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1. Introduction
Generative models, especially diffusion models

[1, 2], have demonstrated remarkable capabilities in
various domains, achieving state-of-the-art results
in image synthesis and other problems. However,
relatively little research has explored the application
of diffusionmodels to physical systems. This emerg-
ing field necessitates the development of specialized
datasets and novel conditioning strategies to effec-
tively integratemultimodal contextual andmeasure-
ment information. In this work, we address this
gap by applying diffusion models to generate ver-
tical cross-sections of oil reservoir properties, con-
ditioned on both well measurements and the geo-
logical context. We demonstrate that such models
are capable of generating representations of sub-
surface heterogeneity that correspond to the con-
ditional data, ultimately contributing to improved
reservoir characterization and management.

2. Related work
Research has shown that GANs [3, 4, 5], VAE [6, 7]

and graph neural networks [8] are capable of gen-
erating oil reservoir properties conditioned on well
measurements. Another work uses diffusion mod-
els [9] to solve the history matching task and gener-
ate facies maps that correspond to the production
history. Recent research [10] introduces new con-
ditional strategies for the generation of facies maps
that correspond to limitedmeasurements. However,
such research utilizes datasets without geological di-
versity in terms of depositional environment. In real
oil reservoir, such properties as collector fraction
or geological bodies shapes and alignment vary de-
pending on the reservoir type. We call such proper-
ties geological context, and according to our knowl-
edge, there has been no research related to condi-
tioning on such context together with the well mea-
surements.
Our contribution. We develop a diffusion model

able to generate vertical cross-sections of oil reser-
voir properties with conditioning not only on well
measurements, but also on geological context as an
example of which we took the lateral angle of the
cross section to the geographic axes.

3. Data
The initial dataset has been created using geo-

statistics methods and consists of 3D cubes related
to Brugge benchmark [11, 12]. Each cube has three
properties: facies type, porosity and permeability,
which are crucial for reservoir characterization. The
dataset also has 7 vertical wells in which these three

properties are interpreted from the well logs data.
We slice this dataset into vertical cross-sections (see
Fig. 1). Each cross-section goes through some well
and has a different angle between itself and X axis.

Fig. 1: Top view of 3D cubes (left) with cross-sections
positions (red line) and cross-sections images
(right). The color corresponds to the permeabil-
ity k, mD.

Geological context. Note that the angle between
cross-section and X axis is a representative exam-
ple of the cross-section geological context. On one
hand, if the angle is negative (Fig. 1, top), the cross-
section is orthogonal to the channels and has abrupt
structure that consists of channels’ sections. On the
other hand, if the angle is positive (Fig. 1, bottom),
the cross-section is parallel to the the channels and
has more or less continuous structure.
We aim to train the generative model which takes

angle value and well measurements as a condition
and returns cross-section images.

4. Model
We utilize DDPM [1] that is implemented in Dif-

fusers library. [13]. The architecture is conditional
2D UNet with cross-attention layers. To encode the
angle, we use linear layer with the activation func-
tion, with one input channel for the angle and some
number of output channels taken as hyperparame-
ter and corresponding to the cross-attention dimen-
sion.
Because the well measurements are spatially

aligned with the cross-sections, we use them as a
masked tensor that we then concatenate with the in-
put of the DDPM.

5. Results and discussion
We demonstrate the examples of the generated

cross-sections on Fig. 2.
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Fig. 2: Example of generated cross-sections with
positive angle (left) and negative angle (right). The
red lines indicate the wells.

We observe that in these examples the cross-
section with positive angle is more continuous than
the cross-sectionwithnegative angle. However, such
correspondence of the generated data to the geolog-
ical context should be validated statistically. We per-
form such validation by computing the variograms
across 100 generated samples and 100 samples from
dataset with same context (see Fig. 3). In addition,
we compute the collector fraction (as the fraction of
facies of the collector type) and compare its distribu-
tions in generated and training samples.

Fig. 3: Variograms and collector fraction distribu-
tion comparison for training (gray) and generated
(red) samples with positive angle (left) and nega-
tive angle (right).

First, one may note that the variograms of the
positive angles go lower than variograms of negative
angles, meaning that positive angles correspond to
more continuous data as expected. Second, the col-
lector fraction distribution is broader for the posi-
tive angles cross-sections. This is due to cases when
cross-sections go through entire channel (collector

fraction close to 1) and cases when cross-sections
go through non-conductive field (collector fraction
close to 0). Such cases are impossible for cross-
sections with negative angles, because they are al-
ways orthogonal to the channels (see Fig. 1). There-
fore, we observe the lower variance in collectors’
fraction. Finally, we note that the distribution of col-
lector fraction as well as variograms of generated
samples are very close to those of training samples.
We can conclude that the trainedmodel has success-
fully learned the geological context based on the an-
gle value.
We also need to validate the correspondence of

the generated data to the well measurements. To do
so, we compute R2 and MAPE between actual well
measurements and generated data in wells positions
(see Fig. 4)

Fig. 4: Porosity (left) and permeability (right) cross-
plots of conditional (X-axis) vs generated (Y-axis)
data over 100 samples.

We note that despite several outliers, the model
has generated the cross-sections with high corre-
spondence to the well measurements.

6. Conclusion
In this work, we verified the important hypothe-

sis that the diffusion models can generate geologi-
cal data taking into account both geological context
and well measurements. The generated data corre-
sponds to selected geologic context variable (angle
of the cross-section) both qualitatively and statisti-
cally, while also corresponding to the local wellmea-
surements. Our results show the high potential of
using the generative models for oil reservoir charac-
terization and modeling.
Future developments. Given the promising re-

sults of this study, future work will focus on ex-
tending our diffusionmodel to generate 3D reservoir
property distributions. Furthermore, we plan to in-
corporate a wider range of geological context, such
as sedimentation environment parameters.
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