
Under review as a conference paper at ICLR 2023

A LINEAR ALGEBRA FACTS

Fact A.1. The product A = M1M2, where M1 is a symmetric and positive matrix and M2 a positive
diagonal matrix, is positive definite in eigenvalues but is non-symmetric in general (unless the
diagonal matrix is constant) and may be non-positive in quadratic forms.

Proof of Fact A.1. To see the non-symmetry of A, suppose there exists i, j such that (M2)jj 6=
(M2)ii, then

(M1M2)ij =
∑
k

(M1)ik(M2)kj = (M1)ij(M2)jj = (M1)ji(M2)jj ,

(M1M2)ji = (M1)ji(M2)ii 6= (M1)ji(M2)jj .

Hence A is not symmetric and positive definite. To see that A may be non-positive in the quadratic
form, we give a counter-example.

M1 =

(
1 1
1 2

)
,M2 =

(
1 0
0 0.1

)
, A = M1M2 =

(
1 0.1
1 0.2

)
, (1,−2)A

(
1
−2

)
= −0.4.

To see that A is positive in eigenvalues, we claim that an invertible square root M1/2
1 exists as M1 is

symmetric and positive definite. Now A is similar to (M
1/2
1 )−1AM

1/2
1 = M

1/2
1 M2M

1/2
1 , hence the

non-symmetricA has the same eigenvalues as the symmetric and positive definiteM1/2
1 M2M

1/2
1 .

Fact A.2. Matrix with all eigenvalues positive may be non-positive in quadratic form.

Proof of Fact A.2.

A =

(
−1 3
−3 8

)
, (1, 0)A

(
1
0

)
= −1,

though eigenvalues of A are 1
2 (7± 3

√
5) > 0.

Fact A.3. Matrix with positive quadratic forms may have non-positive eigenvalues.

Proof of Fact A.3.

A =

(
1 1
−1 1

)
, (x, y)A

(
x
y

)
= x2 + y2 > 0,

but eigenvalues of A are 1 ± i, not positive nor real. Actually, all eigenvalues of A always have
positive real part.

Fact A.4. Sum of products of positive definite (symmetric) matrix and positive diagonal matrix may
have zero or negative eigenvalues.

Proof of Fact A.4.

H1 =

(
8/9 2
2 7

)
, C1 =

(
0.9 0
0 0.4

)
, H2 =

(
3 2
2 2

)
, C2 =

(
0.1 0
0 0.6

)
.

Although Hj are positive definite, H1C1 + H2C2 has a zero eigenvalue. Further, if H1[1, 1] = 0.7,
H1C1 + H2C2 has a negative eigenvalue.

13



Under review as a conference paper at ICLR 2023

B DETAILS OF MAIN RESULTS

Proof of Fact 4.1. Expanding the discrete dynamic in (4.1) as w(k+ 1) = w(k)− η
n

∑
i∇w`iCi−

ησR
n N (0, 1), and chaining it for r ≥ 1 times, we obtain

w(k + r)−w(k) = −
r−1∑
j=0

η

n

∑
i

∇w`i(w(k + j))Ci −
r−1∑
j=0

ησR

n
N (0, 1).

In the limit of η → 0, we re-index the weights w by time, with t = kη and s = rη. Then the
left hand side becomes w(t + s) −w(t); the first summation on the right hand side converges to
− 1
n

∫ t+s
t

∑
i∇w`i(τ)Ci(τ)dτ , as long as the integral exists, and the second summation J(η) =∑r−1

j=0
ησR
n N (0, 1) has

E[J(η)] = 0 and Var(J(η)) =
σ2R2η2

n2
r = ηs

σ2R2

n2
→ 0, as η → 0.

Therefore, as η → 0, the discrete stochastic dynamic (4.1) converges to a deterministic gradient flow
given by the integral

w(t)−w(0) = − 1

n

∫ t

0

∑
i
∇w`i(τ)Ci(τ)dτ,

which corresponds to the ordinary differential equations (4.2).

Proof of Theorem 1. We prove the statements using the derived gradient flow dynamics (4.2).

For Statement 1, from our narrative in Section 4.2, we know that the flat clipping algorithm has
H(t)C(t) as its NTK. Since H(t) is positive definite and C(t) is a positive diagonal matrix, by
Fact A.1, the product H(t)C(t) is positive in eigenvalues, yet asymmetric and maybe not positive in
quadratic form in general.

Similarly, for Statement 2, we know the NTK of layerwise clipping has the form
∑
rHr(t)Cr(t),

which by Fact A.4 is asymmetric in general, and may be not positive in quadratic form nor positive in
eigenvalues.

For Statement 3, by the training dynamics (4.3) for the flat clipping algorithm and (4.4) for the
layerwise clipping, we see that L̇ equal the negation of a quadratic form of the corresponding NTK.
By statement 1 & 2 of this theorem, such quadratic form may not be positive at all t, and hence the
loss L(t) is not guaranteed to decrease monotonically.

Lastly, for Statement 4, suppose L(t) converges, i.e. L̇ = 0 = ∂L
∂f ḟ . Suppose we have L > 0, then

∂L
∂f 6= 0 since L is convex in the prediction f . In this case, we know ḟ = 0. Observe that

0 = ḟ =
∂f

∂w

∂w

∂t
= − ∂f

∂w

∂f

∂w

> ∂L

∂f

>
.

For the flat clipping, the NTK matrix ∂f
∂w

∂f
∂w

>
= HC is positive in eigenvalues (by Statement 1), so

it could only be the case that ∂L∂f = 0, contradicting to our premise that L > 0. Therefore we know
L = 0 as long as it converges for the flat clipping. On the other hand, for the layerwise clipping, the
NTK may be not positive in eigenvalues. Hence it is possible that L 6= 0 when L̇ = 0.

Proof of Theorem 2. The proof is similar to the previous proof. The first statement is obvious.

Now, to prove the second statement, we note that for both flat clipping and layerwise clipping, (4.3)
and (4.4) give L̇(t) < 0 since the NTK is positive in quadratic form. That means L decreases
monotonically. Additionally, L is bounded below by zero. Therefore L must converge and thus
L̇ = 0. Note that when we have ∂L

∂f = 0, it implies all `i = 0, and thus L = 0.

14



Under review as a conference paper at ICLR 2023

Proof of Theorem 3. Under local or global clipping in Algorithm 1, each clipped gradient v̄(i)
t has

a norm bounded by R. Therefore, both clippings have the same sensitivity of V̄t =
∑
i∈It v̄

(i)
t and

hence the same privacy risk by any privacy accountant.

C LAYERWISE PER-SAMPLE CLIPPING

We elaborate the details of layerwise clipping in this section. We describe the layerwise clipping
algorithm for DP-SGD, in complement to Algorithm 1 (not an generalization, i.e. flat clipping is not
a subset of layerwise clipping). For other optimizers the extension to layerwise clipping is similar.
Assume the neural network has d layers, denote the weights of the r-th layer as wr, then the layerwise
clipping can clip the per-sample gradient of each layer either locally or globally.

Algorithm 2 DP-SGD (with local or global layerwise per-sample clipping)
Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of iterations T ,
noise scale σ, clipping norm Rr.

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for r = 1, ..., d do

for i ∈ It do
v

(i)
r,t ← ∇wr

`(f(xi,wt), yi)

Option 1: Clocal,(i,r) = min
{

1, Rr/‖v(i)
r,t‖2

}
. Local clipping factor

Option 2: Cglobal,(i,r) ≡ I{‖v(i)
r,t‖2 ≤ Rr} . Global clipping factor

v̄
(i)
r,t ← Ci,r · v(i)

r,t . Clip the gradient
V̄r,t ←

∑
i∈It v̄

(i)
r,t . Sum over batch

Ṽr,t ← V̄r,t + σRr · N (0, I) . Apply Gaussian mechanism
wr,t+1 ← wr,t − ηt

|It| Ṽr,t . Descend

Output wr,T

For implementation, one can set max_grad_norm as a list of scalars in the Opacus PrivacyEngine.

D CODE IMPLEMENTATION

Building on of the Opacus library v0.15.0, we only need to add one line of code into

https://github.com/pytorch/opacus/blob/master/opacus/per_sample_
gradient_clip.py

To understand our implementation, we can equivalently view Option 2 in Algorithm 1 as

Cglobal,i =

{
1 if Clocal,i = 1

0 if Clocal,i < 1

In this formulation, we can easily implement our global clipping by leveraging the Opacus library
(which already computes Clocal,i). This can be realized in multiple ways.

For example, we can add the following one line after line 179 (within the for loop),

if hasattr(config,’clipping_fn’) and config.clipping_fn!=’local’:
clip_factor=(clip_factor>=1).float()

Here we use the package config to pass global variable. Comparing to the original PyTorch
implementation, our code only computes an additional boolean operation, thus the extra computational
complexity is negligible.

15

https://github.com/pytorch/opacus/blob/master/opacus/per_sample_gradient_clip.py
https://github.com/pytorch/opacus/blob/master/opacus/per_sample_gradient_clip.py


Under review as a conference paper at ICLR 2023

E EXPERIMENTAL DETAILS

E.1 MNIST

For MNIST, we use the standard CNN in Tensorflow Privacy and Opacus, as listed below.
For both global and local clippings, the training hyperparameters (e.g. batch size) in Section 6.1
are exactly the same as reported in https://github.com/tensorflow/privacy/tree/
master/tutorials, which gives 96.6% accuracy for the local clipping in Tensorflow and similar
accuracy in Pytorch, where our experiments are conducted. The non-DP network is about 99%
accurate. Notice the tutorial uses a different privacy accountant than the GDP that we used.

class SampleConvNet(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3)
self.conv2 = nn.Conv2d(16, 32, 4, 2)
self.fc1 = nn.Linear(32 * 4 * 4, 32)
self.fc2 = nn.Linear(32, 10)

def forward(self, x):
# x of shape [B, 1, 28, 28]
x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14]
x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13]
x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5]
x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4]
x = x.view(-1, 32 * 4 * 4) # -> [B, 512]
x = F.relu(self.fc1(x)) # -> [B, 32]
x = self.fc2(x) # -> [B, 10]
return x

E.2 CIFAR10 WITH 5-LAYER CNN

In Section 6.2, we adopt the model from Pytorch tutorial in https://pytorch.org/
tutorials/beginner/blitz/cifar10_tutorial.html, which is the following 5-layer
CNN.

class Net(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

In addition to Figure 6 and Figure 14, we plot in Figure 13 the distribution of prediction probability
on the true class, say [πi]yi for the i-th sample (notice that Figure 6 plots maxk[πi]k). Clearly the
local clipping gives overly confident prediction: almost half of the time the true class is assigned close
to zero prediction probability. The global clipping has a much more balanced prediction probability.

16

https://github.com/tensorflow/privacy/blob/master/tutorials/walkthrough/mnist_scratch.py
https://github.com/pytorch/opacus/blob/master/examples/mnist.py
https://github.com/tensorflow/privacy/tree/master/tutorials
https://github.com/tensorflow/privacy/tree/master/tutorials
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html


Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f S
am

pl
es

DP-SGDglobal

DP-SGDlocal

Figure 13: Prediction probability on the true class on CIFAR10 with 5-layer CNN.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 14: Reliability diagrams (left for non-DP; middle for global clipping; right for local clipping)
on CIFAR10 with 5-layer CNN.

E.3 NLP: SNLI WITH BERT MODEL

In Section 6.3, we use the model from Opacus tutorial in https://github.com/pytorch/
opacus/blob/master/tutorials/building_text_classifier.ipynb. The
BERT architecture can be found in https://github.com/pytorch/opacus/blob/
master/tutorials/img/BERT.png.

To train the BERT model, we do the standard pre-processing on the corpus (tokenize the input, cut
or pad each sequence to MAX_LENGTH = 128, and convert tokens into unique IDs). We train the
BERT model for 3 epochs. Similar to Appendix E.2, in addition to Figure 10 and Figure 16, we plot
the distribution of prediction probability on the true class in Figure 15. Again, the local clipping is
overly confident, with probability masses concentrating on the two extremes, yet the global clipping
is more balanced in assigning the prediction probability.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f S
am

pl
es

DP-AdamWglobal

DP-AdamWlocal

Figure 15: Prediction probability on the true class on SNLI with BERT.

17

https://github.com/pytorch/opacus/blob/master/tutorials/building_text_classifier.ipynb
https://github.com/pytorch/opacus/blob/master/tutorials/building_text_classifier.ipynb
https://github.com/pytorch/opacus/blob/master/tutorials/img/BERT.png
https://github.com/pytorch/opacus/blob/master/tutorials/img/BERT.png


Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 16: Reliability diagrams (left for non-DP; middle for global clipping; right for local clipping)
on SNLI with BERT. Note that global clipping is only used for the last 2500 iterations out of the
entire 54000 iterations.

E.4 REGRESSION EXPERIMENTS

We experiment on the Wine Quality9 (1279 training samples, 320 test samples, 11 features) and
California Housing10 (18576 training samples, 2064 test samples, 8 features) datasets in Section 6.
For the California Housing, we use DP-Adam with batch size 256. Since other datasets are not large,
we use the full-batch DP-GD.

Across all the two experiments, we set δ = 1
1.1×training sample size and use the four-layer neural network

with the following structure, where input_width is the input dimension for each dataset:

class Net(nn.Module):
def __init__(self, input_width):

super(StandardNet, self).__init__()
self.fc1 = nn.Linear(input_width, 64, bias = True)
self.fc2 = nn.Linear(64, 64, bias = True)
self.fc3 = nn.Linear(64, 32, bias = True)
self.fc4 = nn.Linear(32, 1, bias = True)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return self.fc4(x)

The California Housing dataset is used to predict the mean price value of owner-occupied home in
California. We train both global flat and local flat clipping with DP-Adam, both with noise σ = 1,
Rlocal = 1, ηlocal = 0.0002, Rglobal = 2000, ηglobal = 1/2000 ∗ 0.0002. We also trained a non-DP
GD with the same learning rate. The GDP accountant gives ε = 4.41 after 50 epochs / 3650 iterations.

The UCI Wine Quality (red wine) dataset is used to predict the wine quality (an integer score between
0 and 10). We train both global flat and local flat clipping with DP-GD, both with noise σ = 35,
Rlocal = 2, ηlocal = 2, Rglobal = 400, ηglobal = 2/400 ∗ 0.03. We also trained a non-DP GD with
learning rate 0.001. The GDP accountant gives ε = 4.40 after 2000 iterations.

The California Housing and Wine Quality experiments are conducted in 30 independent runs. In
Figure 11 and Figure 12, the lines are the average losses and the shaded regions are the standard
deviations.

F OPTIMIZERS WITH CLIPPING BEYOND GRADIENT DESCENT

We can extend Theorem 1 and Theorem 2 to a wide class of full-batch optimizers besides DP-GD
(with σ = 0 and σ 6= 0). We show that the NTK matrices in these optimizers determine whether the
loss is zero if the model converges.

9http://archive.672ics.uci.edu/ml/datasets/Wine+Quality
10http://lib.stat.cmu.edu/datasets/houses.zip

18

http://archive.672ics.uci.edu/ml/datasets/Wine+Quality
http://lib.stat.cmu.edu/datasets/houses.zip


Under review as a conference paper at ICLR 2023

Theorem 4. For an arbitrary neural network and a loss convex in f , suppose we clip the per-sample
gradients in the gradient flow of Heavy Ball (HB), Nesterov Accelerated Gradient (NAG), Adam,
AdaGrad, RMSprop or their DP variants and that ‖v(i)

t ‖2 ≤ R, assuming H(t) � 0, then

1. if the loss L(t) converges, it must converge to 0 for local flat, global flat and global layerwise
clipping;

2. even if the loss L(t) converges, it may converge to non-zero for local layerwise clipping.

The proof can be easily extracted from that of Theorem 1 and Theorem 2 and hence is omitted. We
highlight that DP optimizers in general correspond to deterministic gradient flow (for DP-GD, see
Fact 4.1) – as long as the noise injected in each step is linear in step size. Therefore, the gradient flow
is the same whether σ > 0 (the noisy case) or σ = 0 (the noiseless case).

We also note that the only difference between layerwise clipping and flat clipping is the form of NTK
kernel, as we showed in Theorem 1 and Theorem 2. In this section, we will only present the result for
flat clipping since its generalization to layerwise clipping is straightforward. In fact, part of the results
for the global clipping has been implied by Bu et al. (2021b), which establishes the error dynamics
for HB and NAG, but only on MSE loss and on specific network architecture. To analyze a broader
class of optimizers and on the general loss and architecture, we turn to da Silva & Gazeau (2020)
which gives the dynamical systems of all optimizers aforementioned.

F.1 GRADIENT METHODS WITH MOMENTUM

We study two commonly used momentums, the Heavy Ball Polyak (1964) and the Nesterov’s one
Nesterov (1983). These gradient methods correspond to the gradient flow system (da Silva & Gazeau,
2020, Equation (2.1))

ẇ(t) = −m(t), (F.1)

ṁ(t) =
∑
i

∇w`iCi − r(t)m(t). (F.2)

We note that HB corresponds to time-independent r(t) = r for some r and NAG corresponds to
r(t) = 3/t. At the stationary point, we have L̇ = ẇ = ṁ = 0. Consequently (F.1) gives m = 0 and
(F.2) gives ∑

i

∇w`iCi = rm = 0. (F.3)

Multiplying both sides with ∂f
∂w , we get

HC
∂L

∂f
= 0,

where ∂L
∂f is defined in (4.3). If the NTK is positive in eigenvalues, as is the case for local flat and

global clipping, we get ∂L∂f = 0 and `i = 0 for all i since the loss is convex (thus the only stationary
point is the global minimum 0). Hence L = 0. Otherwise, e.g. for local layerwise clipping, it is
possible that ∂L∂f

> 6= 0 and L 6= 0.

F.2 ADAPTIVE GRADIENT METHODS WITH MOMENTUM

We consider Adam which corresponds to the dynamical system in (da Silva & Gazeau, 2020, Equation
(2.1))

ẇ(t) = −m(t)/
√
v(t) + ξ, (F.4)

ṁ(t) =
∑
i

∇w`iCi −
1

α1
m(t), (F.5)

v̇(t) =
1

α2

[∑
i

∇w`iCi

]2

− 1

α2
v(t). (F.6)

19



Under review as a conference paper at ICLR 2023

Here ξ ≥ 0 and the square is taken elementwise. At the stationary point, we have L̇ = ẇ = ṁ =
v̇ = 0. Consequently (F.4) gives m = 0 and (F.5) gives

∑
i∇w`iCi = m/α1 = 0. Multiplying

both sides with ∂f
∂w , we get again HC∂L

∂f = 0, and hence the results follow.

F.3 ADAPTIVE GRADIENT METHODS WITHOUT MOMENTUM

We consider ADAGRAD and RMSprop which correspond to the dynamical system in (da Silva &
Gazeau, 2020, Remark 1)

ẇ(t) = −
∑
i

∇w`iCi/
√
v(t) + ξ, (F.7)

v̇(t) = p(t)

[∑
i

∇w`iCi

]2

− q(t)v(t), (F.8)

for some p(t), q(t). At the stationary point, we have L̇ = ẇ = ṁ = v̇ = 0. Consequently (F.7)
gives

∑
i∇w`iCi = 0. Multiplying both sides with ∂f

∂w , we get again HC∂L
∂f

>
= 0, and hence the

results follow.

F.4 APPLYING GLOBAL CLIPPING TO DP OPTIMIZATION ALGORITHMS

Here we give some concrete algorithms where we can apply the global clipping method.

Many DP optimizers, non-adaptive (like HeavyBall and Nesterov Accelerated Gradient) and adaptive
(like Adam, ADAGRAD), can use the global clipping easily. These optimizers are supported in
Opacus and Tensorflow Privacy libraries. The original form of DP-Adam can be found in
Bu et al. (2019).

Algorithm 3 DP-Adam (with local or global per-sample clipping)
Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of iterations T ,
noise scale σ, clipping norm R, momentum parameters (β1, β2), initial momentum m0, initial past
squared gradient u0, and a small constant ξ > 0.

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

Option 1: Clocal,i = min
{

1, R/‖v(i)
t ‖2

}
. Local clipping factor

Option 2: Cglobal,i ≡ I{‖v(i)
t ‖2 ≤ R} . Global clipping factor

v̄
(i)
t ← Ci · v(i)

t . Clip the gradient
Ṽt ← 1

|It|

(∑
i∈It v̄

(i)
t + σR · N (0, I)

)
. Apply Gaussian mechanism

mt ← β1mt−1 + (1− β1)Ṽt
ut ← β2ut−1 + (1− β2)(Ṽt � Ṽt) . � is the Hadamard product
wt+1 ← wt − ηtmt/(

√
ut + ξ) . Descend

Output wT

Recently, Bu et al. (2021a) proposes to accelerate many DP optimizers with the JL projections in
a memory efficient manner. Examples include DP-SGD-JL and DP-Adam-JL. The acceleration is
achieved by only approximately instead of exactly computing the per-sample gradient norms. This
does not affect the clipping operation afterwards and hence we can replace the local clipping currently
used by our global clipping.

20



Under review as a conference paper at ICLR 2023

Algorithm 4 DP-SGD-JL (with local or global per-sample clipping)
Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of iterations T ,
noise scale σ, clipping norm R, number of JL projections r.

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
Sample u1, ..., ur ∼ N (0, I)
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

for j = 1 to r do
Pij ← v

(i)
t · uj (using jvp)

Mi =
√

1
r

∑r
j=1 P

2
ij . Mi is an estimate for ‖v(i)

t ‖2.

Option 1: Clocal,i = min
{

1, R/Mi

}
. Local clipping factor

Option 2: Cglobal,i ≡ I{‖v(i)
t ‖2 ≤ R}

v̄
(i)
t ← Ci · v(i)

t . Clip the gradient
V̄ ←

∑
i∈It v̄

(i)
t . Sum over batch

Ṽt ← V̄t + σR · N (0, I) . Apply Gaussian mechanism
wt+1 ← wt − ηt

|It| Ṽt . Descend

Output wT

In another line of research on the Bayesian neural networks, where the reliability of networks are
emphasized, stochastic gradient Markov chain Monte Carlo (SG-MCMC) methods are applied to
quantify the uncertainty of the weights. When DP is within the scope, one popular method is the DP
stochastic gradient Langevin dynamics (DP-SGLD), where we can apply the global clipping.

Algorithm 5 DP-SGLD (with local or global per-sample clipping)
Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of iterations T ,
clipping norm R, and a prior p(w).

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

Option 1: Clocal,i = min
{

1, R/‖v(i)
t ‖2

}
. Local clipping factor

Option 2: Cglobal,i ≡ I{‖v(i)
t ‖2 ≤ R} . Global clipping factor

v̄
(i)
t ← Ci · v(i)

t . Clip the gradient
V̄ ←

∑
i∈It v̄

(i)
t . Sum over batch

wt+1 ← wt − ηt
(
V̄t

|It| −
∇w log p(w)

n

)
+N (0, ηtI) . Descend with Gaussian noise

Output wT

Here we treat wt+1 as a posterior sample, instead of as a point estimate. Notice that other SG-MCMC
methods such as SGNHT Ding et al. (2014) can also be DP with the global per-sample clipping.

We emphasize that our global clipping applies whenever an optimization algorithm uses per-sample
clipping. Therefore this appendix only gives a few example of the full capacity of global clipping.

21


	Linear Algebra Facts
	Details of Main Results
	Layerwise Per-Sample Clipping
	Code Implementation
	Experimental Details
	MNIST
	CIFAR10 with 5-layer CNN
	NLP: SNLI with BERT model
	Regression Experiments

	Optimizers with Clipping beyond Gradient Descent
	Gradient Methods with Momentum
	Adaptive Gradient Methods with Momentum
	Adaptive Gradient Methods without Momentum
	Applying Global Clipping to DP Optimization Algorithms


