
Under review as a conference paper at ICLR 2024

6 ADDITIONAL EXPERIMENTAL DETAILS

6.1 DATASET SUMMARY

Our experiments use the DAVIS and Set8 datasets datasets (Pont-Tuset et al., 2017; Tassano et al.,
2020). The DAVIS train-val dataset consists of 90 sequences and the number of frames in a sequence
varies from 40 - 104 with resolution 480 ˆ 854. The DAVIS testing dataset consists of 30 sequences.
Set8 consists of four sequences from a GoPro camera and four sequences from the DAVIS test set.
For Set8, the number of frames in a sequence varies from 35 - 85 with resolution 540 ˆ 960.

6.2 UPGRADING SPACE-ONLY ATTENTION

Is Losing Spatial Resolution Worth Space-Time Features? In practice, space-time attention might
replace space-only attention. Is the loss of spatial information worth the temporal information?
Theoretically assessing the impact of losing spatial information on model quality is difficult, so we
instead seek experimental evidence. Using the COLA-Net architecture for video denoising, we find
that space-time attention is significantly better than global or non-local space-only attention.

Experimental Details. We finetune the COLA-Net denoising network provided by the original au-
thors for 30 epochs of 400 randomly selected sample sequences from the DAVIS training dataset (Pont-
Tuset et al., 2017). Each sequence consists of 5 frames with resolution 128 ˆ 128. We train on two
Titan RTX GPUs with a batch size of 8 using PyTorch Lightning (Falcon et al., 2019). The optimizer
is Adam with a learning rate of 1 ¨ 10´4 and the learning rate scheduler is stepped (e.g. StepLR) with
a step size of 5 and decay rate γ “ 0.1 (Kingma & Ba, 2014). As a control, we finetune the original
model and observe no meaningful change in denoising quality.

Space-Time Features are Better than Space-Only Features for Denoising. Table 3 tests the
network on DAVIS validation set where the column indicates the attention module and each row
indicates the Gaussian noise intensity (σ) (Pont-Tuset et al., 2017; Mou et al., 2021). COLA-Net
originally uses cross-scale attention, which is a global, strided search. The results in Table 3 show
space-time non-local attention with optical flow outperforms the original network by over 1 dB PSNR,
and it is the best of all the attention modules. Figure 11 shows qualitative examples. The space-time
search and the space-time attention module use a spatial window of size 15 ˆ 15, a patch size of 7,
and a query stride of 4. The space-time search uses a temporal window of size 2. We aggregate the
non-local patches as a weighted sum of patches. Since denoising is inherently a task local to a region
of pixels, the usefulness of space-time features may be expected. The utility of space-time features
remains unclear for tasks depending on semantic information, which is often spread globally across
the image.

Space-Time Attention is Faster Than Global Attention. Table 3’s runtime and memory consump-
tion is measured using a 5 frame video of resolution 230 ˆ 230. This is the largest input video
which fits on our 24 GB NVIDIA RTX 3090 GPU. The global attention module is over 3.5 times
slower than our space-time search and consumes almost 20 times more memory. The space-only and
space-time searches use our Shifted Non-Local Search module with a temporal window size of 1 and
5, respectively.
Table 3: Upgrading Search-Only Search. [PSNRÒ/SSIMÒ/ST-RREDÓ] This table reports denoising
results on the DAVIS dataset using various attention modules within COLA-Net. The original
attention module uses a global, strided search named cross-scale attention. We report results using
the noise intensities (σ2) to match the original paper.

Dataset σ Original (Global) Non-Local Space-Time

DAVIS
15 34.26/0.915/1.3 34.14/0.912/1.4 35.78/0.936/0.8
30 30.93/0.848/5.2 30.80/0.843/5.3 32.41/0.878/2.6
50 28.67/0.784/13.6 28.51/0.776/13.5 29.73/0.810/7.2

Runtime (seconds) 1.703 0.242 0.439
Memory (GB) 14.449 0.730 0.736

12

Under review as a conference paper at ICLR 2024

Figure 11: Qualitatively Comparing Denoised Outputs. [PSNRÒ] Replacing COLA-Net’s global,
cross-scale attention with both the space-only and space-time search impacts restoration quality. The
space-time search can restore details not available from a single frame.

6.3 UPGRADING SPACE-TIME ATTENTION: ADDITIONAL DETAILS

Upgrading Guided Deformable Attention. A Guided Deformable Attention (GDA) module
requires offsets, denoted Fout, with shape H ˆ W ˆ 9 ˆ 2 where Foutrhi, wi, ls the px, yq shift from
phi, wiq between frames at time t ´ 1 and t. These offsets are output from a network whose input
includes a single optical-flow-like offset, denoted Fin with shape H ˆ W ˆ 2. Written another way,
Fout “ Auxiliary NetworkpXin,Finq. We replace their auxiliary network with our Shifted Non-Local
Search: ,Fout,L “ Shifted-NLSpXin,Fin, Lq with L “ 9 to match RVRT.

Training Details. The upgraded RVRT networks are trained for 90,000 iterations with a batch size of
8 with 10 frames each at resolution 256 ˆ 256. Each batch is corrupted with Gaussian noise using a
random noise parameter, σ „ Uniformr0, 50s. Weight updates use the Adam optimizer with an initial
learning rate of 4 ˆ 10´4 and decrease with the Cosine Annealing learning rate scheduler (Kingma
& Ba, 2014; Loshchilov & Hutter, 2016). RVRT’s internal SpyNet model is initialized with pre-
trained weights which are fixed for the first 30,000 iterations and learns with a 75% reduced learning
rate. (Ranjan & Black, 2017b; Niklaus, 2018). Notably, we execute only 90,000 iterations instead of
600,000 due to limited computing resources.

Ablation Study. Our Shifted Non-Local Search uses hyperparameters not learned during network
training. To better understand their impact on video denoising quality, we train networks for various
configurations. The search stride, SK , denotes the spacing between two points in the grid search.
When SK “ 0.5 or SK “ 1, then each grid point is spaced 1{2 or 1 pixel apart, respectively. Table 4
shows the results for a various number of search parameters. The best settings used a search stride of
0.5 and a spatial window of 9, outperforming the same window size with a search stride of 1. This
suggests subpixel corrections to the predicted offsets may be more beneficial than a larger search
radius. A search radius that is too large or too small also decreases the network quality. We hypothesis
a large search radius will overfit to noise and a small radius is insufficient to properly correct errors.
Table 4: Ablation Experiments for Shifted Non-Local Search.[PSNRÒ/SSIMÒ/ST-RREDÓ] A
small spatial window (Ws “ 3) is unable to correct errors and a large spatial window (Ws “ 15)
overfits to noise. A fractional search stride allows for subpixel correction.

σ Ws “ 9, SK “ 0.5 Ws “ 9, SK “ 1 Ws “ 15, SK “ 1 Ws “ 3, SK “ 1
10 38.90/0.967/0.004 38.77/0.967/0.004 38.68/0.966/0.004 38.61/0.965/0.004
20 35.58/0.936/0.012 35.40/0.934/0.013 35.27/0.933/0.013 35.23/0.932/0.013
30 33.68/0.907/0.024 33.44/0.904/0.025 33.29/0.901/0.026 33.27/0.900/0.026
40 32.35/0.881/0.040 32.07/0.875/0.042 31.89/0.872/0.043 31.87/0.871/0.044
50 31.30/0.880/0.027 30.97/0.847/0.061 30.78/0.843/0.063 30.76/0.841/0.064

6.4 SPACE-TIME ATTENTION NETWORK (STAN) FOR VIDEO DENOISING

Architecture. The macro-level architecture is designed to match the multi-scale architecture of
UNet (Ronneberger et al., 2015). Each non-local block contains layer normalization, our space-time
attention module, channel attention, and lastly Residual Swin Transformer Blocks (Hu et al., 2018;
Liang et al., 2021). The block structure is inspired by the RVRT network (Liang et al., 2022b). The
space-time attention layer is described in Section 3.1, and we use the aggregation scheme described
Section 3.2. Notably, there are no positional embeddings. Our networks are set to N1 “ 1, N2 “ 2,
and N3 “ 4 with 1, 4, and 12 heads. STAN uses TV-L1 for optical flow (Zach et al., 2007). Only the

13

Under review as a conference paper at ICLR 2024

Figure 12: Space-Time Attention Network (STAN) Architecture. The STAN macro-level architec-
ture design is inspired from UNet (Ronneberger et al., 2015). Each block’s design is inspired by the
RVRT network (Liang et al., 2022b).

first non-local block executes the space-time search while subsequent blocks use the previous layer’s
top-L offsets.

Experimental Details. The RVRT and STAN networks are trained for 240,000 iterations with a
batch size of 8 using clip lengths of 16 with resolution 256 ˆ 256. Each batch is corrupted with
Gaussian noise using a random noise parameter, σ „ Uniformr0, 50s. Weight updates use the Adam
optimizer with an initial learning rate of 4 ˆ 10´4 and decrease with the Cosine Annealing learning
rate scheduler (Kingma & Ba, 2014; Loshchilov & Hutter, 2016). The internal SpyNet model is
initialized with pre-trained weights which are fixed for the first 30,000 iterations and uses a learning
rate reduced by 75%. (Ranjan & Black, 2017b; Niklaus, 2018). Notably, we executed only 240,000
iterations instead of 600,000 due to limited computing resources. Because our lab operates on a
time-limited SLURM computer restricted to 4 GPUs, training time changes from 21 to 90 days,
depending on the server’s scheduler. Perhaps more than doubling the training time would close the
gap of over 1 dB difference.

Reproducibility Description. While the authors of RVRT do not provide training code, a procedure is
described in their paper. When following their training procedure, the network’s quality is significantly
worse than their original report. An open issue on RVRT’s GitHub also reports a reproducibility
issue. Since training a single RVRT network takes approximately 10 days, which costs about $5,875
on AWS2, we do not have the resources for further investigation. We also note our SLURM-based
training environment may also be a source of the issue. We use 4 GPUs for 4-hour increments. While
is explicitly supported by open source code, bugs are still found (example issue 1 and issue 2).

Valid Conclusions Despite the Non-Reproducible Related Work. While we cannot reproduce
the results from RVRT, we believe this does not change conclusions regarding our Shifted Non-
Local Search module. Since the training procedure is copied directly from the RVRT paper and the
procedure is identical for both RVRT and STAN, our conclusions remain scientifically supported.

Ablation Experiment. We include an ablation study to assess the impact of space-time attention’s
temporal window size in Table 5. Each column’s configuration is trained from scratch for 90, 000
epochs, following the training procedure previously described. The testing dataset is Set8.
Table 5: The Impact of the Temporal Windows. [PSNRÒ/SSIMÒ/ST-RREDÓ] The temporal
window size changes the denoising quality of the STAN architecture. The temporal window size is
the number of frames searched for each query point from each frame. When Wt “ 1, no adjacent
frames are searched.

σ Wt “ 5 Wt “ 3 Wt “ 1
10 36.71/0.957/0.003 36.59/0.956/0.003 36.42/0.953/0.003
20 33.94/0.927/0.008 33.77/0.925/0.008 33.51/0.920/0.009
30 32.29/0.900/0.014 32.10/0.896/0.015 31.82/0.890/0.016
40 31.11/0.874/0.023 30.92/0.870/0.024 30.74/0.862/0.026
50 30.19/0.850/0.033 30.00/0.845/0.035 29.72/0.838/0.038

2An 8-GPU Instance is $24.48 per hour https://aws.amazon.com/ec2/instance-types/p3/

14

Under review as a conference paper at ICLR 2024

7 PYTORCH EXAMPLE OF SPACE-TIME ATTENTION

1 # -- imports --
2 import torch as th
3 conv2d = th.nn.functional.conv2d
4 conv3d = th.nn.functional.conv3d
5 from einops import rearrange
6 import stnls
7

8 # -=-=-=-=-=-=-=-=-=-=-=-=-
9 # Init

10 # -=-=-=-=-=-=-=-=-=-=-=-=-
11

12 # -- search & aggregate info --
13 ws = 5 # spatial window size
14 wt = 2 # temporal window size; searching total frames W_t = 2*wt+1
15 ps,K,HD = 3,10,2 # patch size, num of neighbors (aka "L"), num of heads
16 stride0,stride1 = 1,0.5 # query & key stride
17

18 # -- input video --
19 B,T,F,H,W = 1,5,16,128,128 # batch size, frames, features, height, width
20 device = "cuda"
21 V_in = th.randn((B,T,F,H,W),device=device)
22 vshape = V_in.shape
23

24 # -- optical flows --
25 fflow = th.randn((B,T,2,H,W),device=device)
26 bflow = th.randn((B,T,2,H,W),device=device)
27

28 # -=-=-=-=-=-=-=-=-=-=-=-=-
29 # Attention
30 # -=-=-=-=-=-=-=-=-=-=-=-=-
31

32 # -- transform --
33 proj_weights = th.randn((F,F,1,1),device=device)
34 q_vid = conv2d(V_in.view(-1,*vshape[2:]),proj_weights).view(vshape)
35 k_vid = conv2d(V_in.view(-1,*vshape[2:]),proj_weights).view(vshape)
36 v_vid = conv2d(V_in.view(-1,*vshape[2:]),proj_weights).view(vshape)
37

38 # -- search --
39 search = stnls.search.NonLocalSearch(ws,wt,ps,K,nheads=HD,
40 stride0=stride0,stride1=stride1)
41 dists,inds = search(q_vid,k_vid,fflow,bflow)
42 # print(inds.shape) # B,HD,T,nH,nW,K,3; nH=(H-1)//stride0+1
43

44 # -- normalize --
45 weights = th.nn.functional.softmax(-10*dists,-1)
46

47 # -- aggregate --
48 gather_nl = stnls.agg.NonLocalGather(ps,stride0)
49 stacked = gather_nl(v_vid,weights,inds)
50 # stacked.shape = (B,HD,K,T,F',H,W) where F' = F/HD
51 V_out = rearrange(stacked,'b hd k t f h w -> (b t) (hd f) k h w')
52 proj_weights = th.randn((F,F,K,1,1),device=device)
53 V_out = conv3d(V_out,proj_weights,stride=(K,1,1))
54 V_out = rearrange(V_out,'(b t) f 1 h w -> b t f h w',b=B)
55 # print("V_out.shape: ",V_out.shape) # B,T,F,H,W

15

