√
T

)
+O

(
3
√
RL(4M +K)σ2

g√
TK

)
, (71)

where B = 5K + (24M + 6K)R, and F ∗ is the optimal point of the objective. Thus, we
have the proof of Corollary 1.
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E. RELATED WORK

In recent years, FL methods such as SCAFFOLD (Karimireddy et al., 2020), FedProx (Li
et al., 2020), and FedNova (Wang et al., 2020) have been proposed to mitigate the bias
induced by data heterogeneity in distributed model aggregation. To enhance the efficiency
of global model aggregation, recent works have introduced local regularization techniques
and proximal objective function approximations (Li et al., 2020; Mishchenko et al., 2022;
Malinovsky et al., 2022) to improve the consistency between local and global models. These
approaches have demonstrated promising convergence properties for both nonconvex and
convex objective functions.

Meanwhile, in the realm of asynchronous FL, several new methods (Yu et al., 2023;
Wang et al., 2023) have been proposed to tackle gradient staleness and delays in heteroge-
neous device and data environments. A series of semi-asynchronous FL approaches (Sun
et al., 2022) have also emerged, aiming to balance the bandwidth overhead of asynchronous
aggregations on the server, the time overhead of synchronous updates, and the issue of
model staleness.

Recent investigations into Multiple-Tier FL have primarily focused on three-tier archi-
tectures. Das et al. (Das and Patterson, 2021) and Malinovsky et al. (Malinovsky et al.,
2022) configure each silo with a hub acting as a sub-aggregation node, subsequently trans-
mitting the aggregated hub models to a global server for overall aggregation. FedHiSyn (Li
et al., 2022) primarily groups devices into different tiers. Banerjee et al. (Banerjee et al.,
2022) studied a three-tier model aggregation architecture and employed an L2 regularization
term to maintain model personalization.

F. Explanations for the Assumptions

Assumption 1 is a common assumption adopted in convergence analysis for asynchronous
FL (Wang et al., 2023). It indicates that ζtj ≥ Γt

j at any global step t which also implies

ζmax ≥ Γmax. According to Assumption 1, ∆
t−Γt

j

j represents the parameters difference in

the model updates for sub-center j from the step point t − Γt
j when sub-center j starts to

compute its internal gradients with its clients.

In FL DNNs training, it often commits the nonconvex objective in real-time model
learning process. This convergence process is affected by iterations of update, smoothness
constant L, local gradient variance bound, and learning rate. We present our results with
following common assumptions in FL (Wang et al., 2020; Reddi et al., 2021; Toghani and
Uribe, 2022). Assumptions 3 also implies ∥∇Fj(w)−∇Fj(w

′)∥ ≤ L∥w−w′∥ from Equation
1 due to averaging local objective.

F.1. Proof for Assumptions 6

For Assumption 6 (Bounded variance across sub-centers). The variance of stochastic gra-
dients in each sub-center j ∈ [m] is bounded, and satisfies:

Eξj∼Dj
[∥∇fj(w; ξj)−∇Fj(w)∥2] ≤ σ̂2

j , (72)
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where σ̂2
j = maxi∈[nj ] σ̂

2
j,i and ∇fj(w; ξj) denotes the average stochastic gradient on sub-

center j for data point set Dj which belongs to j. [m] represents the sub-center index
set.

Proof

Eξj∼Dj
[∥∇fj(w; ξj)−∇Fj(w)∥2]

= Eξj∼Dj
[∥ 1

Nj

Nj∑
i=1

∇fj,i(w; ξj,i)−
1

Nj

Nj∑
i=1

∇Fj,i(w)∥2]

≤ 1

Nj

Nj∑
i=1

[Eξ∼Dj,i
∥∇fj,i(w; ξj,i)−∇Fj,i(w)∥2]

≤ max
i∈[nj ]

σ̂2
j,i = σ̂2

j .

G. Detail of Experiment Setting

Datasets and Models. We evaluated on EMNIST, FashionMNIST (F-MNIST) and
CIFAR-10 datasets. EMNIST has 47 classes, 112,800 training and 18,800 test samples.
For non-i.i.d. and imbalanced data, we use Label Dirichlet Allocation (LDA) and local
long-tailed (LLT) partitioning (Tang et al., 2021). LDA draws samples from Dir(αd) per
client, where αd is the Dirichlet concentration factor. We adopt LLT αl = 0.9, with one
class occupying 90% of samples. For LLT in experiments, we default to using 200 samples
per client (Ns = 200). We train with the classical Two-Convolution Layers (2-Conv) DNN
suggested in many works (Das and Patterson, 2021) and Resnet-18 (Jhunjhunwala et al.,
2023; Acar et al., 2021). Except for CIFAR-10, without a specific statement, we use 2-Conv
for all datasets.

Staleness Setting. Practically, we use global time step t̂ to serve as the foundational
time unit for the entire system. This time step derives from the average computational
time required for mini-batch training across all local workers. Throughout training, each
local worker executes a specific number of global time steps t̂ based on its capabilities. The
duration between consecutive global fusion steps t and t + 1 depends on t̂, relative to the
average time taken for mini-batch gradient computation across all workers. Without specific
statement, we set Γmax = 500 as default, corresponding to 500 units of t̂.

Diverse Multi-center FLs. We propose a set of two-level hierarchical joint aggrega-
tion FL methods combining asynchronous and synchronous approaches. At the upper level,
we employ asynchronous global aggregation using FedAsync, FedBuff and CA2FL baselines,
denoted as FedAsync-G, FedBuff-G, and CA2FL-G, respectively. At the lower level, we
employ synchronous sub-center aggregation with FedAvg (S-Avg), FedProx (S-Prox), and
FedDyn (S-Dyn) baselines. In these original single-center methods, clients perform normal
gradient updates, which we feasibly substitute with sub-center model update processes.

We employ the global aggregation component of HGA-FL from Algorithm 1 Line 3 to
Line 16 denoted as HGA-FL-G, alongside diverse sub-center fusion methods to assess their
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performance. S-Avg, an example of sub-center synchronous fusion within the hierarchy
framework, is depicted in Algorithm 3 from the Supplementary Material.

Common Settings. For compared methods, we adopt default hyperparameters from
their original works for both asynchronous and synchronous approaches. S-Dyn uses the
same value of α as HGA-FL’s sub-center aggregation. For S-Prox, we set µ = 2 (Li et al.,
2020) consistent with the same coefficient in HGA-FL’s regularization term. For FedBuff-G,
we use a decay rate for the step size ηg in (Nguyen et al., 2022) for stability. For HGA-FL,
unless stated otherwise, we default to ηg = 0.1, α = 2. All other common settings are
M = 8, K = 3, Γmax = 500, R = 8, T = 200, LDA α = 0.2 with 10% sample quantity, 50
clients, 2 local epochs for global test accuracy.
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Figure 6: 100 clients, 8 sub-
centers and Ns = 200.
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centers and Ns = 100.

H. Detail Result and Analysis

In this section, we experimentally compare the efficiency and extendibility of our hierarchical
HGA-FL with other combined asynchronous and synchronous FL methods.

Effect of ηg and α. To evaluate hyperparameter sensitivity, we utilize the FashionM-
NIST dataset in HGA-FL, varying ηg and α for global and sub-center aggregation, respec-
tively. We employ 100 clients with 5 local epochs, R = 5, Ns = 200, LLT αl=0.9, a 2-Conv
DNN, K = 4, M = 8 and Γmax = 500 relative to t̂ for experimentation. We also conduct
another experiment using 32 clients and Ns = 100 to observe different behavior. The results
are depicted in Figure 6 and Figure 7. Our findings indicate that, ηg value ranging from 0.1
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to 0.5 and the α values ranging from 1 to 2 demonstrate optimal performance, consistent
with the constraints outlined in Theorem 1 and Corollary 1 for a certain L value.
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(a) K = 3 and 100 clients
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(b) K = 5 and 100 clients
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(c) K = 7 and 100 clients

Figure 8: Diverse MC-FLs via LDA αd = 0.2, 100% F-MNIST samples, M = 8 and R = 8.

0 25 50 75 100 125 150 175 200
Communication Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

EMNIST, K=3
FedBuff-G + S-Avg
FedBuff-G + S-Dyn
FedBuff-G + S-Prox
CA2FL-G + S-Avg
CA2FL-G + S-Dyn
CA2FL-G + S-Prox
HGA-FL

(a) K = 3 and 100 clients
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(b) K = 5 and 100 clients
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(c) K = 7 and 100 clients

Figure 9: Diverse MC-FLs via LDA αd = 0.2, 10% EMNIST samples, M = 8 and R = 8.
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(a) K = 3 and 50 clients
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(b) K = 5 and 50 clients
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(c) K = 7 and 50 clients

Figure 10: Diverse MC-FLs via LDA αd = 0.2, 10% F-MNIST samples, M = 8 and R = 8.

Effects of Diverse Global Asynchronous methods with Buffer. For comparing
with baseline FL multiple tiers conjunction methods, we construct a set of 3-tier architecture
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(a) K = 3 and 50 clients
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(b) K = 5 and 50 clients
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(c) K = 7 and 50 clients

Figure 11: Diverse MC-FLs via LDA αd = 0.2, 10% EMNIST samples, M = 8 and R = 8.

of two level aggregation combination methods. On the global asynchronous aggregation
level, we adopt asynchronous baseline global aggregation methods FedBuff-G, and CA2FL-
G. Next, we incorporate sub-center synchronous baseline S-Avg, S-Prox and S-Dyn. We
compare these combined multi-center FL (MC-FL) methods with our HGA-FL methods
based on global model accuracy, which indicates generalization. We adopt ηg = 0.1 and
α = 2 with LDA αd = 0.2 and common settings, utilizing 100% of the dataset samples for
FashionMNIST and 10% of the dataset samples for EMNIST. The results are shown in Table
2. Detailed figures are presented in Figure 8 and Figure 9. We also conducted additional
experiments with 50 clients, each using 10% of the dataset samples. The results of these
experiments can be found in Figure 10 for FashionMNIST and Figure 11 for EMNIST. We
observe that a large buffer size K helps improve global test accuracy and that our method
outperforms other combined algorithms in these settings, indicating its strong generalization
capabilities.

The baseline FedAsync adopt a proximity regularization term in the client update which
similar to FedProx. In the experiment, We adopt the FedAsync global fusion method
denoted by FedAsync-G, and S-FedProx in the sub-center.

Effects of HGA-FL-G with Diverse Sub-center Aggregation. We compare HGA-
FL to an integrated version HGA-FL-G incorporating S-Avg and S-Prox sub-center aggre-
gations, using LDA αd = 0.2. We also evaluate SCAFFOLD-ExP (Jhunjhunwala et al.,
2023) for sub-center aggregation (S-SCAFF-ExP), an optimized SCAFFOLD version with
default settings in their original paper. However, SCAFFOLD has been reported unstable
under staleness and data imbalance in many previous works (Reddi et al., 2021; Yu et al.,
2022). We observed similar phenomena with S-SCAFF-ExP in hierarchical FL. The results
are shown in Tables 3 and 4. And the results in Table 4 show HGA-FL outperforms others
on EMNIST and F-MNIST datasets.

Compare to Asynchronous and Synchronous Global Aggregation. We compare
our method with both vanilla asynchronous and synchronous global aggregation methods,
each combined with different sub-center fusion methods. For global methods, we adopt
FedAsync global fusion (FedAsync-G) (Xie et al., 2019) and synchronous averaging (Sync
Avg) methods. Results are presented in Table 3 and Figure 5. Notably, multi-center FLs
with global synchronous method, the Sync Avg, require more time steps t̂ to achieve the
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same 54% accuracy compared to asynchronous global methods. While HGA-FL outperforms
other methods overall, FedAsync-G with S-Dyn exhibits faster convergence. Despite lower
speed metrics, its overall accuracy within 200 global rounds surpasses FedAsync-G. However,
FedAsync-G’s training curve displays significant fluctuations and instability (see Figure 5
(a)).

Compare Across Models. We compared HGA-FL to global methods (FedBuff-G and
CA2FL-G) with S-Dyn on both 2-Conv DNN and ResNet18 models under two LDA distri-
butions and with a 10% sample quantity. S-Dyn exhibited superior performance compared
to other sub-center methods in previous experiments, so we exclusively used S-Dyn in the
sub-center for this experiment. Results from Table 5 indicate that HGA-FL maintains its
superiority over most alternatives. Particularly, multi-center FLs training the ResNet18
model with deeper layers exhibit higher test accuracy. These findings highlight the strong
generalization capabilities of the HGA-FL method among asynchronous global methods.

Effect of Staleness. We conducted a comparison between HGA-FL and HGA-FL-G
using S-Avg and S-Prox with different maximum delays Γmax under EMNIST and LDA
α = 0.2. Results from Table 6 and Figure 12 in the Supplementary Material show that
a larger Γmax indeed affects the model’s test accuracy. However, HGA-FL continues to
outperform, even with Γmax = 2500.
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(c) Γmax = 2500

Figure 12: Effect of staleness.
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(b) M = 16
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Figure 13: Effect of M and R
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Effect of M and R. We explore various combinations of sub-center numbers M and
aggregation rounds R in HGA-FL comparisons. Using a buffer size K equal to half the value
of M , we deploy 100 clients on the EMNIST dataset following LLT distribution Ns = 100
and αl = 0.9. These experiments are conducted over T = 500 rounds with common settings.
Results in Table 7 reveal that a smaller number of sub-centers M with corresponding buffer
size K achieve a higher global model test accuracy. This suggests that a larger number of
sub-centers engaged in fusion with the same total number of clients may introduce more
gradient variance and model drift, ultimately reducing global test accuracy. These findings
are consistent with the convergence rates specified in Theorem 1 and Corollary 1 containing
terms related to M and K. More results figures can be found in Figure 13.

I. Extension of Algorithm

The algorithm 3 is the vanilla model averaging method for sub-center internal aggregation.

Algorithm 3 Sub-centers Averaging Aggregation (S-Avg)

1: Input: w1, ηl, {ni}
Nj

i=1, n,[m],{nj}j=|[m]|
j=1 ;

2: S-Avg Sub-centers Procedure:
3: for each j ∈ [m] Sub-center j in parallel do
4: tj ← 1, w0

j ← w1

5: repeat
6: if Global wt update then
7: Receive wt; w

tj−1
j ← wt asynchronously

8: Clients ∀i ∈ [nj ] , w
tj
j,i ← w

tj−1
j

9: end if
10: for client i ∈ [nj ] in parallel do
11: for local step k from 1 to E do
12: w

tj
j,i = w

tj
j,i − ηl∇Fj,i(w

tj
j,i)

13: end for
14: Transmit client w

tj
j,i to sub-center j

15: end for
16: w

tj
j =

∑|nj |
i=1

ni
n w

tj
j,i

17: if tj == R then

18: Evaluate Γt
j , ∆

t−Γt
j

j = w
tj
j − w

tj−R
j

19: Transmit ∆
t−Γt

j

j to Global Server, tj ← 1
20: end if
21: tj ← tj + 1
22: until Global Server stop
23: end for
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