
A Deferred Proofs

A.1 Proof of Lemma 1

Lemma 1. Let m ≥ 2 and a, b ∈ A such that a is ordered before b in tie-breaking. Suppose
PW(P ) = {a, b} for some truthful profile P . Then EW(P ) = {a} if P [a � b] ≥ P [b � a];
otherwise EW(P ) = {b}.

Proof. Suppose PW(P ) = {a, b} for some truthful profile P . First consider the case where a and b
are tied with sP (a) = sP (b). Let

• Id(a)(P ) = {j ∈ [n] : top(Rj) 6= a, b, and a �j b}

• Id(b)(P ) = {j ∈ [n] : top(Rj) 6= a, b, and b �j a}

denote the indices of agents who don’t rank a or b highest but prefer (a � b) or (b � a) respectively.
Since each BR sequence begins at P 0 = P , all BR steps are of Type 1 and must change the iterative
winner each round, starting from r(P 0) = a. BR steps will therefore alternate whether they are
taken by agents represented in Id(a)(P ) or Id(b)(P ). Agents from the former set will best-respond
to rankings whose top preference is a, changing the winner to a, whereas agents from the latter
set will best-respond to rankings whose top preference is b, changing the winner back to b. This
alternation will continue until round t when either Id(a)(P t) or Id(b)(P t) are emptied of indices. If
|Id(a)(P 0)| ≥ |Id(b)(P 0)|, the last BR step will make a the unique equilibrium winner, whereas if
|Id(a)(P 0)| < |Id(b)(P 0)|, the last BR step will make b the unique equilibrium winner.

Inverse reasoning holds if a and b differ by one initial plurality score and sP (a) = sP (b) − 1,
implying r(P 0) = b. In this case, the last BR step will make a the unique equilibrium winner only
if |Id(a)(P 0)| > |Id(b)(P 0)|, since the plurality score of a is initially disadvantaged by 1. If not, the
unique equilibrium winner will be b. We therefore conclude that if P [a � b] ≥ P [b � a] across all
n agents, then EW(P ) = {a}; otherwise EW(P ) = {b}.

A.2 Proof of Lemma 2

Lemma 2 (α = 2). Given m ≥ 3 and a utility vector ~u, for any W ⊆ A with |W | = 2 and any
n ∈ N, we have PoA(W ) = −Ω(1).

Proof. Without loss of generality let W = {1, 2} and suppose u2 > um, since the case where
u2 = um is covered in [Brânzei et al., 2013]. There are two possible cases of PW(P ) = {1, 2}:
E1 = 1{sP (1) = sP (2)}, where 1 is the truthful winner, and E2 = 1{sP (1) = sP (2) − 1}, where
2 is the truthful winner. This suggests the following partition:

PoA(W ) = Pr(E1)× E[D+(P ) | E1] + Pr(E2)× E[D+(P ) | E2]

We’ll focus on the former summand where 1 and 2 are tied and prove that Pr(E1)×E[D+(P ) | E1] =
−Ω(1). The proof for the latter summand can be done similarly.

We believe this proof is challenging due to the dependence in agents’ rankings once we condition
on profiles that satisfy two-way ties (i.e. E1). As a result, standard approximation techniques that
assume independence, such as the Berry-Esseen inequality, no longer apply and may also be too
coarse to support our claim. Instead, we will use a Bayesian network to further condition agents’
rankings based on two properties: the top ranked-alternative and which of the two tied alternatives
the agents prefer. Once we guarantee agents’ rankings’ conditional independence, we can identify
the expected utility they gain for each alternative and then compute E[D+(P ) | E1] efficiently.

At a high level, there are two conditions for a profile P to satisfy E1 and have non-zero adversarial
loss. First, the profile must indeed be a two-way tie. This is represented in Step 1 below by iden-
tifying each agent j’s top-ranked alternative tj ∈ A and conditioning D+(P ) on a specific vector
of top-ranked alternatives ~t ∈ T2 ⊆ An, a set corresponding to all profiles satisfying E1. Second,

13



T1 …

Z1

…Q1

T2

Z2

Q2

Tn

Zn

Qn

(a) α = 2 case

T1 …

…Q1

T2

Q2

Tn

Qn

(b) α = 3 case

Figure 3: Bayesian network representation of P as ~T , ~Z, and ~Q

by Lemma 1, the profile should satisfy P [2 � 1] ≥ P [1 � 2]. This is represented in Step 1 by
identifying an indicator zj ∈ {1, 2} to suggest whether 1 �j 2 or 2 �j 1 respectively. We fur-
ther condition D+(P ) on a specific vector ~z ∈ Z~t,k, a set corresponding to all profiles in E1 with
k = P [2 � 1] ≥ P [1 � 2] = n − k. Once we condition D+(P ) to satisfy these two condi-
tions, we identify the expected difference in welfare between the alternatives Etj ,zj for each agent
j conditioned on tj , zj in Step 2, which follows from the Impartial Culture assumption. Finally, we
compute D+(P ) by summing over all profiles satisfying the above two conditions and solve in Step
3, making use of Stirling’s approximation.

More precisely, for any j ≤ n, we represent agent j’s ranking distribution (i.i.d. uniform over
L(A)) by a Bayesian network of three random variables: Tj represents the top-ranked alternative,
Zj represents whether (1 �j 2) or (2 �j 1), conditioned on Tj , and Qj represents the linear order
conditioned on Tj and Zj . Formally, we have the following definition.

Definition 3. For any j ≤ n, we define a Bayesian network with three random variables Tj ∈ A,
Zj ∈ {1, 2}, andQj ∈ L(A), where Tj has no parent, Tj is the parent ofZj , and Tj andZj areQj’s
parents (see Figure 3a). Let ~T = (T1, , . . . , Tn), ~Z = (Z1, , . . . , Zn), and ~Q = (Q1, , . . . , Qn). The
(conditional) distributions are:

• Tj follows a uniform distribution over A

• Pr(Zj = 1 | Tj = t) =


1, t = 1

0, t = 2

0.5, t ∈ [3,m]

• Qj follows the uniform distribution over linear orders whose top alternative is Tj and
(1 �j 2) if Zj = 1, or (2 �j 1) if Zj = 2.

It is not hard to verify that (unconditional) Qj follows the uniform distribution over L(A), which
implies that ~Q follows the same distribution as P , namely ICn. Notice that if alternative 1 or 2
is ranked at the top, then Zj is deterministic and equals to Tj . Furthermore, if Tj ∈ {1, 2}, then
Qj follows the uniform distribution over (m − 1)! linear orders; otherwise Qj follows the uniform
distribution over (m− 1)!/2 linear orders.

Example 2. Let m = 4 and W = {1, 2}. For every j ≤ n, Tj is the uniform distribution over [4].
We have that Pr(Zj = 1 | Tj = 1) = Pr(Zj = 2 | Tj = 2) = 1 and Pr(Zj = 1 | Tj = 3) =
Pr(Zj = 1 | Tj = 4) = 0.5. Given Tj = Zj = 1, Qj is the uniform distribution over

{[1 � 2 � 3 � 4], [1 � 2 � 4 � 3], [1 � 3 � 2 � 4]

[1 � 3 � 4 � 2], [1 � 4 � 2 � 3], [1 � 4 � 3 � 2]}

Given Tj = 4 and Zj = 2, Qj is the uniform distribution over

{[4 � 2 � 1 � 3], [4 � 2 � 3 � 1], [4 � 3 � 2 � 1]}

2
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Step 1: Identify profiles that satisfy E1. Let T2 ⊆ [m]n denote the set of vectors ~t = (t1, . . . , tn)
such that alternatives 1 and 2 have the maximum plurality score:

T2 =
{
~t ∈ [m]n : ∀3 ≤ i ≤ m, |{j : tj = 1}| = |{j : tj = 2}| > |{j : tj = i}|

}
E1 holds for ~Q if and only if ~T takes a value in T2, implying the following equality.

Pr(E1)× E[D+(P ) | E1] =
∑
~t∈T2

Pr
(
~T = ~t

)
× E~Q[D+( ~Q) | ~T = ~t] (7)

Conditioned on agents’ top-ranked alternatives being ~t ∈ T2, we have by Lemma 1 that D+( ~Q) is
non-zero if and only if ~Q[2 � 1] > ~Q[1 � 2] – thus EW ( ~Q) = {2} is unique. For any ~t ∈ T2, let

• Id1(~t) ⊆ [n] denote the indices j such that tj = 1

• Id2(~t) ⊆ [n] denote the indices j such that tj = 2

• Id3(~t) ⊆ [n] denote the indices j such that tj /∈ {1, 2} – we call these third-party agents

E1 implies |Id1(~t)| = |Id2(~t)|, so in order to uphold ~Q[2 � 1] > ~Q[1 � 2] there must be more third-
party agents that prefer (2 � 1) than those that prefer (1 � 2). Specifically, for every d |Id3(~t)|+1

2 e ≤
k ≤ |Id3(~t)|, we define Z~t,k ⊆ {1, 2}n as the vectors ~z where the number of 2’s among indices in
Id3(~t) is exactly k:

Z~t,k = {~z ∈ {1, 2}n : ∀j ∈ Id1(~t) ∪ Id2(~t), zj = tj , and |{j ∈ Id3(~t) : zj = 2}| = k}

Example 3. Suppose m = 4, n = 9, and ~t = (1, 1, 2, 2, 3, 2, 4, 1, 3). Then, Id1(~t) = {1, 2, 8},
Id2(~t) = {3, 4, 6}, Id3(~t) = {5, 7, 9}. Moreover, for k = 2, we have

Z~t,2 =

{
(1, 1, 2, 2, 1, 2, 2, 1, 2)
(1, 1, 2, 2, 2, 2, 1, 1, 2)
(1, 1, 2, 2, 2, 2, 2, 1, 1)

}

where exactly two reports from agents 5, 7, or 9 are 2’s: |{zj = 2 : j ∈ {5, 7, 9}}| = 2. 2

Continuing (7), we have

Pr(E1)× E[D+(P ) | E1]

=
∑
~t∈T2

|Id3(~t)|∑
k=d |Id3(~t)|+1

2 e

∑
~z∈Z~t,k

Pr(~T = ~t, ~Z = ~z)× E~Q[D+( ~Q) | ~T = ~t, ~Z = ~z]

=
∑
~t∈T2

|Id3(~t)|∑
k=d |Id3(~t)|+1

2 e

∑
~z∈Z~t,k

Pr(~T = ~t, ~Z = ~z)

n∑
j=1

E~Qj
[~u(Qj , 1)− ~u(Qj , 2) | ~T = ~t, ~Z = ~z]

=
∑
~t∈T2

|Id3(~t)|∑
k=d |Id3(~t)|+1

2 e

∑
~z∈Z~t,k

Pr(~T = ~t, ~Z = ~z)

n∑
j=1

Etj ,zj (8)

where
Etj ,zj = E~Qj

[~u(Qj , 1)− ~u(Qj , 2) | Tj = tj , Zj = zj ]

The last equation holds because of the Bayesian network structure: for any j ≤ n, given Tj and Zj ,
Qj is independent of other Q’s.
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Step 2: Computer expected welfare difference per agent. Etj ,zj only depends on the values of
tj , zj but not j:

• If tj = zj = 1, then Etj ,zj = u1 − u2+...+um
m−1 , the expected utility of alternative 2.

• If tj = zj = 2, then Etj ,zj is the expected utility of alternative 1, which is u2+...+um
m−1 ,

minus u1. Notice that E2,2 + E1,1 = 0.

• If tj /∈ {1, 2} and zj = 1, then η = Etj ,1 is the expected utility difference of alternatives 1
minus 2, conditioned on third-party agents and (1 � 2). Note that η > 0 since u2 > um.

• If tj /∈ {1, 2} and zj = 2, thenEtj ,2 is the expected utility difference of alternative 1 minus
2, conditioned on third-party agents and (2 � 1). It follows that Etj ,2 = −η.

As a result, equation (8) becomes

∑
~t∈T2

|Id3(~t)|∑
k=d |Id3(~t)|+1

2 e

∑
~z∈Z~t,k

Pr(~T = ~t, ~Z = ~z)× (|Id3(~t)| − 2k)η (9)

where we’ve inserted
n∑
j=1

Etj ,zj = |Id1(~t)|E1,1 + |Id2(~t)|E2,2 − kη + (|Id3(~t)| − k)η

Step 3: Simplify and solve. Note that Id3(~T ) is equivalent to the sum of n i.i.d. binary random
variables, each of which is 1 with probability m−2

m ≥ 1
3 . By Hoeffding’s inequality, with exponen-

tially small probability we have Id3(~T ) < 1
6n. Therefore, we can focus on the Id3(~T ) ≥ 1

6n case in
(9), which, by denoting β = |Id3(~t)| for ease of notation, becomes:

≤ exp−Ω(n) +
∑

~t∈T2:β≥ 1
6n

β∑
k=d β+1

2 e

∑
~z∈Z~t,k

Pr(~T = ~t, ~Z = ~z)× (β − 2k)η

= exp−Ω(n) +
∑

~t∈T2:β≥ 1
6n

β∑
k=d β+1

2 e

(β − 2k)η
∑
~z∈Z~t,k

Pr(~Z = ~z | ~T = ~t) Pr(~T = ~t)

= exp−Ω(n) +
∑

~t∈T2:β≥ 1
6n

β∑
k=d β+1

2 e

(β − 2k)η

(
1

2

)β (
β

k

)
Pr(~T = ~t) (10)

= exp−Ω(n) +
∑

~t∈T2:β≥ 1
6n

(
1

2

)β
ηPr(~T = ~t)

β∑
k=d β+1

2 e

(
β

k

)
(β − 2k)

= exp−Ω(n)−η
∑

~t∈T2:β≥ 1
6n

(
1

2

)β (⌈
β + 1

2

⌉)(
β⌈
β+1

2

⌉)Pr(~T = ~t) (11)

where Equation (10) follows from Pr(Zj = 1 | Tj /∈ {1, 2}) = 0.5 and Equation (11) follows from

the following claim (Claim 1), plugging in n← β and p←
⌈
β+1

2

⌉
.

Claim 1. For any n ∈ N and any p ∈ [0, n], we have

n∑
k=p

(
n

k

)
(n− 2k) = −p

(
n

p

)
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The proof of Claim 1 can be found in Appendix A.3. We now apply Stirling’s approximation to
simplify Equation (11) as follows. See Appendix A.4, plugging in u← β which we recall is Θ(n).

e−Ω(n) − η
∑

~t∈T2:β≥ 1
6n

Pr(~T = ~t)×Θ(
√
n)

= e−Ω(n) − ηPr

(
~T ∈ T2, Id3(~T ) ≥ 1

6
n

)
×Θ(

√
n)

= e−Ω(n) − η
(

Pr(~T ∈ T2)− Pr

(
~T ∈ T2, Id3(~T ) <

1

6
n

))
×Θ(

√
n)

≤ e−Ω(n) − η
(

Pr(~T ∈ T2)− Pr

(
Id3(~T ) <

1

6
n

))
×Θ(

√
n)

≤ e−Ω(n) − η
(

Θ(n−1/2)− e−Ω(n)
)
×Θ(

√
n)

= −Ω(1)

where Pr(~T ∈ T2) is equivalent to the probability of two-way ties under plurality w.r.t. IC, which is
known to be Θ(n−1/2) [Gillett, 1977]. This proves Lemma 2.

A.3 Proof of Claim 1

Claim 1. For any n ∈ N and any p ∈ [0, n], we have
n∑
k=p

(
n

k

)
(n− 2k) = −p

(
n

p

)

Proof.
n∑
k=p

(
n

k

)
(n− 2k) =

n∑
k=0

(
n

k

)
(n− 2k)−

p−1∑
k=0

(
n

k

)
(n− 2k)

= n2n − 2(n2n−1)−
p−1∑
k=0

(
n

k

)
(n− 2k)

= −
p−1∑
k=0

(
n

k

)
(n− 2k)

The proof shall be continued by induction. We want to show that for all p ∈ [0, n],
p−1∑
k=0

(
n

k

)
(n− 2k) = p

(
n

p

)
(12)

(Base step) Substituting p = 1 into Equation (12) yields(
n

0

)
(n− 0) = n = 1

(
n

1

)
(Inductive step) Suppose Equation (12) holds for all p ∈ [0, n′] for some n′ < n. We want to show
this holds for p+ 1, or equivalently that:

p∑
k=0

(
n

k

)
(n− 2k) = p

(
n

p

)
+

(
n

p

)
(n− 2p) = (p+ 1)

(
n

p+ 1

)
where we’ve used the induction hypothesis in the first term’s substitution. The middle term thus
becomes

(n− p)
(
n

p

)
=
n!(n− p)
p!(n− p)!

=
n!(p+ 1)

(p+ 1)!(n− p− 1)!
= (p+ 1)

(
n

p+ 1

)
as desired.
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A.4 Application of Stirling’s Approximation for Lemma 2

Let u ∈ N and set v = bu2 c. We can immediately see that du+1
2 e = v+1, and from Equation (11) in

Lemma 2, we want to simplify the term (v + 1)
(
u
v+1

)
. Stirling’s approximation states that for every

n ∈ N,
n! ∼

√
2πn

(n
e

)n
If u is odd, then u = 2v + 1 and we have(

u

v + 1

)
(v + 1) =

u!

v!2
∼

(√
2πuuue−u

)(√
2πv(v+0.5)e−v

)2 =

√
u√
2π

(uue−u)(
v(2v+1)e−2v

)
=

√
u

e
√

2π

(u
v

)u
=

√
u

e
√

2π

(
2 +

1

v

)u
If u is even, then u = 2v and we have(

u

v + 1

)
(v + 1) =

u!v

v!2
∼

(√
2πuuue−u

)
v(√

2πv(v+0.5)e−v
)2 =

√
u√
2π

(uue−u) v(
v(2v+1)e−2v

) =

√
u2u

e
√

2π

In both cases the objective scales as Θ(
√
u2u).

A.5 Proof of Lemma 3

Lemma 3 (α = 3). Given m ≥ 3 and a utility vector ~u, for any W ⊆ A with |W | = 3 and any
n ∈ N, we have PoA(W ) = o(1).

Proof. The proof uses a similar and simpler technique than that of Lemma 2. Without loss of
generality, suppose W = {1, 2, 3} and consider the case where the plurality scores for 1, 2, and 3
are equal, denoted E . The proofs for cases with alternatives 2 or 3 being truthful winners are similar.
We first prove that conditioned on the vector ~t of all agents’ top preferences that satisfy E , the
maximum score difference between any pair of alternatives in {1, 2, 3} is o(n) with high probability
that is close to 1. Secondly, we prove that PW(P ) = W with probability O(n−1).

More precisely, for every j ≤ n, we represent agent j’s ranking distribution (i.i.d. uniform over
L(A)) by a Bayesian network of two random variables: Tj represents agent j’s top-ranked alterna-
tive, and Qj represents j’s ranking conditioned on Tj . Formally, we have the following definition.

Definition 4. For any j ≤ n, we define a Bayesian network with two random variables Tj ∈ A and
Qj ∈ L(A), where Tj has no parent and is the parent of Qj (see Figure 3b). Let ~T = (T1, , . . . , Tn)

and ~Q = (Q1, , . . . , Qn). The (conditional) distributions are:

• Tj follows a uniform distribution over A

• Qj follows the uniform distribution over linear orders whose top alternative is Tj

It is not hard to verify that (unconditional) Qj follows the uniform distribution over L(A). There-
fore, ~Q follows the same distribution as P , which is ICn.

Example 4. Let m = 4 and W = {1, 2, 3}. For every j ≤ n, Tj is the uniform distribution over
[4]. Given Tj = 1, Qj is the uniform distribution over

{[1 � 2 � 3 � 4], [1 � 2 � 4 � 3], [1 � 3 � 2 � 4],

[1 � 3 � 4 � 2], [1 � 4 � 2 � 3], [1 � 4 � 3 � 2]}
Given Tj = 4, Qj is the uniform distribution over

{[4 � 1 � 2 � 3], [4 � 1 � 3 � 2], [4 � 3 � 1 � 2],

[4 � 2 � 1 � 3], [4 � 2 � 3 � 1], [4 � 3 � 2 � 1]}
2
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Step 1: Identify E . Let T3 ⊆ [m]n denote the set of vectors ~t = (t1, . . . , tn) such that alternatives
1, 2, and 3 have the maximum plurality score. Formally,

T3 =
{
~t ∈ [m]n : ∀4 ≤ i ≤ m, |{j : tj = 1}| = |{j : tj = 2}| = |{j : tj = 3}| > |{j : tj = i}|

}
E holds for ~Q if and only if ~T takes a value in T3, implying the following equality.

PoA({1, 2, 3}) = Pr
(

PW( ~Q) = {1, 2, 3}
)
× E[D+( ~Q) | PW( ~Q) = {1, 2, 3}]

=
∑
~t∈T3

Pr(~T = ~t)× E[D+( ~Q) | ~T = ~t] (13)

Step 2: Upper-bound the conditional adversarial loss. We next employ the law of total expecta-
tion on Equation (13) by further conditioning on 1{D+( ~Q) > n0.6}. This event represents whether
the adversarial loss scales positively and at least sub-linearly in n. We will show this holds with high
probability and establish the following conditional expectation to be o(n), term-by-term:

E[D+( ~Q) | ~T = ~t] = E[D+( ~Q) | ~T = ~t,D+( ~Q) > n0.6]× Pr(D+( ~Q) > n0.6 | ~T = ~t)

+ E[D+( ~Q) | ~T = ~t,D+( ~Q) ≤ n0.6]× Pr(D+( ~Q) ≤ n0.6 | ~T = ~t)

Trivially, we note that

E[D+( ~Q) | ~T = ~t,D+( ~Q) ≤ n0.6] ≤ n0.6 (14)

Second, for any t ∈ [m] and i1, i2 ∈ {1, 2, 3} with i1 6= i2, we denote byDt
i1,i2

the random variable
representing the utility difference between alternatives i1 and i2 in Qj , conditioned on Tj = t:

Dt
i1,i2 = ~u(Qj , i1)− ~u(Qj , i2)

Notice that Dt
i1,i2

does not depend on j. For any ~t ∈ [m]n and j ≤ n, Dtj
i1,i2
∈ [um−u1, u1−um],

which implies D+( ~Q) ≤ (u1 − um)n, and henceforth

E[D+( ~Q) | ~T = ~t,D+( ~Q) > n0.6] ≤ (u1 − um)n (15)

Thirdly, we observe that E[D
tj
i1,i2

] > 0 if tj = i1, E[D
tj
i1,i2

] = −E[Di1
i1,i2

] < 0 if tj = i2, and

E[D
tj
i1,i2

] = 0 otherwise. Let D~ti1,i2 =
∑n
j=1D

tj
i1,i2

. It follows that for any ~t ∈ T3 we have

E[D~ti1,i2 ] = 0, since E implies |{j : tj = i1}| = |{j : tj = i2}|. Recalling that Dtj
i1,i2

is bounded, it
follows from Hoeffding’s inequality that

Pr(|D~ti1,i2 | > n0.6) = exp(−Θ(n0.2))

Recall that as a result of only having Type 1 BR steps, the equilibrium winner must be among the
initial potential winners of any truthful profile [Reyhani and Wilson, 2012]. Therefore, for any
~t ∈ T3, following the law of total probability, we have

Pr
(

D+( ~Q) > n0.6 | ~T = ~t
)
≤ 6 exp(−Θ(n0.2)) (16)

Combining Equations (14), (15), and (16) with Equation (13) yields our claim:

PoA({1, 2, 3}) =
∑
~t∈T3

Pr(~T = ~t)× E[D+( ~Q) | ~T = ~t]

≤
∑
~t∈T3

Pr(~T = ~t)
[
6n(u1 − um) exp(−Θ(n0.2))) + n0.6(1− 6 exp(−Θ(n0.2)))

]
= Pr(~T ∈ T3)o(n)
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Step 3. Determine the probability of three-way ties. Notice that Pr(~T ∈ T3) is equivalent to the
probability of three-way ties under plurality w.r.t. IC, which is known to be Θ(n−1) [Gillett, 1977].
Alternatively, it can be proved by representing Pr(~T ∈ T3) as a polyhedra in Rm!, which can be
equivalently described by a system of linear inequalities, and then applying [Xia, 2021, Theorem 1],
as in the proof of [Xia, 2021, Theorem 3]. This method can be easily extended to other cases where
{1, 2, 3} are potential winners and not exactly tied, which is not covered by previous studies on the
likelihood of ties [Gillett, 1977, Xia, 2021].

For completeness, we recall from [Xia, 2021] the system of linear inequalities used to represent the
winners being W under any integer positional scoring rule r~s.

Definition 5 (Score difference vector). For any scoring vector ~s and pair a, b ∈ A, let Score~sa,b
denote the m!-dimensional vector indexed by rankings in L(A): ∀R ∈ L(A), the R-element of
Score~sa,b is ~s(R, a)− ~s(R, b).

Let ~xA = (xR : R ∈ L(A)) denote the vector of m! variables, each of which represents the
multiplicity of a linear order in a profile. Therefore, Score~sa,b · ~xA represents the score difference
between a and b in the profile whose histogram is ~xA. For any W ⊆ A, we define the polyhedron
H~s,W as follows.

Definition 6. For any integer scoring vector ~s and any W ⊆ A, we let E~s,W denote the matrix
whose row vectors are {Score~sa,b : a ∈ W, b ∈ W,a 6= b}. Let S~s,W denote the matrix whose row

vectors are {Score~sa,b : a 6∈W, b ∈W}. Let A~s,W =

[
E~s,W

S~s,T

]
,~b = (~0,−~1), and letH~s,W denote

the corresponding polyhedron.

For example, for W = {1, 2, 3},H~splu,W is represented by the following inequalities.

∀{i1, i2} ⊆ [3] s.t. i1 6= i2,
∑

R:top(R)=i1
xR −

∑
R:top(R)=i2

xR ≤ 0

∀i1 ∈ [3], i2 ∈ [4,m],
∑

R:top(R)=i2
xR −

∑
R:top(R)=i1

xR ≤ −1

Other cases of PW(P ) = {1, 2, 3} can be characterized by modifying ~b accordingly. For example,
sP (1) + 1 = sP (2) = sP (3) is represented by the following inequalities.∑

R:top(R)=1
xR −

∑
R:top(R)=2

xR ≤ −1∑
R:top(R)=2

xR −
∑

R:top(R)=1
xR ≤ 1∑

R:top(R)=2
xR −

∑
R:top(R)=3

xR ≤ 0∑
R:top(R)=3

xR −
∑

R:top(R)=2
xR ≤ 0

∀i ∈ [4,m],
∑

R:top(R)=i
xR −

∑
R:top(R)=2

xR ≤ −1

B Experiments

Figures 4 and 5 were generated by fixing m = 4 alternatives with the Borda utility vector ~uBorda =
(3, 2, 1, 0), and varying the number of agents. For each n ∈ {100, 200, . . . , 1000}, we sampled 10
million profiles uniformly at random and determined, for each P ∼ ICn, its equilibrium winning
set EW(P ). We then computed each profile’s adversarial loss D+(P ) and averaged their values
across all profiles with the same n. Experiments were run on an Intel Core i7-7700 CPU running
Windows with 16.0 GB of RAM.

Figure 4 demonstrates the sample average adversarial loss using these parameters. Figure 5 parti-
tions the loss based on α-way ties, α ∈ {2, 3, 4}. We note the average adversarial loss decreases as
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n increases and takes the trend of the two-way tie case complexity. Since a significant proportion of
profiles have no BR dynamics, the overall trend keeps close to zero. Therefore these results support
our main theorem in this paper, that the welfare of the worst-case strategic equilibrium winner is
greater than that of the truthful winner when agents’ preferences are distributed according to IC.

Figure 4: Average adversarial loss with m = 4, ~uBorda, and 10M samples. Error bars represent
95% confidence intervals, too small to see.

Figure 5: Average adversarial loss partitioned by α-way ties, α ∈ {2, 3, 4}. Error bars represent
95% confidence intervals.
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