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ABSTRACT

While continuous diffusion models excel in modeling continuous distributions,
their application to categorical data has been less effective. Recent work has
shown that ratio-matching through score-entropy within a continuous-time dis-
crete Markov chain (CTMC) framework serves as a competitive alternative to au-
toregressive models in language modeling. To enhance this framework, we first
introduce three new theorems concerning the KL divergence between the data
and learned distribution. Our results serve as the discrete counterpart to those
established for continuous diffusion models and allow us to derive an improved
upper bound of the perplexity. Second, we empirically show that ratio-matching
performed by minimizing the denoising cross-entropy between the clean and cor-
rupted data enables models to outperform those utilizing score-entropy with up
to 10% lower perplexity/generative-perplexity, and 15% faster training steps. To
further support our findings, we introduce and evaluate a novel CTMC transition-
rate matrix that allows prediction refinement, and derive the analytic expression
for its matrix exponential which facilitates the computation of conditional ratios
thus enabling efficient training and generation.

1 INTRODUCTION

Modeling data distributions is a fundamental task in machine learning. In the case of continuous data
distributions, recent advancements in continuous diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020b) have demonstrated impressive capabilities in generating data samples
and performing density estimation (Song et al., 2021a;c; Haxholli & Lorenzi, 2023; Kingma et al.,
2021a). Despite these achievements, the application of such models to categorical data distributions,
like language, remains limited, as continuous diffusion models generally underperform compared
to autoregressive models in these scenarios (Chen et al., 2023; Gulrajani & Hashimoto, 2024; Li
et al., 2022; Dieleman et al., 2022; Strudel et al., 2022). To address this, recent research has focused
on the development of discrete diffusion models (Austin et al., 2021; Campbell et al., 2022; Meng
et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2025) which offer
distinct advantages compared to autoregressive models, such as the ability to infill various parts
of a sequence non-sequentially and have the potential to reduce computing time and expenses in
generating lengthy sequences (Deschenaux & Gulcehre, 2024; Christopher et al., 2024).

Evaluating discrete diffusion models, however, presents a practical challenge due to the difficulty
in calculating the perplexity, unlike in autoregressive models where this computation is straightfor-
ward. Although a recent perplexity bound has been proposed by Lou et al. (2024), no tightness
guarantees exist. In this paper, we present three theorems concerning the Kullback-Leibler (KL)
divergence between the data distribution and the learned distribution in discrete diffusion models
(Lou et al., 2024). These results serve as the discrete analogue of the continuous diffusion theorems
provided in Song et al. (2021b). One of our key contributions is Theorem 4, which provides an
upper bound (J2) on the cross-entropy between the data and learned distributions, offering a more
direct way of bounding the perplexity. This bound is computationally more efficient than the existing
bound in Lou et al. (2024), and empirical results suggest that it is also slightly tighter.

Code is available at: https://github.com/MetaDialog-Research/PBRC
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In addition, inspired by model reparametrizations (Ho et al., 2020; Karras et al., 2022; Lou et al.,
2024), this paper examines the ratio-matching training objective SEDD in Lou et al. (2024). We
highlight that the sole unknowns implicitly learned by the model are the per-token marginal proba-
bilities across the vocabulary, conditioned on the current perturbed sequence. Consequently, rather
than modeling the ratios directly, we employ a weighted version of the denoising cross-entropy loss
Lll proposed in Campbell et al. (2022), which also mirrors the cross-entropy loss utilized in continu-
ous diffusion models, as described in Dieleman et al. (2022). We show empirically that by modifying
the reconstruction of the scores, training with cross-entropy outperforms direct ratio matching for all
types of tested discrete diffusion dynamics. We name this strategy of using cross-entropy for train-
ing and the adjusted ratio reconstruction for generation, cross-entropy discrete diffusion (CEDD).
Similar advantageous results when utilizing the cross-entropy loss have been reported in studies of
absorb discrete diffusion, as shown in concurrent research by Sahoo et al. (2024); Shi et al. (2024);
Ou et al. (2025). These particular results, up to a scaling factor, are specific cases within the broader
CEDD framework. CEDD improves upon SEDD by circumventing the learning of conditional ra-
tios—which are analytically determinable— focusing instead on learning the mixing weights that
constitute the necessary marginal ratios for generation. This focus not only conserves modeling re-
sources but is also particularly advantageous when the distribution of conditional ratios is complex.

To illustrate our point, we design a new transition-rate matrix named roulette diffusion, and derive
its matrix exponential. The roulette diffusion is an interpolation between the absorb and the uniform
diffusion. In the forward process, a token can transition to any state until it hits the absorb state,
that is, until it is masked. In return, the reverse process begins with a sequence of masked tokens,
which are gradually unmasked, and where the unmasked tokens can be refined. Intuitively. this
capability should be important for discrete diffusion models (Deschenaux & Gulcehre, 2024), and
can be useful for downstream tasks, as shown in our spelling correction experiments. Moreover,
during the reverse process, the scores/ratios of unmasked tokens have much larger magnitudes than
those of masked tokens, posing a significant learning challenge for the network due to output scale
variability. Employing the CEDD strategy mitigates this challenge as demonstrated experimentally.

In summary, the main contributions of this paper include:

• Providing 3 new theorems concerning the KL divergence and cross entropy between the data and
the learned distribution. Improving model evaluation through the bound provided in Theorem 4.

• Introducing a new transition-rate matrix (roulette diffusion) that allows token correction after
unmasking in the reverse process. Deriving its matrix exponential which enables efficient training
using SEDD and generation when CEDD is employed.

• Comparing the performance of SEDD and CEDD experimentally in the task of language mod-
elling on absorb, uniform and roulette diffusion models. Showing that CEDD outperforms SEDD
in all cases in terms of perplexity.

2 PRELIMINARIES AND NOTATION

2.1 MARKOV CHAINS OVER FINITE-STATE SPACES

A discrete-time Markov Chain in a finite-state space is a stochastic process X1, X2, . . . , XT̄ , where
each state Xt depends solely on the preceding one. The states Xt can take values from {1, 2, . . . , S},
and T̄ represents the number of time steps. The probability of being in state x at time t is

pt(Xt = x) =

S∑
y=1

pt(Xt = x,Xt−1 = y) =

S∑
y=1

pt|t−1(Xt = x|Xt−1 = y)pt−1(Xt−1 = y). (1)

Placing all such probabilities pt(Xt = x) in a vector st, such that st(x) = pt(Xt = x), gives

st = Pst−1, where P (x, y) = pt|t−1(Xt = x|Xt−1 = y). (2)

One can generalize such processes into Continuous Time Markov Chains (CTMCs) where t ∈ [0, T̄ ],
(Anderson, 2012). For simplicity, we make the choice T̄ = 1. To construct a CTMC, one first
chooses a transition-rate matrix Qt, which has the property that its non-diagonal elements are non-
negative, and the elements in each of its columns add to zero (Suhov & Kelbert, 2008). Given an
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initial probability distribution s0, the equation below fully determines the evolution of the probabil-
ity with respect to time:

dst
dt

= Qtst. (3)

In addition, we choose Qt = σ
′
(t)Q, where Q is itself a constant transition-rate matrix and where

function σ is monotonically increasing, and satisfies σ(0) = 0 as well as limt→1 σ(t) = T . In this
setting, the distribution over states at time t is the solution of the linear ODE in Equation (3), that is,
st = eσ(t)Qs0.
Matrices Qt are chosen such that: a) the matrix exponential eσ(t)Q is easy to calculate, which is
essential as pt|0(x|y) = eσ(t)Q(x, y); and b) s1 is an easy reference distribution to sample from
(Austin et al., 2021; Campbell et al., 2022).
Finally, similar to diffusion processes in continuous spaces, the continuous-time Markov chain in
Equation (3) also admits a reverse process (Kelly, 1979; Sun et al., 2023):

ds1−t

dt
= Q̄1−ts1−t, (4)

where Q̄t(x, y) = Qt(y, x)
pt(x)
pt(y)

for x ̸= y, and Q̄t(x, x) = −
∑

y ̸=x Q̄t(y, x). Since we can
easily sample from the reference distribution, the only unknowns preventing us from being able to
run backwards are the ratios pt(x)

pt(y)
also known as concrete scores (Meng et al., 2022; Lou et al.,

2024). Once such ratios are modeled using a neural network, we can generate samples from the
learned data distribution pθ0 by discretizing Equation (4) as follows:

p(xt−ϵ = y | xt = x) = δx(y) + Q̄t(y, x)ϵ+O(ϵ2). (5)

Additional details are provided in Appendix D.

2.2 SEDD: ESTIMATING THE RATIOS VIA SCORE ENTROPY

As pointed out in the previous subsection, we wish to model the ratios pt(y)
pt(xt)

via a neural network
sθ(xt, t)y , for example by minimizing the score entropy loss (Lou et al., 2024):

Ext∼pt

∑
y ̸=xt

wxt,yℓ

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
, for ℓ(a, b) = (b− a log b+K(a)) , (6)

and K(a) = a(log a− 1). In Lou et al. (2024), wxt,y = Qt(xt, y), and furthermore they show that
an equivalent loss is the following:

Ex0∼p0,xt∼pt|0(·|x0)

∑
y ̸=xt

wxt,yℓ

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
, (7)

which side-steps the problem of not knowing the marginal ratios pt(y)
pt(xt)

, by employing

pt|0(i|j) = eσ(t)Q(i, j). A more detailed derivation of Equation (7) can be found in Appendix A.2.

2.3 DISCRETE DIFFUSION FOR LANGUAGE MODELING - TOKEN LEVEL TRANSITIONS

In the case of Language Modeling, we write a sequence of length L from the data distribution as x0,
where x0 = (x1

0, x
2
0, ..., x

L
0 ) and xi

0 ∈ Vocab = {1, 2, ..., V }. The number of possible sequences,
that is, the number of states S is V L. Unfortunately, this implies that it is not computationally
feasible to model the ratios of probabilities between the current state xt and all other states y, since
the output of our neural network would have to be V L dimensional (Campbell et al., 2022).

We follow the usual approach (Campbell et al., 2022; Lou et al., 2024) to mitigate this issue, which
is to select a sparse matrix Qt(S × S), such that each entry Qt(x,y) for two sequences x,y that
differ in more than one token will be zero. The forward process that such a Qt defines, can equiv-
alently described as follows: at each discretized step, only one uniformly randomly chosen token
from the current sequence can be modified, according to a token level forward diffusion process
Qtok

t (V × V ). More formally, for x = (x1
0, ..., x

i, ..., xL
0 ) and y = (x1

0, ..., x̂
i, ..., xL

0 ), if xi ̸= x̂i
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we have Qt(x,y) = Qtok
t (xi,yi), otherwise Qt is zero in other non-diagonal entries. For such a

sparse choice of Qt, and y which only differs from x at a single position i, Expression (5) becomes

p(xt−ϵ = y | xt = x) =

{
1−

∑
zi∈Vocab\xi Qtok

t (xi, zi) pt(z)
pt(x)

ϵ+O(ϵ2). if y = x

Qtok
t (xi, yi) pt(y)

pt(x)
ϵ+O(ϵ2). if y ̸= x

(8)

where z denotes a sequence that is identical to x everywhere, but position i. Thus, the usual ap-
proach entails only modeling the ratios between x and ‘neighbours’ y which only differ from x
by one token. The number of such neighbours is L × V , that is V per each of the L positions,
hence the output of the network is L × V coinciding with that of transformers in autoregressive
language models. It should be pointed out that one can indeed use Expression (7) for training,
due to the fact that tokens are perturbed independently from one another in the forward process
pt|0(xt|x0) =

∏
j pt|0(xt

j |x0
j), and thus

pt|0(y|x0)

pt|0(xt|x0)
=

∏
pt|0(y

j |x0
j)∏

pt|0(xt
j |x0

j)
=
∏ pt|0(y

j |x0
j)

pt|0(xt
j |x0

j)
=

pt|0(y
i|x0

i)

pt|0(xt
i|x0

i)
=

eQ
tok
t (yi, xi

0)

eQ
tok
t (xi

t, x
i
0)
, (9)

Finally, the noise schedule σt is typically loglinear − log(1− (1− ϵ)t) or geometric σ1−t
min · σt

max.

3 METHODOLOGY AND THEORETICAL RESULTS

In Subsection 3.1, we provide results related to the cross entropy and the KL divergence between
the data and the learned distribution in the CTMC (discrete diffusion) framework. The first three
theorems therein can be considered as the discrete diffusion analog of the ones given in (Song et al.,
2021b). Importantly, Theorem 4 provides an upper bound (J2) on the cross entropy between the
data and learned distribution which can be used to bound the perplexity, and which does not depend
on the function K (Equation 6). We emphasize that the results hold for general CTMCs, and not
only in the special case of token-level transitions. From the second subsection onwards, we operate
in the token-level transition framework. More precisely, in Subsection 3.2, we introduce the roulette
transition-rate matrix, and provide an expression for its exponential. In Subsection 3.3, we state
Proposition 6, which enables a more efficient estimation of J2. In Subsection 3.4, we highlight that
similarly to the continuous case (Dieleman et al., 2022), the ratios can be modeled using Lll from
Campbell et al. (2022), and present how this approach is adapted in our experimental setup.

3.1 CROSS ENTROPY AND KL DIVERGENCE RESULTS

We begin by finding an upper bound for the KL divergence between the data and the learned distri-
bution. The proofs are provided in Appendix A.1.
Theorem 1. Define a CTMC with transition matrix Qt that runs from time 0 to 1. The true reverse
process defines a probability evolution pt from p1 to the data distribution p0, while the learned re-
verse process induces the evolution pθt from the reference distribution pθ1 = pr to the approximation
of the data distribution pθ0. In this setting, the following KL divergence bound holds

DKL(p0||pθ0) ≤
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)ℓ

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
dt+DKL(p1||pr). (10)

where ℓ(a, b) = (b− a log b+K(a)) and K(a) = a(log a− 1).

The following theorem provides an expression for the entropy of the data distribution. Furthermore,
it provides sufficient conditions for the bound given above to become tight.
Theorem 2. Denote the intermediate distributions at time t determined by the true reverse process,
and by the learned reverse process with pt and pθt , respectively. We can write the entropy of the data
distribution H(p0) as

H(p0) = H(p1)−
∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)K

(
pt(y)

pt(xt)

)
dt. (11)

In addition, if the learned ratios sθ(xt, t)y equal pθ
t (y)

pθ
t (xt)

and p1 = pθ1 := pr, then the inequality in
Theorem 1, becomes an equality.
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A particular case where the conditions of the theorem above hold is when sθ(xt, t)y = pt(y)
pt(xt)

as then
pθ
t (y)

pθ
t (xt)

= pt(y)
pt(xt)

= sθ(xt, t)y . The third theorem gives an upper bound of the negative log-likelihood
at a single point. This is a central result in Lou et al. (2024, Theorem 3.6), but we restate it here for
completeness, and provide an alternative, more detailed proof in Appendix A.1.
Theorem 3. Let pθ0 denote the learned distribution from which the reverse process samples. The
negative log-probability of a state x0 being sampled by the reverse process can be bounded from
above as follows,

− log pθ0(x0) ≤
∫ 1

0

Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt, y)ℓ

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
dt

+DKL(p1|0(·|x0)||pr). (12)

Since the noise schedule in (Lou et al., 2024; Ou et al., 2025) is chosen such that p1 ≈ pr and
thus DKL(p1|0||pr) ≈ 0, one can take the expectation Ex0 on both sides of Inequality (12) to get a
bound on the cross entropy 1

LH(p0, p
θ
0) = Ex0 [− 1

L log(pθ0(x0))]. One approach is to compute the
RHS in Expression (12) for each point x0 and then average results (Appendix B.5), which can be
computationally expensive. Instead, we can divide by L and take the expectation with regards to
data distribution on both sides of Expression (12) as in Ou et al. (2025), and calculate

J1 =
1

L
Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt, y)ℓ

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
. (13)

Using Theorem 1 and 2, we provide another, direct upper bound on the cross-entropy between the
data and learned distributions, which evades the computation of K.
Theorem 4. Under the conditions stated in Theorem 1, the following inequality for the cross entropy
between the data and the learned distribution holds:

H(p0, p
θ
0) ≤

∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)ℓ̄

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
dt

−
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(y, xt)dt+H(p1, pr), where ℓ̄(a, b) = (b− a log b) . (14)

The second term −
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y, xt)dt and third one H(p1, pr) ≈ H(pr) can be analyt-
ically computed as shown in Section 3.3, Proposition 6. Finally, the first term can be rewritten as

Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt, y)ℓ̄

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
. (15)

Therefore, due to Theorem 4, we instead propose to use

J2 =
1

L

Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt, y)ℓ̄

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)

+H(pr)−
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(y, xt)dt

 . (16)

In both cases Perplexity = exp(Ex0 [− 1
L log(pθ0(x0))]) = exp( 1

LH(p0, p
θ
0)) ≤ eJ1 , eJ2 .

3.2 ROULETTE DISCRETE DIFFUSION

Typically, matrices Qtok are defined as Qtok = P tok − I , where P tok is idempotent, since this
implies that (Qtok)2 = −Qtok. This last property of Qtok greatly simplifies the calculation of
eσ(t)Q

tok

, as by using the Taylor series, eσ(t)Q
tok

= I+Qtok(1−e−σ(t)). Usually, the following two
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matrices P tok are chosen: a) P tok
uniform(V ×V ) where each entry is set to 1

V , and b) P tok
absorb(n×n)

in which the last row is full of ones while all other elements are 0, where n = V + 1. While absorb
diffusion often outperforms the uniform one in standard evaluations, the latter is more practical for
some tasks like spelling correction, where refining tokens is crucial. We propose another transition-
rate matrix whose exponential can be analytically calculated. To our knowledge this is the only
matrix with such a property presented so far apart from the absorb and uniform ones. We refer to
this new discrete diffusion process as roulette diffusion. The corresponding P tok

roulette(n × n) is a
matrix, such that P tok

roulette(i ̸= n, j ̸= n) = 1
V (1− pm), P tok

roulette(n, j ̸= n) = pm, P tok
roulette(i ̸=

n, n) = 0 and P tok
roulette(n, n) = 1. We notice that for pm = 1, roulette diffusion coincides with

absorb diffusion, while for pm = 0 it coincides with the uniform diffusion. Intuitively, a token can
transit from a non-absorb state to a non-absorb state with probability 1

V (1 − pm), until it hits the
absorb state (with probability pm) and then remains there. While this matrix is not idempotent, one
can still calculate its exponential as stated in the following proposition (proved in Appendix A.3.3):
Proposition 5. If we denote with Yt the matrix exponential of σtQ

tok
roulette = σt

(
P tok

roulette − I
)
,

then Yt(i ̸∈ {j, n}, j ̸= n) = e−σtpm 1
n−1 (1 − e−(1−pm)σt), Yt(i ̸= n, i ̸= n) = e−σtpm(1 −

n−2
n−1 (1− e−(1−pm)σt)), Yt(n, j ̸= n) = 1− e−σtpm , Yt(i ̸= n, n) = 0, and Yt(n, n) = 1.

The noise schedule used is the roulette-loglinear noise − 1
pm

log(1 − (1 − ϵ)t). In the reverse pro-
cess, when a token is unmasked it can still be corrected with probability directly related to pm as
shown in Appendix A.3.4. A generalization for time-evolving pm is given in Appendix A.3.5, and
the corresponding Qtok

eroulette(t) is named eroulette. Therein (Proposition 7), it is shown that the
exponential matrix can be calculated as in the previous proposition, by substituting pm with pm(t).

3.3 EFFICIENT ESTIMATION OF J2

In this subsection we provide Proposition 6, which shows that the second and third term on the RHS
of Expression (14) can be computed efficiently:
Proposition 6. In the case of the roulette diffusion with roulette-loglinear noise, H(pr) = 0 and

−
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt =
(
1− 1−pm

n−1

)
L
pm

(ϵ − 1). For the absorb diffusion, we have

H(pr) = 0 and −
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt = L(ϵ − 1). Finally, in the case of uniform

diffusion, H(pr) = L log(V ) and −
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt = −
(
1− 1

V

)
L
∫ 1

0
σ

′
(t)dt.

3.4 MODELING RATIOS VIA CEDD

For sequences x, y which only differ at some position i, we can write

pt(y)

pt(xt)
= Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

pi0|t(h|xt), (17)

where pi0|t(x
i
0|xt) =

∑
{x1

0,...,x
L
0 }\xi

0
p0|t(x0|xt), as shown in Equation (85), Appendix A.2.2.

Since conditional ratios pt|0(y
i|h)

pt|0(xt
i|h) are known, we can choose to reparametrize the score as

siθ(xt, t)y = Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

f i
θ(xt, t)[h], (18)

where fθ(xt, t), is a neural network, with a matrix output of shape L× V , whose elements in each
row i add to 1, that is

∑
h f

i
θ(xt, t)[h] = 1. Intuitively, given the current perturbed sequence xt,

prediciton f i
θ(xt, t)[h] gives the probability that the pre-perturbation token at position i used to be

h. In Appendix A.2.2, we explain how the loss in Expression (7) can be optimized by minimizing
the following cross-entropy loss:

Lll = −Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(·|x0)

L∑
i=1

w(t) log f i
θ(xt, t)[x

i
0]. (19)

Thus, we can learn the ratios via Lll (Campbell et al., 2022) for any type of diffusion model. This
approach is analogous to the one in continuous diffusion models for language modeling used in
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Dieleman et al. (2022), as shown in Appendix A.2.3. In addition, in Appendix B.3.2, we provide
our original motivation for the reparametrization given in (18).

In the uniform case, models using the direct reparametrization in (18) underperform SEDD in terms
of perplexity. Indeed, the model is too confident in its predictions when t → 0 as it does not benefit
form the neural network regularization due to the incorporation of the true conditional ratios. Thus,

inside the ratios pt|0(y
i|h)

pt|0(xt
i|h) we rescale σθ

t < 0.0015, by setting σθ
t = 0.0015. We also perform

rescaling in the case of roulette diffusion dynamics, as when time is close to 0 most tokens are
unmasked. The same strategy is applied, as before, only to ratios corresponding to unmasked token,
by rescaling σθ

t when σθ
t < 0.5 as follows: σscaled,θ

t = log(1.1σθ
t + 1.1). Naturally, for the sake of

rigor, these are also the models we employ to generate samples, whose quality is measured in terms
of generative perplexity. Further, in order to evade metric hacking, we take care to not modify the
σt in the metrics J1 and J2 used to evaluate the models. Additional details and motivations for such
rescalings are provided in the last paragraph of Appendix B.3.3. When w(t) = 1 we refer to the
method as CEDD, while when w(t) = log (e+ 0.3

t ) we use CEDD*.

4 EXPERIMENTS

We now empirically validate the approaches and theoretical contributions presented in the previous
section. In Subsection 4.1, we compare the generative perplexities of models trained on OpenWeb-
Text (Gokaslan & Cohen, 2019) with SEDD and SEDD scaled (SEDDs, see Appendix B.3.2 for
details) versus those trained with CEDD and CEDD*. We keep all other variables unchanged for
a fair comparison, finding that CEDD outperforms SEDD in all cases. The tests are conducted for
the absorb, uniform and roulette diffusion dynamics. In Subsection 4.2, we evaluate the perplexity
of the models, by calculating the upper bound on 5 different datasets, namely: 1BW, LAMBADA,
PTB, Wikitext2 and Wikitext103 (Chelba et al., 2013; Paperno et al., 2016; Marcus et al., 1993;
Merity et al., 2016). For the sake of reproducing the results of previous work we use J1 as a metric.
Finally, having computed the results using J1, in Subsection 4.3 we also re-evaluate the models via
J2. Our findings suggest that the bound provided by J2 is slightly tighter. In the last subsection we
compare SEDD and CEDD* on a spell-checking task.
Our model employs the transformer architecture as described by Lou et al. (2024), with no modi-
fications; more details can be found in Appendix B.2. The algorithms for training via SEDD, and
sampling unconditionally and conditionally can be found in the Appendix of Lou et al. (2024). On
the other hand, we provide the algorithm for training using CEDD in Algorithm 1, Appendix B.1.
In all cases, samples are generated using tau-leaping (Gillespie, 2001; Campbell et al., 2022), which
performs an update at each position simultaneously for each reverse time step. All models were
trained for 400k parameter updates unless stated otherwise.

4.1 GENERATIVE PERPLEXITY COMPARISONS

We compare the generative perplexities (GenPerp) of identical networks trained using SEDD,
SEDDs, CEDD and CEDD*. To evaluate the generative perplexity of a model, we generate samples
from that model, and use a GPT-2 large model in order to assess the likelihood of the generated
samples. However, this metric can be unreliable, as models such as GPT-2 large are not perfect
themselves, and they tend to assign high probability to some unlikely sequences, such as those that
contain repetitive tokens. Such biased samples can be generated by increasing the step size, while
maintaining the number of reverse steps. To ensure a fair comparison, we evade such approaches.
Furthermore, recently Zheng et al. (2024) showed that the sampling procedure in Lou et al. (2024)
suffers from numerical precision issues. To address this, they proposed fixing the categorical sam-
pling to 64-bit floating-point precision—a strategy that we have also adopted. In Appendix B.6, we
also provide perplexity results as evaluated by LLama 3.1 8B (Dubey et al., 2024).
Initially, we perform a grid search to find the best pm for the roulette case. Out of the 4 values,
0.95, 0.65, 0.35, 0.05, we found pm = 0.95 performs best (Appendix B.6, Table 5), but the opti-
mum is likely reached when pm = 1. However, pm = 0.95, enables equipping unmasking dynamics
with the correction mechanism, which can be useful for some tasks like spelling correction. There-
fore, in what follows, when the roulette case is concerned, it is implied that pm = 0.95. In Table
1, we provide the results when the sequence length is 128 and the number of reverse steps is 1024,
when using the analytic sampler. Generated samples can be found in Appendix C.1.
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4.2 PERPLEXITY COMPARISONS

In this subsection, we compare the performance of identical networks trained using SEDD, SEDDs,
CEDD and CEDD*, in terms of J1. We do not shuffle the test set. Results for sequence length
L = 128 are provided in Table 1. Plots illustrating cummulative performance trajectories across the
testing sets are provided in Appendix B.6.

Figure 1: Scaling of Generative Perplexity vs sam-
pling steps for SEDDs (loaded) and CEDD* absorb.
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Figure 2: Filtered samples from SEDDs and
CEDD* absorb, L=1024. The conditional
part is highlighted in bold.

Table 1: Results comparing SEDD, SEDD scaled (SEDDs), CEDD and CEDD*. Lower is better.

Model (L=128) GenPerp LAMBADA WikiText2 PTB WikiText103 1BW
SEDD Absorb 172.35 70.07 75.20 240.43 74.79 88.99
SEDDs Absorb 166.35 67.05 69.37 208.69 69.17 83.87
CEDD Absorb 148.21 65.18 65.66 199.69 65.62 79.83
CEDD* Absorb 143.86 64.60 65.04 192.99 64.69 79.81
SEDD Roulette 178.94 72.07 80.13 230.74 79.68 93.45
SEDDs Roulette 172.93 69.10 74.38 209.12 74.16 88.02
CEDD Roulette 167.67 69.77 72.91 227.16 72.49 86.55
CEDD* Roulette 158.56 67.84 70.54 216.91 70.18 86.76
SEDD Uniform 169.66 80.74 91.79 252.81 91.40 102.75
SEDDs Uniform 163.88 81.13 89.21 228.37 88.56 100.80
CEDD Uniform 161.84 80.27 87.91 279.65 87.46 99.34
CEDD* Uniform 175.42 82.54 89.68 289.09 88.90 106.32
DFM kt = t 145.48 71.90 71.20 221.15 70.84 82.63
DFM kt = t2 152.70 72.31 72.87 215.30 72.55 85.82

We also compare our approach against models trained utilizing Discrete Flow matching (DFM) (Gat
et al., 2024). In Table 1, we present results when comparing against flows with convex interpolants,
where we chose schedules kt = t, as in Campbell et al. (2024), as well as kt = t2. The perplexity
bound for these models is calculated using Expression (24) in Haxholli et al. (2024).

It can be seen that CEDD* absorb performs best overall, thus we compare this model, against
CEDDT, that is, CEDD with the scaling loss used in the SOTA discrete diffusion model (Sahoo
et al., 2024). Interestingly, our scaling CEDD* outperforms that of CEDDT, despite its theoretical
support with regards to the score entropy loss. The results can be found in Table 2.

We also train 3 absorb models, namely SEDDs, CEDD*, CEDDT, as well as GPT2, with a sequence
length of 1024. Results are provided in Table 2, where it can be seen that overall GPT-2 performs
best. The gaps between SEDDs, CEDD*, CEDDT are reduced, likely since by seeing more tokens
they all approach their optimal performance. However, models trained with CEDD/CEDD* con-
verge faster to the optimum in terms of number of parameter updates. In Appendix B.6, Table 7
and Figure 8, we show the difference in performance between CEDD* and SEDDs absorb during
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and after training for 20k parameter updates. In addition, training with CEDD (and its variants)
is roughly 15% faster per iteration, due to the simplified loss function. Furthermore, by incorpo-
rating the f i

θ(xt, t) to siθ(xt, t) scaling in the timestep, absorb models trained with CEDD/CEDD*
generate sequences 2% faster than those trained with SEDDs.

Table 2: Results comparing SEDDs (retrained), CEDD*, CEDDT and GPT-2 (retrained) in terms of
generative perplexity, and perplexity on 5 test sets. Number of generation steps is 1024.

Model (Absorb) GenPerp LAMBADA WikiText2 PTB WikiText103 1BW
SEDDs L=128 166.35 67.05 69.37 208.69 69.17 83.87
CEDD* L=128 143.86 64.60 65.04 192.99 64.69 79.81
CEDDT L=128 154.04 68.24 68.61 204.76 68.10 81.81
SEDDs L=1024 105.27 52.18 42.02 117.00 41.83 80.79
CEDD* L=1024 101.83 52.70 41.57 115.99* 41.31 77.96
CEDDT L=1024 108.88 53.20 42.24 121.05 42.07 78.10
D3PM L=1024 - 93.47 77.28 200.82 75.16 138.92
PLAID L=1024 - 57.28 51.80 142.60 50.86 91.12
GPT-2 L=1024 41.02* 49.02* 37.68* 134.13 37.55* 58.92*

4.3 COMPARING THE TWO UPPER BOUNDS

Lastly, we compare the two upper bounds J1 and J2. The bound J2 is shown empirically to be
slightly tighter than J1, supporting the importance of Theorem 4 and Proposition 6. We estimate the
integral with respect to time in both J1 and J2 by randomly sampling time points from a uniform
distribution in the interval (e−4, 1 − e−4), and the averaging the loss. The procedure of comparing
these bounds is explained in detail in Appendix B.4. We present the results for several models in
Table 3, while we show the testing plots for CEDD* absorb (L=1024) in Figure 3. The proposed
bound J2 gives a lower bound in every single case, as it can also be seen in Table 6, Appendix B.6,
where we provide the equivalent of Table 1 when J2 is utilized.

Table 3: Results comparing J1 and J2 for the best performing models of each category.

Model/L/Perplexity-Bound LAMBADA WikiText2 PTB WikiText103 1BW
SEDDs absorb/1024/ exp(J1) 52.18 42.02 117.00 41.83 80.79
SEDDs absorb/1024/ exp(J2) 51.78 41.76 115.97 41.51 80.53
CEDD* absorb/1024/ exp(J1) 52.70 41.57 115.99 41.31 77.96
CEDD* absorb/1024/ exp(J2) 52.10 41.18 115.03 40.98 77.28
CEDD* absorb/128/ exp(J1) 64.60 65.04 192.99 64.69 79.81
CEDD* absorb/128/ exp(J2) 64.11 64.54 191.38 64.30 79.17
CEDD* roulette/128/ exp(J1) 67.84 70.54 216.91 70.18 86.76
CEDD* roulette/128/ exp(J2) 67.27 69.61 213.90 69.45 85.64
CEDD uniform/128/ exp(J1) 80.27 87.91 279.65 87.46 99.34
CEDD uniform/128/ exp(J2) 79.46 86.82 276.61 86.52 98.44

(a) LAMBADA (b) 1BW (c) PTB (d) WikiText103

Figure 3: Upper bounds J1 and J2 of CEDD* absorb L=1024 for different testing sets.

9



Published as a conference paper at ICLR 2025

4.4 SPELLING CORRECTION

We evaluate our uniform and roulette diffusion models on a character-level unsupervised spell-
checking task (Hoogeboom et al., 2021). We train CEDD* and SEDD models on ’War and Peace’
(3.3M tokens), and test on ’Crime and Punishment’ (CAP) and ’Pride and Prejudice’ (PAP). The
test set is contaminated with mistakes (5% of characters), and the model chooses the most likely
correction. Results when training for 25k/50k iterations are provided in Table 4 and Appendix B.6.

Table 4: Correction accuracy percentages. 25k training iterations, batch size of 32 and L = 128.

Model (L=128) CEDD* Uniform SEDD Uniform CEDD* Roulette SEDD Roulette
PAP 89.5 86.9 89.7 85.1
CAP 89.5 87.5 90.3 85.8

5 RELATED WORK AND FUTURE OUTLOOK

The continuous diffusion approach has demonstrated excellent performance in modeling continu-
ous data distributions (Song et al., 2020a; 2021c; Kingma et al., 2021b; Nichol & Dhariwal, 2021;
Saharia et al., 2022; Ramesh et al., 2022), leading to numerous efforts to adapt it for language mod-
eling tasks (Chen et al., 2023; Gulrajani & Hashimoto, 2024; Li et al., 2022; Dieleman et al., 2022;
Strudel et al., 2022; Gong et al., 2022; Mahabadi et al., 2023). Although initial results were not
competitive, recent advancements have reduced the performance gap with autoregressive models.
Discrete diffusion models offer an alternative approach for modeling categorical distributions like
language data. Originally proposed by Hoogeboom et al. (2021); Austin et al. (2021), the framework
was extended to continuous time by Campbell et al. (2022). Both strands of work employ a combi-
nation of the variational lower bound and cross entropy loss, the latter being central to our training
approach and corresponding to the strategy employed by Dieleman et al. (2022) in the continuous
case. The cross-entropy loss is also derived inSahoo et al. (2024); Shi et al. (2024); Ou et al. (2025),
but only for the absorb transition-rate matrix. In addition, the cross entropy loss is similar to the loss
employed in Sun et al. (2023), however in their case, one conditions on the current sequence x−i

t
without the token at position i, and attempts to maximize the likelihood of xi

t. In contrast, Lou et al.
(2024) proposed modeling ratios of probabilities (Meng et al., 2022) directly using score entropy.
The evaluation of such models can be performed by using Theorem 3, as originally derived and
used in Lou et al. (2024). Inspired by this result, we formulate and prove the discrete version of the
rest of the theorems in Song et al. (2021b), which provide important information regarding the KL
divergence between the data and learned distributions in CTMCs, and which justify the usage of J2.
Transition-rate matrices are an essential component in CTMCs, as demonstrated by the perfor-
mance discrepancy between the absorb and uniform matrices (Lou et al., 2024; Campbell et al.,
2022). We introduced roulette matrix, an interpolation between the two and derived its exponential.
Regarding future work, numerous avenues remain open for optimization within the diffusion
model framework such as the exploration of the Eroulette matrix. Additionally, the exploration
of noise schedules in discrete diffusion models remains relatively nascent, as similar to Lou et al.
(2024), we did not systemically explore noise schedules. In our experiments, cross entropy loss is
modulated by heuristically chosen time-dependent weighting. Investigating and establishing a gen-
eral optimal weighting schedule could further refine performance metrics. Finally, studying scaling
laws for discrete diffusion models and establishing their practical utility in downstream tasks is
crucial.

6 CONCLUSION

In this work, we provided three new theorems concerning the KL divergence between the data and
the learned distribution, improving model evaluation through the bound presented in Theorem 4.
We also introduced a new transition-rate matrix that allows for token correction after unmasking in
the reverse process, and derived its exponential matrix to enable efficient training/sampling. Finally,
we proposed favoring denoising cross entropy loss over score entropy for training discrete diffusion
models due to the findings in the experiments we conducted.
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A THEORETICAL RESULTS

A.1 KL DIVERGENCE THEOREMS

Lemma 1. Let q∗1 and q̂1 denote two initial distributions and define two Continuous-Time
Markov Chains (CTMCs) running from time 1 to 0, with transition-rate matrices Q∗

t (y, x) =

Qt(x, y)r(x, y) and Q̂t(y, x) = Qt(x, y)r̂(x, y), where r(x, y) and r̂(x, y) are chosen such that
they ensure Q∗

t and Q̂t are indeed transition-rate matrices. When the first process (with matrix
Q∗

t (y, x)) is applied to initial distribution q∗1 and the second (with matrix Q̂t(y, x)) to initial dis-
tribution q̂1, they define distributions q∗t and q̂t at time t, and q∗0 , q̂0 at the end of the diffusion, for
which

DKL(q
∗
0 ||q̂0)

≤
∫ 1

0

Ext∼q∗t

∑
y ̸=xt

Qt(xt, y)ℓ (r(xt, y), r̂(xt, y)) dt+DKL(q
∗
1 ||q̂1), (20)

where ℓ(a, b) = (b− a log b+K(a)) and K(a) = a(log a− 1).

Proof. From the data processing inequality applied to the reverse of the processes defined in the
Lemma, we have DKL(q

∗
0 ||q̂0) ≤ DKL(q

∗||q̂) where q∗ is the measure over the space of paths
generated by the first process, while q̂ is the measure over the space of paths generated by second
one. Using the expression for the KL divergence between path measures of two CTMCs found in
(Opper & Sanguinetti, 2007, Section 2.1), and by substituting qt(x) := q∗(xt), g(x′|x) = Q∗

t (y, xt)

and f(x′|x) = Q̂t(y, xt), we have:

DKL(q
∗||q̂) =

∫ T

0

Ext∼q∗t

∑
y ̸=xt

(
Q∗

t (y, xt) log
Q∗

t (y, xt)

Q̂t(y, xt)
+ Q̂t(y, xt)−Q∗

t (y, xt)

)
dt

+DKL(q
∗
1 ||q̂1). (21)

Now we focus on the expression inside the sum:

Q∗
t (y, xt) log

Q∗
t (y, xt)

Q̂t(y, xt)
+ Q̂t(y, xt)−Q∗

t (y, xt) = (22)

Qt(xt, y)r(xt, y) log
Qt(xt, y)r(xt, y)

Qt(xt, y)r̂(xt, y)
+Qt(xt, y)r̂(xt, y)−Qt(xt, y)r(xt, y) = (23)

Qt(xt, y)r(xt, y) (log r(xt, y)− log r̂(xt, y)) +Qt(xt, y)r̂(xt, y)−Qt(xt, y)r(xt, y) = (24)

Qt(xt, y)r(xt, y) (log r(xt, y)− 1)−Qt(xt, y)r(xt, y) log r̂(xt, y) +Qt(xt, y)r̂(xt, y) = (25)

Qt(xt, y) [K (r(xt, y)) + (r̂(xt, y)− r(xt, y) log r̂(xt, y))] = Qt(xt, y)ℓ (r(xt, y), r̂(xt, y)) ,
(26)

which concludes the proof. We highlight that the CTMCs defined in the Lemma are completely arbi-
trary and not necessarily related to one-another, as the choices of r(x, y) and r̂(x, y) can completely
overwrite the matrix Qt(x, y).

Theorem 1. Define a CTMC with transition matrix Qt that runs from time 0 to 1. The true reverse
process defines a probability evolution pt from p1 to the data distribution p0, while the learned re-
verse process induces the evolution pθt from the reference distribution pθ1 = pr to the approximation
of the data distribution pθ0. In this setting, the following KL divergence bound holds

DKL(p0||pθ0) ≤
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)ℓ

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
dt+DKL(p1||pr). (27)

Proof. In Lemma 1, we set r(x, y) = pt(y)
pt(x)

and r̂(xt, y) = sθ(xt, t)y . This implies that q∗t = pt

and q̂t = pθt . In particular, q∗0 = p0, q̂0 = pθ0 and q∗1 = p1, q̂1 = pθ1 := pr. Plugging everything in
Expression (20) gives the desired result.
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Theorem 3. Let pθ0 denote the learned distribution from which the reverse process samples. The
negative log-probability of a state x0 being sampled by the reverse process can be bounded from
above as follows,

− log pθ0(x0) ≤
∫ 1

0

Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt, y)ℓ

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
dt

+DKL(p1|0(·|x0)||pr). (28)

Proof. In Lemma 1 we set r(x, y) = pt|0(y|x0)

pt|0(xt|x0)
and r̂(xt, y) = sθ(xt, t)y , where pt|0 is the prob-

ability over states at time t determined by a CTMC with transition-rate matrix Qt applied to initial
distribution δ(x = x0). As such, we have q∗t = pt|0 and q̂t = pθt . In particular, q∗0 = δ(x = x0),
q̂0 = pθ0 and q∗1 = p1|0 , q̂1 = pθ1 := pr. Plugging everything in Expression (20):

DKL(δ(x = x0)||pθ0) ≤
∫ 1

0

Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt, y)

[
K

(
pt|0(y|x0)

pt|0(xt|x0)

)

+

(
sθ(xt, t)y −

pt|0(y|x0)

pt|0(xt|x0)
log sθ(xt, t)y

)]
dt+DKL(p1|0(x0)||pr).

This concludes the proof as DKL(δ(x = x0)||pθ0) = − log(pθ0(x0)).

Theorem 2. Denote the intermediate distributions at time t determined by the true reverse process,
and by the learned reverse process with pt and pθt , respectively. We can write the entropy of the data
distribution H(p0) as

H(p0) = H(p1)−
∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)K

(
pt(y)

pt(xt)

)
dt. (29)

In addition, if the learned ratios sθ(xt, t)y equal pθ
t (y)

pθ
t (xt)

and p1 = pθ1 := pr, then the inequality in
Theorem 1, becomes an equality.

Proof. The cross entropy between the true data distribution, and the modeled data distribution sat-
isfies the following:

H(p0, p
θ
0)−H(p1, p

θ
1) =

∫ 0

1

∂

∂t
H(pt, p

θ
t )dt (30)

To keep things clear we focus on ∂
∂tH(pt, p

θ
t ).

∂

∂t
H(pt, p

θ
t ) =

∂

∂t

∫
−pt(xt) log(p

θ
t (xt))dxt =

∫
− ∂

∂t
[pt(xt) log(p

θ
t (xt))]dxt (31)

= −
(∫

∂pt(xt)

∂t
log(pθt (xt))dxt +

∫
pt(xt)

pθt (xt)

∂pθt (xt)

∂t
dxt

)
. (32)

We can use the Kolmogorov forward equations (Equation 3), that is,
∑

y Qt(xt, y)pt(y) =
∂pt(xt)

∂t

and ∂pθ
t (xt)
∂t =

∑
y Qt(xt, y)p

θ
t (y) to get

= −

(∫ ∑
y

Qt(xt, y)pt(y) log(p
θ
t (xt))dxt +

∫
pt(xt)

pθt (xt)

∑
y

Qt(xt, y)p
θ
t (y)dxt

)
(33)

= −

(∫ ∑
y

Qt(xt, y)
pt(y)

pt(xt)
log(pθt (xt))p(xt)dxt +

∫
pt(xt)

∑
y

Qt(xt, y)
pθt (y)

pθt (xt)
dxt

)
(34)

= −Ext∼pt

∑
y

Qt(xt, y)

(
pt(y)

pt(xt)
log(pθt (xt)) +

pθt (y)

pθt (xt)

)
(35)
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= −Ext∼pt

∑
y

Qt(xt, y)

(
pθt (y)

pθt (xt)
− pt(y)

pt(xt)
log

pθt (y)

pθt (xt)

)
(36)

+Ext∼pt

∑
y

Qt(xt, y)[
pt(y)

pt(xt)
log pθt (y)]. (37)

The second term above Ext∼pt

∑
y Qt(xt, y)[

pt(y)
pt(xt)

log pθt (y)] is zero. Indeed,

Ext∼pt

∑
y

Qt(xt, y)[
pt(y)

pt(xt)
log(pθt (y))] =

∑
xt

∑
y

Qt(xt, y)pt(xt)[
pt(y)

pt(xt)
log(pθt (y))] (38)

=
∑
xt

∑
y

Qt(xt, y)pt(y) log(p
θ
t (y)) =

∑
y

(∑
xt

Qt(xt, y)

)
pt(y) log(p

θ
t (y)) = 0, (39)

since for any column of a transition-rate matrix the sum of that columns elements is 0, therefore∑
x Qt(xt, y) = 0. In total we have:

H(p0, p
θ
0)−H(p1, p

θ
1) =

∫ 0

1

−Ext∼pt

∑
y

Qt(xt, y)

(
pθt (y)

pθt (xt)
− pt(y)

pt(xt)
log

pθt (y)

pθt (xt)

)
dt (40)

=

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

(
pθt (y)

pθt (xt)
− pt(y)

pt(xt)
log

pθt (y)

pθt (xt)

)
dt. (41)

This allows the derivation of the expression for entropy of the data distribution, by taking pθt = pt

H(p0) = H(p1) +

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

(
pt(y)

pt(xt)
− pt(y)

pt(xt)
log

pt(y)

pt(xt)

)
dt, (42)

thus

H(p0) = H(p1)−
∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)K

(
pt(y)

pt(xt)

)
dt. (43)

If we assume pθ
t (y)

pθ
t (xt)

= sθ(xt, t)y and p1 = pθ1 := pb, from Equation (41) we get

H(p0, p
θ
0)−H(p1) =

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

(
sθ(xt, t)y −

pt(y)

pt(xt)
log(sθ(xt, t)y)

)
dt, (44)

and furthermore, from Equation (43) it is trivial that

−H(p0) +H(p1) =

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)K

(
pt(y)

pt(xt)

)
dt, (45)

thus adding this last equation and Equation (44) we get

DKL(p0||pθ0) (46)

=

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

[
K

(
pt(y)

pt(xt)

)
+

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)]
dt. (47)

Since we know that pt(xt)
pt(xt)

= 1, and sθ(xt, t)xt
=

pθ
t (xt)

pθ
t (xt)

= 1, we have[
K

(
pt(xt)

pt(xt)

)
+

(
sθ(xt, t)xt

− pt(xt)

pt(xt)
log sθ(xt, t)xt

)]
= −1 + 1 = 0 (48)

so we can change the sums
∑

y to simply
∑

y ̸=xt
, as follows

DKL(p0||pθ0) (49)

=

∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)

[
K

(
pt(y)

pt(xt)

)
+

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)]
dt. (50)

Finally, since p1 = pθ1 := pb, then DKL(p1||pr) = 0, therefore we can add it to the right side,
finishing the proof.
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We remark that as sθ(xt, t)y → pt(y)
pt(xt)

, then pt(i)
θ → pt(i), and thus pθ

t (y)

pθ
t (xt)

→ pt(y)
pt(xt)

, as such

sθ(xt, t)y → pθ
t (y)

pθ
t (xt)

. Therefore, the bound in Theorem 1 becomes tighter as the model improves.

Theorem 4. Under the conditions stated in Theorem 1, the following inequality for the cross entropy
between the data and the learned distribution holds:

H(p0, p
θ
0) ≤

∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)ℓ̄

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
dt

−
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(y, xt)dt+H(p1, pr), (51)

where ℓ̄(a, b) = (b− a log b).

Proof. From Theorem 1, we have

DKL(p0||pθ0)−DKL(p1||pr)

≤
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)

[
K

(
pt(y)

pt(xt)

)
+

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)]
dt. (52)

Since we know that pt(xt)
pt(xt)

= 1, we can manually set sθ(xt, t)xt
= 1, and we get[

K

(
pt(xt)

pt(xt)

)
+

(
sθ(xt, t)xt

− pt(xt)

pt(xt)
log sθ(xt, t)xt

)]
= −1 + 1 = 0, (53)

therefore
H(p0, p

θ
0)−H(p0)−DKL(p1||pr)

≤
∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

[
K

(
pt(y)

pt(xt)

)
+

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)]
dt. (54)

from which we deduce,
H(p0, p

θ
0)

≤ H(p0) +

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)K

(
pt(y)

pt(xt)

)
dt

+

∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)
dt+DKL(p1||pr). (55)

Since from Theorem 2 we have that

H(p0) +

∫ 1

0

Ext∼pt

∑
y

Qt(x, y)K

(
pt(y)

pt(xt)

)
dt = H(p1), (56)

hence we can write
H(p0, p

θ
0)

≤
∫ 1

0

Ext∼pt

∑
y

Qt(xt, y)

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)
dt+H(p1) +DKL(p1||pr),

and therefore

H(p0, p
θ
0) ≤

∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(xt, y)

(
sθ(xt, t)y −

pt(y)

pt(xt)
log sθ(xt, t)y

)
dt

+

∫ 1

0

Ext∼pt
Qt(xt, xt)dt+H(p1, pr). (57)

The fact that Qt(xt, xt) = −
∑

y ̸=xt
Qt(y, xt) concludes the proof.
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Proposition 6. In the case of the roulette diffusion with roulette-loglinear noise, H(pr) = 0 and

−
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt =
(
1− 1−pm

n−1

)
L
pm

(ϵ−1). For the absorb diffusion, that is when

pm → 1, we have −
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt = L(ϵ− 1). Finally, for the uniform diffusion,

H(pr) = L log(V ) and −
∫ 1

0
Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt = −
(
1− 1

V

)
L
∫ 1

0
σ

′
(t)dt.

Proof. In all cases,

−
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(y,xt)dt = −Et∼U(0,1)Ext∼pt(xt)

L∑
i=1

∑
yi ̸=xi

t

Qtok
t (yi,xi

t) (58)

= −Et∼U(0,1)

L∑
i=1

Ext∼pt(xt)

∑
yi ̸=xi

t

Qtok
t (yi,xi

t) (59)

= −Et∼U(0,1)

L∑
i=1

∑
xi

t

pt(x
i
t)
∑

yi ̸=xi
t

Qtok
t (yi,xi

t) (60)

= −Et∼U(0,1)

L∑
i=1

∑
xi

0

p0(x
i
0)
∑
xi

t

pt|0(x
i
t|xi

0)
∑

yi ̸=xi
t

Qtok
t (yi,xi

t) (61)

For the roulette case, if xi
t is the masked token, that is, xi

t = n, then
∑

yi ̸=xi
t
Qtok

t (yi,xi
t) = 0.

Otherwise,
∑

yi ̸=xi
t
Qtok

t (yi,xi
t) = σ

′

t

(
1− 1−pm

n−1

)
. Thus,

−
∫ 1

0

Ext∼pt

∑
y ̸=xt

Qt(y,xt) = (62)

= −
(
1− 1− pm

n− 1

)
Et∼U(0,1)

L∑
i=1

∑
xi

0

p0(x
i
0)
∑
xi

t ̸=n

pt|0(x
i
t|xi

0)σ
′

t = (63)

= −
(
1− 1− pm

n− 1

)
Et∼U(0,1)

L∑
i=1

∑
xi

0

p0(x
i
0)σ

′

t

∑
xi

t ̸=n

pt|0(x
i
t|xi

0) (64)

= −
(
1− 1− pm

n− 1

)
Et∼U(0,1)

L∑
i=1

∑
xi

0

p0(x
i
0)σ

′

t

(
1− p(xi

t = n|xi
0)
)

(65)

= −
(
1− 1− pm

n− 1

)
Et∼U(0,1)

L∑
i=1

∑
xi

0

p0(x
i
0)σ

′

te
−σtpm = −

(
1− 1− pm

n− 1

)
L

∫ 1

0

σ
′

te
−σtpmdt

(66)

=

(
1− 1− pm

n− 1

)
L

pm
(e−σ1pm − e−σ0pm) (67)

Since σt is roulette-loglinear, that is σt = − 1
pm

log (1− (1− ϵ)t), we get the result stated in the
Proposition.

In the Uniform case, we notice that Equation (61) can be rewritten as

Et∼U(0,1)

L∑
i=1

∑
xi

0

∑
xi

t

p(xi
t,x

i
0)Q

tok
t (xi

t,x
i
t) (68)

= Et∼U(0,1)

L∑
i=1

∑
xi

0

∑
xi

t

p(xi
t,x

i
0)σ

′
(t)

(
1

V
− 1

)
= −L

(
1− 1

V

)∫ 1

0

σ
′
(t)dt. (69)
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A.2 CROSS ENTROPY DISCRETE DIFFUSION (CEDD)

A.2.1 REDERIVING THE DENOSING SCORE ENTROPY LOSS

In what follows, we rederive the Denosing Score Entropy Loss for completeness (Lou et al., 2024).
Training a model using ratio matching is performed by minimizing the error of a network that re-
ceives as input xt and tries to predict the ratios of pt(y)

pt(xt)
, where y is a neighbour of xt with Hamming

distance of 1. In other words, one tries to minimize

ℓ̄

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
, (70)

for all xt following distribution pt(xt), that is:

Ext∼pt(xt)ℓ̄

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
. (71)

The main bottleneck is that the ratios pt(y)
pt(xt)

are unknown, as pt(xt) =
∫
pt|0(xt|x0)p0(x0)dx0

and p0(x0) is what we are trying to model in the first place. Luckily, the denoising trick can be
employed:

Ext∼pt(xt)ℓ̄

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
= Ext∼pt(xt)ℓ̄

(
Σx0

pt|0(y|x0)
p0(x0)

pt(xt)
, sθ(xt, t)y

)
= (72)

= Ext∼pt(xt)ℓ̄

(
Σx0

pt|0(y|x0)

pt|0(xt|x0)

pt|0(xt|x0)p0(x0)

pt(xt)
, sθ(xt, t)y

)
(73)

= Ext∼pt(xt)ℓ̄

(
Σx0

pt|0(y|x0)

pt|0(xt|x0)
p0|t(x0|xt), sθ(xt, t)y

)
(74)

= Ext∼pt(xt)ℓ̄

(
Ex0∼p0|t(x0|xt)

pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
. (75)

When ℓ̄ is linear with respect to ratios, like in the case of Score Entropy (Lou et al., 2024), then we
can pull the inner expectation (sum) outside and have

Ext∼pt(xt)ℓ̄

(
pt(y)

pt(xt)
, sθ(xt, t)y

)
= Ext∼pt(xt)Ex0∼p0|t(x0|xt)ℓ̄

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
,

(76)
which of course is equal to

Ex0∼p0(x0)Ext∼pt|0(xt|x0)ℓ̄

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
. (77)

A.2.2 DERIVING CROSS-ENTROPY FROM RATIO MATCHING

In order to go from Equation (72) to (74) we used the fact that

pt(y)

pt(xt)
= Σx0

pt|0(y|x0)

pt|0(xt|x0)
p0|t(x0|xt). (78)

Now, we select position i on the sequence with length L. We want to find an expression of the ratios
pt(y)
pt(xt)

for all sequences y, which differ with xt only on position i. From above we have

pt(y)

pt(xt)
= Σx0

pt|0(y|x0)

pt|0(xt|x0)
p0|t(x0|xt), (79)

where

pt|0(y|x0)

pt|0(xt|x0)
=

pt|0
(
(y(0),y(1), ...,y(i), ...,y(V−1))|(x0

(0),x0
(1), ...,x0

(i), ...,x0
(V−1))

)
pt|0

(
(xt

(0),xt
(1), ...,xt

(i), ...,xt
(V−1))|(x0

(0),x0
(1), ...,x0

(i), ...,x0
(V−1))

)
(80)
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and due to independence between entries in the forward process we have

pt|0(y|x0)

pt|0(xt|x0)
=

∏
pt|0(y

j |x0
j)∏

pt|0(xt
j |x0

j)
=
∏ pt|0(y

j |x0
j)

pt|0(xt
j |x0

j)
=

pt|0(y
i|x0

i)

pt|0(xt
i|x0

i)
, (81)

as the rest of these ratios are 1, since y differs with xt only on position i. Therefore we have

pt(y)

pt(xt)
= Σx0

pt|0(y
i|x0

i)

pt|0(xt
i|x0

i)
p0|t(x0|xt), (82)

where p0|t(x0|xt) = p0|t(x0
(0),x0

(1), ...,x0
(i), ...,x0

(V−1)|xt) and where the expression inside

the sum pt|0(y
i|x0

i)

pt|0(xt
i|x0

i) , depends only on x0
i and not on the rest of x0

j for j ̸= i. Thus,

Σx0

pt|0(y
i|x0

i)

pt|0(xt
i|x0

i)
p0|t(x0|xt) = Σx0

i

pt|0(y
i|x0

i)

pt|0(xt
i|x0

i)
Σx0

(0),...,x0
(i−1),x0

(i+1),...,x0
(V −1)p0|t(x0|xt),

(83)
which implies that

pt(y)

pt(xt)
= Σx0

i

pt|0(y
i|x0

i)

pt|0(xt
i|x0

i)
pi0|t(x0|xt), (84)

or more clearly
pt(y)

pt(xt)
= Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

pi0|t(h|xt). (85)

If we learn the V probabilities [pi0|t(0|xt), p
i
0|t(1|xt), ..., p

i
0|t((V − 1)|xt)], since we analytically

have pt|0(y
i|hi)

pt|0(xt
i|hi) (from the matrix exponential), then we we will have the ratio pt(y)

pt(xt)
. We can

choose another sequence z which also differs only at position i from xt. Then we will have

pt(z)

pt(xt)
= Σh∈[V ]

pt|0(z
i|h)

pt|0(xt
i|h)

pi0|t(h|xt), (86)

which highlights the fact that even though the ratios might change, the same
[pi0|t(0|xt), p

i
0|t(1|xt), ..., p

i
0|t((V − 1)|xt)] appear as long as the selected position i in the

sequence remains unchanged. Therefore if we learn these probabilities for a position, we will have
the ratios of all neighbours that differ only in that position, that is, we have V ratios, by modeling
these V probabilities.
There is nothing special about position i and we can choose to model V probabilities for each L
positions. In order to do so, we define a neural network fθ(xt, t) whose output is L × V , where
entry (i, h) of the output (that is f i

θ(xt, t)[h]), predicts pi0|t(h|xt) the probability of the entry i of
xt (position i of the current sequence), having being perturbed from token with id h in the original
sequence x0, given that we are at sequence xt right now. That is, the model is directly trying
to predict from where each of the tokens in the current sequence came from. Therefore we will
reparametrize our ratio model as follows

siθ(xt, t)[h] = siθ(xt, t)h = Σh∈[V ]

pt|0(z
i|h)

pt|0(xt
i|h)

f i
θ(xt, t)[h], (87)

where f i
θ(xt, t) are the outputs of the softmax at the end, and where for each i, distribution f i

θ(xt, t)
should match pi0|t(·|xt). This happens when DKL(p

i
0|t(·|xt)|f i

θ(xt, t)) = 0, thus we minimize,

L∑
i=1

Et∼U(0,1)w(t)Ext∼pt(xt)DKL(p
i
0|t(·|xt)||f i

θ(xt, t)). (88)

Since DKL(p
i
0|t(·|xt)||f i

θ(xt, t)) = H(pi0|t(·|xt), f
i
θ(xt, t))−C = Epi

0|t(h|xt) log f
i
θ(xt, t)[h]−C

the loss function above has the same gradients with regards to network parameters as

−
L∑

i=1

Et∼U(0,1)w(t)Ext∼pt(xt)Eh∼pi
0|t(h|xt) log f

i
θ(xt, t)[h], (89)
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which is equal to

−
L∑

i=1

Et∼U(0,1)Ext∼pt(xt)Ex0∼p0|t(x0|xt)w(t) log f
i
θ(xt, t)[x

i
0]. (90)

Thus, as in (Campbell et al., 2022), the loss we utilize in our training is Lll,

Lll = −Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(xt|x0)

L∑
i=1

w(t) log f i
θ(xt, t)[x

i
0]. (91)

We can also motivate this loss from the score entropy in Equation (77). Indeed, since ℓ and ℓ̄ differ
by a constant, its gradients are the same as those of

Ex0∼p0(x0)Ext∼pt|0(xt|x0)ℓ

(
pt|0(y|x0)

pt|0(xt|x0)
,Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

f i
θ(xt, t)[h]

)
, (92)

and as before since y and xt differ at only one token we get

= Ex0∼p0(x0)Ext∼pt|0(xt|x0)ℓ

(
pt|0(y

i|x0
i)

pt|0(xt
i|x0

i)
,Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

f i
θ(xt, t)[h]

)
. (93)

The function ℓ(a, b) is clearly minimized when a = b, in which case ℓ(a, b) = 0. In our case,

ℓ

(
pt|0(y

i|x0
i)

pt|0(xt
i|x0

i)
,Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

f i
θ(xt, t)[h]

)
= 0, (94)

for
pt|0(y

i|x0
i)

pt|0(xt
i|x0

i)
= Σh∈[V ]

pt|0(y
i|h)

pt|0(xt
i|h)

f i
θ(xt, t)[h], (95)

which happens when f i
t (xt, θ)[h ̸= x0

i] = 0 and f i
t (xt, θ)[x0

i] = 1, that is when our probability
prediction matches the one hot encoding used in cross entropy. Thus we train our model with cross
entropy, which simplifies the job of the network of learning complex ratios, as the conditional ratios
now do not participate in the loss. We only add them during sampling to the weighted sum in order to
predict the marginal ratios, since we have analytic expressions for the conditional ratios. Therefore,
we train the model by minimizing

−Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(xt|x0)

L∑
i=1

w(t) log f i
θ(xt, t)[x

i
0]. (96)

A.2.3 RELATION TO CROSS ENTROPY IN CONTINUOUS DIFFUSION

Cross entropy has also been used in continuous diffusion models applied to Language Modelling
(Dieleman et al., 2022). Here, we draw parallels between the two approaches. We denote a sequence
of L tokens at time t as xt = (x1

t , ...,x
L
t ), where each token is embedded in a D−dimensional space

xi
t ∈ RD. That is, each sequence can be seen as an L × D vector, created from concatenating the

embeddings of each token. The score that generates the reverse process, is therefore a L×D vector
sθ(xt, t), which approximates:

∇xt
log pt(xt) =

∫
∇xt

log pt(xt|x0)pt(x0|xt)dx0 = (97)∫
∇xt

log e
−||xt−x0||2

2σ2
t pt(x0|xt)dx0 =

∫
x0 − xt

σ2
t

pt(x0|xt)dx0 =

∫
x0

σ2
t

pt(x0|xt)dx0 −
xt

σ2
t

.

(98)
From above, it is clear that

∇xi
t
log pt(xt) =

∫
xi
0

σ2
t

pt(x0|xt)dx0 −
xi
t

σ2
t

=

∫
xi
0

σ2
t

(∫
pt(x0|xt)dx

−i
0

)
dxi

0 −
xi
t

σ2
t

, (99)

where x−i
0 denotes all entries of x0 without the ones of xi

0. Therefore

sθ(xt, t)(i1,i2,..,iD) ≈ ∇xi
t
log pt(xt) =

∫
xi
0

σ2
t

pt(x
i
0|xt)dx

i
0 −

xi
t

σ2
t

. (100)

Clearly, all that need to be learned in order to model the score for the dimensions of the token at
position i are the V probabilities pt(x

i
0|xt) . For L such tokens (to model the score of the entire

sequence) one simply needs to model L×V probabilities using cross entropy as in the discrete case.
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A.3 ROULETTE DISCRETE DIFFUSION

The roulette transition-rate matrix is

Qtok
roulette =


1

n−1 (1− pm)− 1 1
n−1 (1− pm) ... 1

n−1 (1− pm) 0
1

n−1 (1− pm) 1
n−1 (1− pm)− 1 ... 1

n−1 (1− pm) 0
... ... ... ... ...

1
n−1 (1− pm) 1

n−1 (1− pm) ... 1
n−1 (1− pm)− 1 0

pm pm ... pm 1− 1


n×n

,

(101)
where n− 1 = V is the number of tokens in our vocabulary. We add a special token for the absorb
(mask) state, therefore increasing the number of total states to n, with the token id n corresponding
to the absorbed state. Unfortunately, we cannot derive the matrix exponential as in the case of absorb
and uniform diffusion, since the corresponding matrix P of Q is not idempotent. Therefore, we will
first derive the exponential matrix of the uniform and absorb diffusion manually, in order to motivate
the manual derivation of the exponential matrix in the roulette case.

A.3.1 DERIVING THE EXPONENTIAL MATRIX OF THE ABSORB DIFFUSION

The transition matrix in the absorb case is

Qtok
abs =


0− 1 0 ... 0 0
0 0− 1 ... 0 0
... ... ... ... ...
0 0 ... 0− 1 0
1 1 ... 1 1− 1


n×n

. (102)

Clearly this is Qtok
roulette when pm = 1.

If we are at state i, the probability of moving at state n (the absorb/mask state) for a time-step
of size ϵ is ϵ. We discretize the time interval into discrete steps that are multiples of ϵ, that is
[0, τ ] → {ϵ, ..., jϵ, ...⌊ τ

ϵ ⌋ϵ} and denote the event of jumping from i ̸= n to n at time jϵ as aj . The
intersection of any of these two events is empty and their union is the space of all possibilities, thus
the probability of being at n at time τ is

p(xτ = n) = p({xτ = n} ∩ Ω) = p({xτ = n} ∩ {∪aj}) = p(∪jϵ<τ{aj}) (103)

p(xτ = n) = Σj< τ
ϵ
p(aj) = ϵ+ ϵ(1− ϵ) + ϵ(1− ϵ)2 + ...+ ϵ(1− ϵ)⌊

τ
ϵ ⌋−1 (104)

p(xτ = n) = ϵ
1− (1− ϵ)⌊

τ
ϵ ⌋

1− (1− ϵ)
= 1− (1− ϵ)⌊

τ
ϵ ⌋ (105)

Taking the limit ϵ → 0, we get p(xτ = n) = 1 − e−τ . Thus, assuming that we start at state i, we
have pτ |0(j ̸∈ {n, i}|i ̸= n) = 0, pτ |0(j = i|i ̸= n) = e−τ and pτ |0(j = n|i ̸= n) = 1− e−τ . This
defines the column i ̸= n of the exponential eτQ

tok

. Iterating though different i we construct the
entire exponential matrix, except its last column which is a simple one hot encoding at n. Setting
τ = σt finishes the derivation.

A.3.2 DERIVING THE EXPONENTIAL OF THE UNIFORM DIFFUSION

Qtok
unif =


1

n−1 − 1 1
n−1 ... 1

n−1
1

n−1
1

n−1 − 1 ... 1
n−1

... ... ... ...
1

n−1
1

n−1 ... 1
n−1 − 1


V×V

(106)

Clearly this is Qtok
roulette when pm = 0, without the absorption row and column, as our vocabulary

size is V = n− 1 since we do not have the special token. As before we discretize the time interval
into discrete steps that are multiples of ϵ, that is [0, τ ] → {ϵ, ..., jϵ, ...⌊ τ

ϵ ⌋ϵ}. We assume that initially
(at time 0) we start at position i. We wish to find the probability of being at state k ̸= i at time ⌊ τ

ϵ ⌋ϵ.
For the sake of simplicity, we abuse notation by denoting p(⌊ τ

ϵ ⌋ϵ−mϵ)|0(j|i) as p̄τ−mϵ(j|i). By
symmetry we know that for every j ̸= i the probability p̄τ−ϵ(j|i) is the same. Thus the probability
of p̄τ (j|i) is the sum of the following components:
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• probability of being at j ̸∈ {i, k} at time τ − ϵ, i.e, (p̄τ−ϵ(j|i)), times n− 3 = V − 2 such
states, times probability of moving (ϵ), times probability of hitting k on that move ( 1

n−1 ).

• probability of being at j = i at time τ − ϵ, i.e, (1− (n− 2) · p̄τ−ϵ(j|i)), times probability
of moving (ϵ), times probability of hitting k on that move ( 1

n−1 ).

• probability of being at j = k at time τ − ϵ, i.e, (p̄τ−ϵ(j|i)), times of staying there (1− ϵ).
• probability of being at j = k at time τ − ϵ, i.e, (p̄τ−ϵ(j|i)), times of moving (ϵ), times of

hitting itself on this move ( 1
n−1 ).

We write them down mathematically and get:

p̄τ (k|i) = p̄τ−ϵ(j|i)ϵ
1

n− 1
(n− 3) + (1− (n− 2)p̄τ−ϵ(j|i))ϵ

1

n− 1
+ (107)

+p̄τ−ϵ(j|i)(1− ϵ) + p̄τ−ϵ(j|i)
1

n− 1
ϵ, (108)

thus
p̄τ (k|i) =

1

n− 1
ϵ+ p̄τ−ϵ(j|i)(1− ϵ). (109)

Since by definition k ̸= i and j ̸= i, then by symmetry we have p̄τ (k|i) = p̄τ (j|i). Therefore we
get the recursion:

p⌊ τ
ϵ ⌋ϵ|0(k|i) =

1

n− 1
ϵ+ p(⌊ τ

ϵ ⌋ϵ−ϵ)|0(k|i), (110)

which if we fully develop becomes:

p⌊ τ
ϵ ⌋ϵ|0(k|i) =

1

n− 1
ϵ(1 + (1− ϵ) + (1− ϵ)2 + ...+ (1− ϵ)⌊

τ
ϵ ⌋−1), (111)

which is equal to:

p⌊ τ
ϵ ⌋ϵ|0(k|i) =

1

n− 1
ϵ
1− (1− ϵ)⌊

τ
ϵ ⌋

1− (1− ϵ)
=

1

n− 1
(1− (1− ϵ)⌊

τ
ϵ ⌋). (112)

Taking the limit ϵ → 0 gives pτ |0(k ̸= i|i) = 1
n−1 (1 − e−τ ) and pτ |0(i|i) = 1 − n−2

n−1 (1 − e−τ ),
which gives the ith column of the exponential matrix. Setting τ = σt finishes the derivation.

A.3.3 DERIVING THE EXPONENTIAL OF THE ROULETTE DIFFUSION

First, we notice that we must start at a state that is different from the absorb state (there are no
masked tokens in the training data). We can split the states into two groups, the non-absorbing
states, and the absorbing state. We consider the non-absorbing states as a single super-state and the
absorbing state as the other super-state. From our derivations in Appendix A.3.1, we know how
to derive the probability of being at the absorb super-state at time τ . The only difference is that
previously, if we moved, it would be certain we would move to the absorption super-state, while in
our case, we can move to a different state in our non-absorb super-state. The possibility of moving
to the absorb super-state in a ϵ time step, changes from ϵ to ϵpm, and the formula becomes

p(xτ = n) = Σj< τ
ϵ
p(aj) = ϵpm+ϵpm(1−ϵpm)+ϵpm(1−ϵpm)2+...+ϵpm(1−ϵpm)⌊

τ
ϵ ⌋−1 (113)

p(xτ = n) = ϵpm
1− (1− ϵpm)

1
ϵpm

⌊ τ
ϵ ⌋ϵpm

1− (1− ϵpm)
= 1− (1− ϵpm)

1
ϵpm

⌊ τ
ϵ ⌋ϵpm (114)

which implies that p(xτ = n) = 1 − e−τpm . This means that at time τ we are in one of the non-
absorption states with a probability of e−τpm . Now, as before (Appendix A.3.2), we want to find
the probability of being at each non-absorption state at time τ given that we stated a state i. We
can construct these probabilities using a similar approach as before, but with two key differences.
First, because we are conditioning on being in the non-absorption super-state, all probabilities must
be multiplied by e−τpm . Second, this conditioning implicitly provides some information about the
probability of moving when going from time τ − ϵ to time τ . In the uniform case, for a time step
ϵ this probability was ϵ, but now conditioning on the fact that we are not at the absorption state at
time τ provides extra information on whether we moved when going from τ − ϵ to τ . Indeed, given
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this extra information, we expect the probability of having moved when going form τ − ϵ to τ to be
reduced. This becomes obvious when pm = 1, as then we are in the case of the absorb diffusion, and
saying that at time τ we are not at the absorption state, immediately implies that we did not move,
as there are no other possibilites. As pm decreases, the magnitude of this information decreases. So
instead of writing the probability of moving (during an ϵ time step) with ϵ as we did previously, we
write this probability with δ(ϵ), and as before we can derive that

p̄τ (k|i) = p̄τ−ϵ(j|i)δ
1

n− 1
(n− 3) + (1− (n− 2)p̄τ−ϵ(j|i))δ

1

n− 1
+ (115)

+p̄τ−ϵ(j|i)(1− δ) + p̄τ−ϵ(j|i)
1

n− 1
δ (116)

thus
p̄τ (k|i) =

1

n− 1
δ + p̄τ−ϵ(k|i)(1− δ) (117)

and by the same recursion trick as before,

p⌊ τ
ϵ ⌋ϵ|0(k|i) =

1

n− 1
δ
1− (1− δ)⌊

τ
ϵ ⌋

1− (1− δ)
=

1

n− 1
(1− (1− δ)⌊

τ
ϵ ⌋). (118)

Now we derive the expression of δ. We write the move event when going from τ − ϵ to τ with A
and not going at the absorbed state at time τ with B

δ = p(A|B) =
p(A)

p(B)
p(B|A) =

p(B|A)p(A)

p(B|A)p(A) + p(B|AC)p(AC)
= (119)

=
(1− pm)ϵ

(1− pm)ϵ+ 1(1− ϵ)
= αϵ (120)

where α = (1−pm)
(1−pm)ϵ+1(1−ϵ) goes to 1− pm when ϵ goes to 0, therefore finally

p⌊ τ
ϵ ⌋ϵ|0(k|i) =

1

n− 1
(1− (1− δ)⌊

τ
ϵ ⌋) =

1

n− 1
(1− (1− δ)

1
δ δ⌊

τ
ϵ ⌋) =

1

n− 1
(1− (1− δ)

1
δαϵ⌊

τ
ϵ ⌋).

(121)
Therefore pτ |0(j ̸∈ {i, n}|i) = e−τpm 1

n−1 (1 − e(1−pm)τ ), and pτ |0(n|i) = 1 − e−τpm , and
pτ |0(i|i) = e−τpm(1 − n−2

n−1 (1 − e(1−pm)τ )), which gives the ith column of the exponential ma-
trix, when i ̸= n. In case i = n, the column of the exponential matrix is simply the one hot
encoding at n. Setting τ = σt finishes the derivation.

Proposition 5 If we denote with Yt the matrix exponential of σtQ
tok
roulette = σt

(
I − P tok

roulette

)
,

then Yt(i ̸∈ {j, n}, j ̸= n) = e−σtpm 1
n−1 (1 − e−(1−pm)σt), Yt(i ̸= n, i ̸= n) = e−σtpm(1 −

n−2
n−1 (1− e−(1−pm)σt)), Yt(n, j ̸= n) = 1− e−σtpm , Yt(i ̸= n, n) = 0, and Yt(n, n) = 1.

A.3.4 CONTROLLING THE NUMBER OF THE CORRECTED TOKENS IN THE REVERSE PROCESS

We wish to see how the choice of pm corresponds to the probability of a token moving uniformly at
least once before being masked, given some diffusion interval from [0, T ]. This should correspond
to the probability of a token being corrected after it is unmasked in the reverse process, therefore
enabling us to control the expected number of tokens to be corrected.
As before, we discretize the time interval into subintervals of length ϵ. The event of a token moving
before getting masked will be denoted by X , and the event of a token being masked at time jϵ is
denoted with Aj . Therefore

p(X) = p(X ∩ Ω) = p(X ∩ {∪Aj}) = p(∪jϵ<TX ∩Aj) (122)

p(X) = Σj<⌊T
ϵ ⌋p(X|Aj)p(Aj). (123)

p(Aj) is the probability of being at the absorbtion state at jϵ and not being there at (j − 1)ϵ. This
probability is p(Aj) = (1−e−jϵpm)−(1−e−(j−1)ϵpm) = e−(j−1)ϵpm −e−jϵpm therefore p(Aj) =

e−(j−1)ϵpm(1− e−ϵpm) ≈ e−(j−1)ϵpmϵpm. We write τi = iϵ, and thus we have

p(X) = Σj<⌊T
ϵ ⌋p(X|Aj)p(Aj) = Σj<⌊T

ϵ ⌋
n− 2

n− 1
(1− e−(1−pm)τj−1) · e−τj−1pmϵpm (124)
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which is a Riemann sum. Taking the limit we get the following integral

p(X) = pm
n− 2

n− 1

∫ T

0

(1− e−(1−pm)x) · e−xpmdx, (125)

whose solution is
p(X) = pm

n− 2

n− 1
(e−T − 1

pm
e−Tpm +

1

pm
− 1). (126)

Setting t = στ , we get

p(X) =
n− 2

n− 1
(e−σ1pm − e−σ1pm + 1− pm). (127)

We can see that when σ1 and σ1pm are relatively large then p(X) ≈ 1 − pm. That is, the ratio of
tokens moving before absorption is p(X) ≈ 1 − pm, or in other words the probability of tokens
being masked without ever moving is pm which is precisely the probability of a token being masked
in our transition-rate matrix Qtok. Thus the last row of our matrix directly controls the percentage
of corrected tokens in the reverse process for large enough diffusion times.

A.3.5 TIME EVOLVING ROULETTE

Here, we generalize the results of the previous subsections for the case that pm varies with respect
to time. We start by defining

Qtok
eroulette(t) = [(1− pm(t))σ(t)]

′

tQ
tok
uniform + [pm(t)σ(t)]

′

tQ
tok
absorb. (128)

First, we point out that since the size of Qeroulette is (n×n) and that of Quniform is (V ×V ), where
V = n−1, in order for them to have the same size, we add a row of zeros and a column of zeros to the
bottom and right of Quniform respectively. Clearly, by definition, these are transition rate matrices,
and therefore so is Qtok

eroulette(t). Indeed, the elements in each of its columns add to 0, and the only
negative elements are in the diagonals. If we define, pm(t) such that pm(0) = 0 and pm(1) = 1,
then the limiting distribution will be the one-hot encoding at the absorb state. Furthermore, we can
compute the exponential matrix of Qtok

eroulette(t). It is easy to prove that (1− pm(t))σ(t)Qtok
uniform

and pm(t)σ(t)Qtok
absorb(t) commute with each other, thus

eQ
tok
eroulette(t) = e(1−pm(t))σ(t)Qtok

uniform+pm(t)σ(t)Qtok
absorb . (129)

= epm(t)σtQ
tok
absorbe(1−pm(t))σtQ

tok
uniform . (130)

Writing αt = pm(t)σt and βt = (1− pm(t))σt, shows that we can calculate each of these exponen-
tial matrices using the strategy below

ec(t)Q
tok

= I +

∞∑
k=1

(Qtok)kc(t)k

k!
= I +

∞∑
k=1

(−1)k+1c(t)kQtok

k!
= I +Qtok(1− e−c(t)). (131)

Indeed,

eαtQ
tok
absorb = I +Qtok

absorb(1− e−αt) and eβtQ
tok

= I +Qtok
uniform(1− e−βt). (132)

Multiplying them together, we get the following proposition:
Proposition 7. If we denote with Yt the matrix exponential of σtQ

tok
eroulette, then Yt(i ̸∈ {j, n}, j ̸=

n) = e−σtpm(t) 1
n−1 (1 − e−(1−pm(t))σt), Yt(i ̸= n, i ̸= n) = e−σtpm(t)(1 − n−2

n−1 (1 −
e−(1−pm(t))σt)), Yt(n, j ̸= n) = 1− e−σtpm(t), Yt(i ̸= n, n) = 0, and Yt(n, n) = 1.

One can see that this is almost identical to Proposition 5, with the only difference being that pm
varies with t. Indeed, if we fix pm so that it is constant with respect to time, Equation (128) becomes

Qtok
eroulette(t) = pmQtok

absorb(t) + (1− pm)Qtok
uniform(t) = Qtok

roulette(t), (133)

meaning that Qtok
eroulette(t), coincides with Qtok

roulette(t) roulette in this case. This highlights that the
roulette diffusion is an interpolation between the roulette and uniform diffusion.

One possible choice of pm(t) is t
1
at for a positive constant a.
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B EXPERIMENTAL DETAILS

B.1 ALGORITHMS

Algorithm 1 Cross Entropy Training Algorithm

Require: Network fθ, (total) noise schedule σt, data distribution pdata, token transition matrix Qtok,
and time t ∈ [0, 1].
Sample x0 ∼ p0, t ∼ U([0, 1]).
Construct xt from x0. In particular, xi

t ∼ pt|0(·|xi
0) = exp(σtQ

tok)[:,xi
0]

.

Compute Lll = −
∑L

i=1 log f
i
θ(xt, t)[x

i
0].

Backpropagate ∇θLll.
Run optimizer.

B.2 NETWORK ARCHITECTURE AND HYPER-PARAMETERS

This core model is grounded in the diffusion transformer architecture introduced by Peebles & Xie
(2023), which integrates time conditioning into the conventional encoder-only transformer frame-
work as established by Vaswani et al. (2017); Devlin et al. (2019). However, it includes minor
adjustments, such as the use of rotary positional encoding (Su et al., 2024). The model contains
approximately 5% more parameters than a standard transformer (utilized in the case of GPT-2), at-
tributed to the incorporation of time conditioning. Additionally, the same tokenizers and data splits
as in prior work are employed to avoid introducing artifacts.

The network is configured with 12 transformer blocks, each featuring 12 attention heads and a
hidden size of 768, aligning with the ”small” variant of GPT-2. It includes conditioning dimensions
set at 128 to facilitate the diffusion process by encoding time-dependent features. Notably, the
architecture excludes masking, typical of generative models that generate all tokens simultaneously
rather than sequentially. It uses standard scaled dot-product attention mechanisms and incorporates
a dropout rate of 0.1 to mitigate overfitting.

In terms of hyperparameters, the model was trained on a single H100 when the sequence length is
set at 128, while in the case of sequence lengths of 1024 the model is trained using 8×H100 with
a vocabulary size of 50,257 tokens. Training involves a batch size of 512. The training regime is
designed for a total of 400,000 iterations.

Training utilizes the OpenWebText dataset, while evaluation is conducted on WikiText-103, with
data managed locally to speed up access times. The noise schedule for the diffusion process is log-
linear (uniform, absorb), and roulette log-linear (roulette) controlling the variance of noise added
incrementally. In both cases we set ϵ = 0.001 as in (Lou et al., 2024). Sampling for evaluation
during training employs an Euler predictor over 128 (and 1024 when L = 1024) steps, with noise
removal enabled.

For optimization, the model uses the AdamW optimizer with a learning rate of 0.0003, beta param-
eters of 0.9 and 0.999, and epsilon set to 1e-8. It features no weight decay, focusing on adapting
learning without additional regularization. The optimizer includes a warm-up phase of 2,500 steps
to stabilize learning dynamics, and employs gradient clipping at a threshold of 1 to prevent gradients
from exploding during training. The log-linear noise schedule was used in the absorb and uniform
case, while the roulette log-linear one was used in the roulette case.

B.3 EFFICIENT IMPLEMENTATION IN PRACTICE

B.3.1 EFFICIENT ESTIMATION OF THE SCORE IN PRACTICE

For our choice of sparse matrices Qt which can only modify one position at each step, the loss
function

Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(·|x0)

∑
y ̸=xt

Qt(xt,y)ℓ

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
, (134)
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becomes

Et∼U(0,1)Ex0∼p0(x0)Ext∼pt|0(·|x0)

L∑
i=1

∑
yi ̸=xi

t

Qtok
t (xi

t,y
i)ℓ

(
pt|0(y

i|xi
0)

pt|0(x
i
t|xi

0)
, siθ(xt, t)[y

i]

)
. (135)

Now we focus on calculating the loss at position i, as the total loss across the sequence,
will be simply the sum of such individual losses at each position. We notice that the term∑

yi ̸=xi
t
Qtok

t (xi
t,y

i)siθ(xt, t)[y
i] in the expression above is trivial to calculate. We simply add the

exponentiated outputs of the neural network across the last dimension weighted by Qtok
t (xi

t,y
i),

and then substract sθ(xt, t)
i
xi

t
·Qtok

t (xi
t,x

i
t). Since in all cases the terms of Qtok

t are either mostly
0 or mostly the same, this can be done efficiently. The expression

∑
yi ̸=xi

t

Qtok
t (xi

t,y
i)
pt|0(y

i|xi
0)

pt|0(x
i
t|xi

0)
log siθ(xt, t)[y

i] (136)

is more challenging to be calculated efficiently. We follow the approach of (Lou et al., 2024),
when using SEDD for training. To reiterate, for each position i, if we use SEDD for training, we

need to calculate the sum of the product pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
log siθ(xt, t)[y

i] over n ratios, where n = V

if Qtok = Qtok
uniform and n = V + 1 otherwise. Luckily, for the choices of Qtok in this paper

(uniform, absorb and roulette), such ratios have relatively simple form and they are almost all the
same. For example, in the case of the absorb diffusion, there are two cases, either xi

t has not moved
(xi

t = xi
0) or it has been masked (xi

t = n ̸= xi
0), which can be seen in Figure 4.

Figure 4: The conditional ratios at position i over the vocabulary in the two cases. The square
represents the absorb state. The value of a is 1− e−σt .

To simplify notation, when iterating through different tokens in the vocabulary we write xi
0 = k,

yi = j and log siθ(xt, t)[y
i] = sj . In the first case, when xi

t = n ̸= xi
0 we get

∑
yi ̸=xi

t

Qtok
t (xi

t,y
i)
pt|0(y

i|xi
0)

pt|0(x
i
t|xi

0)
log siθ(xt, t)[y

i] =
1− a

a
sk. (137)

On the other hand, in the second case (xi
t = xi

0) one has

∑
yi ̸=xi

t

Qtok
t (xi

t,y
i)
pt|0(y

i|xi
0)

pt|0(x
i
t|xi

0)
log siθ(xt, t)[y

i] = (138)

∑
j ̸∈{xi

t,n}

Qtok
t (xi

t, j)0sj +Qtok
t (xi

t, n)
a

1− a
sn = 0, (139)

as Qtok
t (xi

t, n) = 0. Thus when xi
t = xi

0 ̸= n, we can simply not calculate the loss.
For the uniform diffusion, there are also two cases, namely xi

t = xi
0 and xi

t ̸= xi
0 as illustrated in

Figure 5.
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Figure 5: The conditional ratios at position i over the vocabulary in the two cases. We define
b = 1

n=V (1− e−σt) and c = 1− (n− 1)b.

If xi
t ̸= xi

0, then∑
yi ̸=xi

t

Qtok
t (xi

t,y
i)
pt|0(y

i|xi
0)

pt|0(x
i
t|xi

0)
siθ(xt, t)[y

i] =
∑

j ̸∈{xi
t,k}

Qtok
t (xi

t, j)sj +Qtok
t (xi

t, k)
c

b
sk (140)

=
∑
j ̸=xi

t

Qtok
t (xi

t, j)sj +Qtok
t (xi

t, k)
(c
b
− 1
)
sk =

∑
j ̸=xi

t

1

n
sj +

1

n

(c
b
− 1
)
sk. (141)

Otherwise for xi
t = xi

0, we have∑
yi ̸=xi

t

Qtok
t (xi

t,y
i)
pt|0(y

i|xi
0)

pt|0(x
i
t|xi

0)
siθ(xt, t)[y

i] =
b

c

∑
j ̸∈{xi

t}

Qtok
t (xi

t, j)sj =
1

n

b

c

∑
j ̸=xi

t

sj . (142)

Finally writing Si =
∑

j sj , we get 1
nS

i+ 1
n

(
c
b − 1

)
sk− 1

nsxi
t

in the first case, and 1
n

b
cS

i− 1
n

b
csxi

t

in the second one.
For the roulette diffusion we proceed similarly. Figure 6 shows the ratios in all three possible cases.

Figure 6: The conditional ratios at position i over the vocabulary in the three cases. Since xi
0 is

a token from the data it cannot be masked. The square represents the absorb state. We define
a = 1− e−pmσt , b = e−pmσt · 1−e−σt(1−pm)

n−1 and c = e−pmσt

[
1

n−1 +
(
1− 1

n−1

)
e−σt(1−pm)

]
.

In the first case, the sum at position i is pm

[
b
a

(
Si − sk − sxi

t

)
+ c

ask

]
. In the second it is

1−pm

V
b
c

(
Si − sk − sn

)
, while in the third case we have 1−pm

V

(
Si − sk − sn − sxi

t

)
+ 1−pm

V sk
c
b .

If one chooses to incorporate the constant term K(a), in the loss, then a similar approach is fol-
lowed. However, considering Theorem 4 for evaluation, and the fact that a constant term does not
affect the gradient during training, implementing this term is not necessary.

B.3.2 SEDD SCALING

During training, some scores pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
, on expectation with respect to xi

0, can vary significantly for

different yi. This makes the task of the network more complex and reduces performance. In order to
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alleviate this issue, in the case of the absorb diffusion, (Lou et al., 2024) add log
∑

xi
0

1
n

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)

to the output of the network log siθ(xt, t)[y
i]. In this case, since we only need to calculate scores

when xi
t = n, this sum equals∑

xi
0

1

n− 1

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
=
∑
xi

0

1

n− 1

pt|0(y
i ̸= n|xi

0)

pt|0(n|xi
0)

= 0 +
1

n− 1

pt|0(y
i ̸= n|yi ̸= n)

pt|0(n|yi ̸= n)
(143)

=
1

n− 1

e−σt

1− e−σt
=

1

n− 1

1

eσt − 1
. (144)

We notice that in effect, this changes the prediction of the score, from log siθ(xt, t)[y
i] to

log siθ(xt, t)[y
i]− log(n− 1)− log (eσt − 1).

We extend this strategy for the uniform and the roulette diffusion. In the case of the uniform
diffusion, we get∑

xi
0

1

V

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
=

∑
xi

0 ̸∈{yi,xi
t}

1

V

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
+

1

V

pt|0(y
i|yi)

pt|0(x
i
t|yi)

+
1

V

pt|0(y
i|xi

t)

pt|0(x
i
t|xi

t)
. (145)

Now,
pt|0(y

i|yi)

pt|0(x
i
t|yi)

=
1− V−1

V (1− e−σt)
1
V (1− e−σt)

= 1 +
V

eσt − 1
, (146)

and
1

V

pt|0(y
i|xi

t)

pt|0(x
i
t|xi

t)
=

1
V (1− e−σt)

1− V−1
V (1− e−σt)

= 1− V

eσt − 1 + V
. (147)

Since pt|0(y
i|xi

0 ̸=yi)

pt|0(x
i
t|xi

0 ̸=xi
t)

= 1, we conclude∑
xi

0

1

V

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
=

V − 2

V
+

1

V
+

1

eσt − 1
+

1

V
− 1

eσt − 1 + V
= 1+

1

eσt − 1
− 1

eσt − 1 + V
.

We then modify the output of the network log siθ(xt, t)[y
i] accordingly

log siθ(xt, t)[y
i] + log (

∑
xi

0

1

V

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
), where n := V. (148)

Similarly, we can calculate this scaling factor for the roulette diffusion. There are two cases, either
xi
t = n or xi

t ̸= n. In the first case, with little modifications from before we can show that∑
xi

0

1

n− 1

pt|0(y
i ̸= n|xi

0)

pt|0(n|xi
0)

=
1

n− 1

1− (1− e−σtpm)

1− e−σtpm
=

1

n− 1

1

eσtpm − 1
. (149)

In the second case,∑
xi

0

1

n− 1

pt|0(y
i ̸= n|xi

0)

pt|0(x
i
t ̸= n|xi

0)
= 1 +

1

e(1−pm)σt − 1
− 1

e(1−pm)σt − 1 + n− 1
. (150)

We then modify the output of the network log siθ(xt, t)[y
i] accordingly

log siθ(xt, t)[y
i] + log (

∑
xi

0

1

n

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
). (151)

We take a moment to recall that if y and xt differ only at one position i then

pt(y)

pt(xt)
=
∑
xi

0

pi(xi
0|xt)

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
. (152)

Thus, above we are scaling the output by a naive estimation of this expectation where pi(xi
0|xt) is

assumed to be 1
n−1 . In fact, the study of the scaling approach and the realization that the entity 1

n−1
can be more properly estimated, is what originally motivated the derivation and usage of CEDD in
this paper.

31



Published as a conference paper at ICLR 2025

B.3.3 SCORE ESTIMATION THROUGH CEDD IN PRACTICE

In this subsection, similarly to Section B.3.1, we show how to convert the learned probabilities into
learned ratios in practice. Suppose that the perturbed token at position i at time t is xi

t. If y is a
sequence that differs from xt only at position i then from before one can write:

pt(y)

pt(xt)
=
∑
xi

0

pi(xi
0|xt)

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
. (153)

We point out that since xt and y only differ at position i, then xi
t ̸= yi. Thus,

pt(y)

pt(xt)
=

∑
xi

0 ̸∈{xi
t,y

i}

pi(xi
0|xt)

pt|0(y
i|xi

0)

pt|0(x
i
t|xi

0)
+ pi(yi|xt)

pt|0(y
i|yi)

pt|0(x
i
t|yi)

+ pi(xi
t|xt)

pt|0(y
i|xi

t)

pt|0(x
i
t|xi

t)
.

(154)

In the case of the absorb diffusion, from Section B.3.1, we can see that we do not need the ra-
tio when yi = n, and furthermore, we only need the ratios when xi

t = n. Since also the data
is not masked, then xi

0 ̸= n. Therefore, the first term (the sum) in Equation (154) is 0, since
pt|0(y

i ̸=n|xi
0 ̸∈{n,yi})

pt|0(n|xi
0 ̸∈{n,yi}) = 0. Hence

pt(y)

pt(xt)
= pi(yi|xt)

pt|0(y
i ̸= n|yi ̸= n)

pt|0(n|yi ̸= n)
+ pi(xi

t|xt)
pt|0(y

i ̸= n|n)
pt|0(n|n)

, (155)

where pt|0(y
i ̸= n|n) = 0 since a masked token cannot be unmasked in the forward process. Thus

our approximation of the score is simply

siθ(xt, t)[y
i] = f i

θ(xt, t)[y
i]

e−σt

1− e−σt
. (156)

To conclude sθ(xt, t) = fθ(xt, t)
1

eσt−1 .

In the case of the uniform diffusion, we write b = 1
n=V (1 − e−σt) and c = 1 − (n − 1)b

as in Section B.3.1, and Equation (154) becomes

pt(y)

pt(xt)
=

∑
xi

0 ̸∈{xi
t,y

i}

pi(xi
0|xt) + pi(yi|xt)

c

b
+ pi(xi

t|xt)
b

c
. (157)

pt(y)

pt(xt)
=
∑
xi

0

pi(xi
0|xt) + pi(yi|xt)

(c
b
− 1
)
+ pi(xi

t|xt)

(
b

c
− 1

)
. (158)

Therefore, our approximation of the score is simply

siθ(xt, t)[y
i] = 1 + f i

θ(xt, t)[y
i]
(c
b
− 1
)
+ f i

θ(xt, t)[x
i
t]

(
b

c
− 1

)
, (159)

or

siθ(xt, t) = 1+ f i
θ(xt, t)

(c
b
− 1
)
+ f i

θ(xt, t)[x
i
t]

(
b

c
− 1

)
1, (160)

in vector form.

Finally, in the case of roulette diffusion, we can discern two possibilities, namely xi
t = n and

xi
t ̸= n. In the first one, writing as in Section B.3.1, a = 1 − e−pmσt , b = e−pmσt · 1−e−σt(1−pm)

n−1

and c = e−pmσt

[
1

n−1 +
(
1− 1

n−1

)
e−σt(1−pm)

]
, Equation 154 becomes

pt(y)

pt(xt)
=

∑
xi

0 ̸∈{xi
t,y

i}

pi(xi
0|xt)

b

a
+ pi(yi|xt)

c

b
=

b

a
+ pi(yi|xt)

(
c

b
− b

a

)
. (161)

Hence, if the perturbed token xi
t at position i is masked, the predicted ratios over the vocabulary are:

siθ(xt, t) = 1
b

a
+ f i

θ(xt, t)

(
c

b
− b

a

)
. (162)
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Very similarly, if the perturbed token xi
t at position i is not masked, the predicted ratios over the

vocabulary are:

siθ(xt, t) = 1+ f i
θ(xt, t)

(c
b
− 1
)
+ f i

θ(xt, t)[x
i
t]

(
b

c
− 1

)
1, (163)

This shows that we can calculate the ratios by scaling and translating the learned probabilities
through CEDD.

Modification of the reparametrization in (18): Re-scaling conditional ratios when t → 0.

In the case of the uniform diffusion dynamics, when t → 0 then b
c → 0 and c

b → ∞. This does
not cause any issues when sampling, however, it does negatively impact the perplexity bound. We
explain informally the issue below. We fix position i and assume we are at xi

t and that originally
we were at xi

0. When the time t is close to 0, the model f i
θ(xt, t)[y

i] is typically very confident and
can predict that some token yi is xi

0, that is, f i
θ(xt, t)[y

i] ≈ 1 − ϵ and f i is ≈ ϵ
V−1 everywhere

else. Furthermore, most of the time xi
t = xi

0. This means the score siθ(xt, t)[y
i] ≈ c

b and is ≈ b
c

everywhere else. If the prediction is correct then the loss becomes ≈ 1
V−1 (V − 2)[− b

c log(
b
c ) +

b
c + b

c (log(
b
c ) − 1)] + [− c

b log(
c
b ) +

c
b + c

b (log(
c
b ) − 1)] ≈ 0. If it misses however, then we have

≈ 1
V−1 (V −3)[− b

c log(
b
c )+

b
c +

b
c (log(

b
c )−1)]+ [− b

c log(
c
b )+

c
b +

b
c (log(

b
c )−1)]+ [− c

b log(
b
c )+

b
c + c

b (log(
c
b ) − 1)] ≈ 2 c

b log
c
b . Considering the large magnitude of c

b when t ≈ 0, this loss is
extremely punitive. SEDD does not suffer from this issue, as the conditional ratios c

b are implicitly
learned by the network, which due to its limited flexibility likely acts as a regularizer, not allowing
the values of the ratios to rise steeply as t → 0. Motivated by this, in the uniform case, we rescale
σt < 0.0015, by setting σt = 0.0015. This significantly reduces the magnitude of c

b as t → 0.
We highlight that only the σt that is used to calculate c

b and b
c are scaled while the σt that is fed

to the model is not touched. Naturally, for the sake of rigor, this is also the model we employ to
generate samples. Finally, we note that this problem also appears in the case of the roulette diffusion
dynamics, as when time is close to 0 most tokens are unmasked. The same strategy is applied, as
before, only to ratios c

b and b
c , by rescaling σt when σt < 0.5 as follows: σscaled

t = log(1.1σt+1.1).

B.3.4 ANALYTIC SAMPLING IN PRACTICE

In (Lou et al., 2024) an alternative sampling scheme (Equation (18)) is provided. This method is
called the analytic method and it performs better than Euler sampling, in particular when the number
of sampling steps is small:

pt−ϵ|t(x
i
t−ϵ|xi

t) =
(
eσ

∆t
t Qtok

(xi
t,x

i
t−ϵ)

) n∑
yi=1

(
e−σ∆t

t Qtok

(xi
t−ϵ,y

i)
)
siθ(xt, t)[y

i], (164)

where σ∆t
t = σt − σt−ϵ.

Since we have an analytic expression of the matrix exponential eσ
∆t
t Qtok

, we can easily derive the
expression of e−σ∆t

t Qtok

, by simply substituting σ∆t
t with −σ∆t

t in each entry. One can efficiently
calculate the sum above by following the strategy of (Lou et al., 2024) as below.

In the case of the absorb diffusion, e−σ∆t
t Qtok

(j ̸= n, j ̸= n) = 1 − ā, e−σ∆t
t Qtok

(n, n) = 1,
e−σ∆t

t Qtok

(n, j ̸= n) = ā, with all other entries being 0, where ā = 1− eσ
∆t
t . As such if xt−ϵ ̸= n

n∑
yi=1

(
e−σ∆t

t Qtok

(xi
t−ϵ,y

i)
)
siθ(xt, t)[y

i] = (1− ā)siθ(xt, t)[x
i
t−ϵ], (165)

and if xt−ϵ = n

n∑
yi=1

(
e−σ∆t

t Qtok

(xi
t−ϵ,y

i)
)
siθ(xt, t)[y

i] = ā

n−1∑
yi=1

siθ(xt, t)[y
i] + siθ(xt, t)[n] = (166)
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= ā

n∑
yi=1

siθ(xt, t)[y
i] + (1− ā)siθ(xt, t)[n] = āSi

θ(xt, t) + (1− ā)siθ(xt, t)[n], (167)

where Si
θ(xt, t) =

∑n
yi=1 s

i
θ(xt, t)[y

i].

In the case of the uniform diffusion e−σ∆t
t Qtok

(j, j) = c̄ while the rest of the entries are b̄, where
b̄ = 1

n=V (1− eσ
∆t
t ) and c̄ = 1− (n− 1)b̄. Therefore

n∑
yi=1

(
e−σ∆t

t Qtok

(xi
t−ϵ,y

i)
)
siθ(xt, t)[y

i] = (c̄− b̄)siθ(xt, t)[x
i
t−ϵ] + b̄Si

θ(xt, t) = (168)

=
siθ(xt, t)[x

i
t−ϵ]

e−σ∆t
t

+
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t − 1

ne−σ∆t
t

Si
θ(xt, t). (169)

Finally, in the case of the roulette diffusion, we have e−σ∆t
t Qtok

(j ̸= n, j ̸= n) = c̄,
e−σ∆t

t Qtok

(j = n, j ̸= n) = ā, e−σ∆t
t Qtok

(j = n, j = n) = 1, e−σ∆t
t Qtok

(j ̸= n, j =

n) = 0 and the rest of the entries are b̄, where ā = 1 − epmσ∆t
t , b̄ = epmσ∆t

t · 1−eσ
∆t
t

n−1 and

c̄ = epmσ∆t
t

[
1

n−1 +
(
1− 1

n−1

)
eσ

∆t
t (1−pm)

]
. As in the absorb case, there are two cases, the first

one being xt−ϵ ̸= n:
n∑

yi=1

(
e−σ∆t

t Qtok

(xi
t−ϵ,y

i)
)
siθ(xt, t)[y

i] = (c̄− b̄)siθ(xt, t)[x
i
t−ϵ] + b̄Si

θ(xt, t)− b̄siθ(xt, t)[n],

(170)
while for xt−ϵ = n, one derives:

n∑
yi=1

(
e−σ∆t

t Qtok

(xi
t−ϵ,y

i)
)
siθ(xt, t)[y

i] = āSi
θ(xt, t) + (1− ā)siθ(xt, t)[n] = (171)

(c̄− b̄)siθ(xt, t)[n] + b̄Si
θ(xt, t)− b̄siθ(xt, t)[n] + (ā− b̄)Si

θ(xt, t)+ siθ(xt, t)[n](−ā+2b̄− c̄+1).
(172)

It is important to remark that in the case of the absorb and roulette diffusion, siθ(xt, t)[n] plays a role
in the quantities above only when xi

t = n. In the previous section, it is mentioned that siθ(xt, t)[n] is
not learned, but in this case when xi

t = n is needed. However, this particular case is not problematic
as siθ(xt, t)[n] = siθ(xt, t)[x

i
t] = 1, thus we set siθ(xt, t)[n] to 1 manually.

B.4 PROCEDURE FOR GENERATING THE PLOTS IN FIGURE 4

We sample a batch of 16 test points, and we perturb each datapoint with respect to a different t.
Then, for example in the absorb case, we calculate the expressions∑

y ̸=xt

Qt(xt,y)ℓ

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
, (173)

and ∑
y ̸=xt

Qt(xt,y)ℓ̄

(
pt|0(y|x0)

pt|0(xt|x0)
, sθ(xt, t)y

)
− 1 + ϵ, (174)

respectively for J1 and J2, where ϵ = 10−4. In each case, this returns a single point, therefore we
repeat this procedure 64N times, where N is the number of testing points. This ensures that in all
cases (J1 and J2), we are estimating the loss in the same number of perturbed points. However,
when N is small, we keep testing J1 and J2 (extending their plots) for more points in order to
provide to the reader more information about their (limiting) behaviour.

Table 5: Results comparing the roulette transition-matrices for different pm in terms of generative
perplexity.

pm = 0.95 pm = 0.65 pm = 0.35 pm = 0.05
Roulette 72.31 85.72 124.19 284.55
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B.5 PER SEQUENCE ESTIMATION OF J1

Here we explain a different method of calculating J1. When applying this method one first samples
a point (sequence) from the test set, and perturbs it for (say) 1024 time values t. Then the 1024
perturbed points are separated into (e.g.) 64 batches of size 16, and Expression 173 is computed for
each batch which returns 64 values. This process is then repeated for the next test point (sequence).
If the test set has N points then the process produces 64N values. These values can be averaged,
divided by L and exponentiated.

B.6 ADDITIONAL RESULTS

Figure 7: The comparison of the testing history of various methods on various datasets. Each row
represents a different dataset, and each column a different type of diffusion transition-rate matrix.
The way we calculated J1 to produce the plots is explained in Appendix B.5. The curves presented
are the exponentiated cummulative version of the array returned by the described process. Since we
do not perturb the test set, this method enables a clearer visual comparison.
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Table 6: Results comparing SEDD, SEDD scaled (SEDDs), CEDD and CEDD* using J2. Lower is
better.

Model (L=128) LAMBADA WikiText2 PTB WikiText103 1BW
SEDD Absorb 69.33 74.58 238.35 74.27 88.35
SEDDs Absorb 66.83 68.93 207.76 68.49 83.26
CEDD Absorb 64.87 65.07 198.00 64.97 78.93
CEDD* Absorb 64.11 64.54 191.38 64.30 79.17
SEDD Roulette 71.37 79.21 227.98 78.67 92.21
SEDDs Roulette 68.25 73.43 206.34 72.77 86.99
CEDD Roulette 68.92 72.16 224.18 71.52 85.37
CEDD* Roulette 67.27 69.61 213.90 69.45 85.64
SEDD Uniform 80.09 91.37 249.50 90.63 101.82
SEDDs Uniform 80.29 88.48 226.03 87.73 99.73
CEDD Uniform 79.46 86.82 276.61 86.52 98.44
CEDD* Uniform 82.43 89.68 289.09 88.90 106.32

Figure 8: Comparison of CEDD* absorb L=1024 and SEDDs absorb 1024 in terms of generative
perplexity (Euler, 128 steps), with respect to number of parameter updates.

Table 7: Results comparing SEDD (retrained), CEDD* trained for 20k parameter updates. For
generation we use the analytic method with 1024 steps. Float 32 sampling.

Model (Absorb) GenPerp LAMBADA WikiText2 PTB WikiText103 1BW
SEDDs L=1024 55.27 67.92 64.91 173.38 64.13 107.64
CEDD* L=1024 48.29 63.75 57.58 157.71 57.26 98.68

Table 8: Results comparing SEDD, SEDD scaled (SEDDs), CEDD and CEDD* in terms of genera-
tive perplexity.

Model (L=128) GenPerp Fl32-GPT2L GenPerp Fl64-GPT2L GenPerp Fl64-LLama8B
SEDD Absorb 83.62 172.35 212.15
SEDDs Absorb 79.74 166.35 206.34
CEDD Absorb 74.19 148.21 185.90
CEDD* Absorb 72.13 143.86 183.74
SEDD Roulette 87.81 178.94 220.00
SEDDs Roulette 83.36 172.93 212.07
CEDD Roulette 76.71 167.67 208.84
CEDD* Roulette 72.31 158.56 197.79
SEDD Uniform 175.49 169.66 206.91
SEDDs Uniform 171.07 163.88 200.90
CEDD Uniform 168.35 161.84 200.09
CEDD* Uniform 179.30 175.42 213.99
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Table 9: Results comparing SEDD, SEDD scaled (SEDDs), CEDD and CEDD* in terms of genera-
tive perplexity.

Model (Absorb) GenPerp Fl32-GPT2L GenPerp Fl64-GPT2L GenPerp Fl64-LLama8B
SEDDs L=128 79.74 166.35 206.34
CEDD* L=128 72.13 143.86 183.74
CEDDT L=128 74.07 154.04 195.41
SEDDs L=1024 40.95 105.27 111.87
CEDD* L=1024 40.93* 101.83 107.32
CEDDT L=1024 42.18 108.88 115.60
GPT-2 L=1024 41.02 41.02* 50.25*

Table 10: Correction accuracy percentages. 50k training iterations, batch size of 32 and L = 128.

Model (L=128) CEDD* Uniform SEDD Uniform CEDD* Roulette SEDD Roulette
PAP 90.7 89.9 90.8 87.9
CAP 91.2 90.3 91.3 88.6

Table 11: Percentage of mistakes corrected for additional models. 25k training iterations, batch size
of 32 and L = 128.

Model (L=128) PAP CAP Model (L=128) PAP CAP
SEDD Roulette 85.1 85.8 SEDD Uniform 86.9 87.5
SEDDs Roulette 86.5 87.2 SEDDs Uniform 86.4 87.1
CEDD Roulette 88.9 89.7 CEDD Uniform 88.5 89.2
CEDD* Roulette 89.7∗ 90.3∗ CEDD* Uniform 89.5 89.5

Finally, we provide results (Table 12) when comparing CEDD* and Discrete Flow Matching that
utilizes corrector sampling with the probability velocity vit(x

i, xt) = αtû− βtǔ, where ǔ(xi, xt) =
k̇t

kt
(δxi

t
(xi)− δm(xi)). We used αt = 1 + αta(1− t)b for α = 1 and a = b = 0.5. To compute the

perplexity bound eB we utilized Equations (20) and (21) from Haxholli et al. (2024), and derived:
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L

∫ 1

0

∑
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i
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i
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)
+ (175)

αt
k̇t

1− kt
(1− pi1|t(x

i
t|xt; θ)) + βt

k̇t
kt
δm ̸=xi

]
dt. (176)

We used kt = t and noticed that by increasing α, generative perplexity improves but the quality
of samples is reduced, to the point of generated sequences becoming simple repetitions of symbols
and rare tokens at α = 10000. This implies that α might modify the temperature of sampling. In
addition, the measured perplexity bound quickly diverges to infinity, as α is increased.

Table 12: Generative perplexity was computed using GPT2 large, and sampling was performed at
Float64 precision.

Model (L=128) GenPerp LAMBADA WT2 PTB WT103 1BW
SEDDs Absorb 166.35 67.05 69.37 208.69 69.17 83.87
CEDD* Absorb 143.86 64.60 65.04 192.99 64.69 79.81
Discrete flow kt = t 145.48 71.90 71.20 221.15 70.84 82.63
Discrete flow kt = t2 152.70 72.31 72.87 215.30 72.55 85.82
Discrete Flow Correct 143.38 114.40 113.05 352.32 112.87 130.41
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C GENERATED EXAMPLES

C.1 GENERATED TEXT

Listing 1: Generated texts from Absorb diffusion trained using CEDD, L=128.
Any version of the bundle allows corruption. The campaign was delayed

a year from testing ground, and because of other deficiencies.
Perhaps this can be used to inform all the Xbox One games come
with the same package. Whilst there will be no problems, there
will probably be no corruption price-wise and we can expect the
same with one Xbox One game package at the same time. My opinion
is a solid one. Let’s assume Japan as the entry point in the
entire country, and PS3 probably supports only one of these. It is
effectively competing (see video) against hardware arcade titles

such as PS4 or XPS4 as well
======================================================================
his Achilles. I was ecstatic to be able to watch every one of them

and keep them healthy tonight. You can look at the building
blocks in college basketball, see that they play very hard and
maybe feel superior to somebody. In my gut, however, you can
argue that the one-year early good contracts come back and have a
point. There has been a slight step-off with John Wall, which
was a bit short on my mind. I now know Wall will be listed on the
waiver, but I believe with Vic Beasley and Louren Maye this
season, those two, with some really good shooters on the floor,

======================================================================
times when it is vital for Scotland’s health and welfare The HRH

Statement of Purpose and Development (SSTO) provides a framework
for the government’s creation of the Future of Europe as a single
body independent of Scotland’s national welfare system. The
government’s own intention is to actively develop its vision for
the UK’s welfare system based on its very nature and how the set
of policies and key principals of the forum was established.

The Future of Europe Working Group (STO) Omissions of the UK Council
on Europe’s Audit Office (œsivishig

======================================================================
they go along with so many top players.

LAM: The lot of people in the parts they lose over are now than Jose
Lopez, but if Affaar buys you deep and cheats Howard, Charo Colave
, Bradley Donaldson, along with the rest of the opponents, we can
see some of it.

LAM: With Santiago Ronaldo in South Florida. Vazal and Pedro Morales
playing well, they don’t help us.

LAIDHUL: And you can actually tell which sides are being switched. Of
three moving sides can be quite accurate.

A pawn,
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Listing 2: Generated texts from Uniform diffusion trained using CEDD, L=128.
is to facilitate market conditions in jurisdictions. Also, not unlike

that elsewhere where in terms of lack of in-house attorneys with
no background qualified, or are looking to become in England and
the whole country in the U.S., Arizona, New England, California,
Connecticut, New Hampshire, New York, Massachusetts, Baltimore,
Buffalo and Philadelphia, there are price measures set to rise to
the model. And they come in handy as there are extraordinary
levels of price in commodities, like alcohol and other drugs.
Bankruptcycy approached, savings rate rigging now make even more
dangerous. With broadest institutional licibility assets to sell
and demand a

======================================================================
aircraft, under the Mohammed Boland project.[28][30][31] In 2010, the

government collaborated with Oquantasch states hoping to build
the first pilots and aircraft carriers,[33][34] announced that on
16 October they decommissioned 25 acres of the Mozambique
plantation leased by a Boeing 737, including several African
pilots whom have been imparted on Brazilian soil and ended in. A
military expedition - along with the arms embargo and tax evasion
- has been delayed until federal Unabloprevalence halted part of
the construction.[22]

Engineer units, and airport infrastructure [ edit ]

The
======================================================================
scene. Though a woman called, saying that whether it was being on the

suspect’s video is not the answer, Desiling says an undisclosed
number were present at the mall, and that the police were ready.

In the end, two shoppers, Florimore, 27, sprinted outside the
convenience store after struggling with downpour to get inside the
shop.

When Florimore left the restroom at the store, Zimmerman entered the
vendor’s cell phone on Sunday and secured her keys Saturday,
Desiling said. He helped he lock a key before being used to
contract it. After the taped encounter with a current Illinois
Bureau of Police

======================================================================
, some of which were then scrutinized by the Bernanke Advisory

Committee led by Michael Corm.

The U.K. Fed, eager.

Aboard all his most extreme concoctions careening the populace soon
queued a shaky living net following weeks of the disastrous fiscal
mess caused by the housing crash and the impending collapse in

mortgage payments.

Can’t anyone manage to usher it all the way. A savvy government could
build "a serious living net - and that is much less than immediate
relief." Instead of achieving a 50 percent reduction in mortgages

, anyone at the Fed’s table did it:
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Listing 3: Generated texts from Roulette (0.95) diffusion trained using CEDD, L=128.
deeper problems caused by America’s growing deficit, and by our

rapidly growing economy. The same was true today when the only
way to undermine the nation’s welfare was in a virtuous cycle of
austerity, stimulus and lavish budgets. And the scorching reality
, especially for millions, was that "every man is the child of
his parents’ mother"-not only abhorrent problem was the working
age in Washington, which only saw 44% of the population working
in the same household as network leaders and 79% of the workforce
in their industry. We tapped these network leaders in polls on
Election Day, causing favorable results

======================================================================
other federal government agencies had far greater control over water

industry regulation. Today, drilling wasn’t the equivalent of the
Environmental Protection Agency championed since former
president Ronald Reagan put Sen. Scott Desmond (CDE) on top of
the Environmental Defense Agency, with a more funding area and
rural programs under permit.

Like Moore, who spent so many a million dollars on his calls for the
president to institute environmental protections on public lands
and national parks, Trump himself had a nice shot on drilling,
saying: "As passionate about the fight for property owners as we
can be right here for Trump."

Canada XL - No
======================================================================
Mistress: Next day next step, next step!" He’s reply must not be

translated. "What is - Guy’s Your pronunciation? You still don’t
understand. Why am I saying that, don’t mind: I’ve moved on to
full set). Fitch word for move. Hey, that must have been long ago.
What did you do going into our meeting? Everything changed, the

rules changed... and you all admitted that Grand Auto Auto wasn’t
going to work, but you did. I need to know it. You’ve been in
reference for the book, Notice."

Don’t ignore him. He can’t
======================================================================
like low income earners, raising the tax on below.

All Part D credits forgiven by at least twenty-one percent paying
income tax, and no state interest payments to help the health
insurance guarantee. If owners pay the credits, they spend money
they owe on each payment, either. A fifth of incomes will pay the
credits.

While it’s perfectly up to the type of hardship, people can apply
state or federal assistance to the credit program. It requires
people to sell health insurance. The credits qualify and vary from
individual person to enrollee.

Having decided to pay their state income taxes on the bill, a single
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Listing 4: Generated texts from Absorb diffusion trained using CEDD*, L=128.
boat men: drift, and boom. Built, three 9th sailors found themselves

losing an average of 12 inches of the underwater 50 feet in the
delta base of S. M. Gielker Jr, U.S. captain (and pilot for the 11
th Brigade), sailed deep into the canal on a watchdeck with his
bow of thumb and lost at his anchor near shore.

Importantly, future "adillists should consider the alarming
consequences that[t]here in the future the current rapprochement
of the 9th would be had on the children of all areas of the coast
," re-ferenc

======================================================================
the world’s private space program." (This mission, in James’s words-

rust is laced and revisited to the down-space fall and the
commercial foundation-and eventually-software portable to what
Lotus’s proprietary operating system does now-and also new
hardware-serves, itself, as a collective organization rather than
a fragmented, coordinated copal: "NASA loves the space community
at large.")

James retired as CEO on the company board in 2004. And longer,
Planetary Resources’s judoided business model is intimately linked
to his own organizational record and by

======================================================================
engaged in hacking American government and stealing cyber defense

secrets from its political enemies.

"We know today that the celebrity and his partner in the leaks
incident to WikiLeaks produce the true story about our government,
content and the data shared by our intelligence services, and

deserve accountability," said Mark Warner, Assistant Attorney
General, at the key E.C.C conference on Wednesday in Washington, R
.I. "In this case, the battle #WikiLeaks against WikiLeaks has
touched both at a new level for the country, and finally has
turning historic date.

"Our government has been without the power to hack
======================================================================
non-committal after the third GOP debate.

Gia had already just commented on the upcoming status of her project
on CNN, after Trump repeatedly asserted it would discuss politics
for the first lady.

Trump said, "Look at this, on my part of Hillary Clinton, the mad
country," Garcia continued.

"I took my position in a way President Trump didn’t have before
speaking :], he said it. I admitted some of those things, finally
understanding that I stood for Oh Hillary as a businesswoman," she
continued.

Garcia made the comment after training herself in Melania Trump’s
Daily
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Listing 5: Generated texts from Uniform diffusion trained using CEDD*, L=128.
the Registration of the Bank of Development despite the skills of

Arasan Sance. unemployable novice is in high regard for Swatch Up
Worker as there are large scale projects bylaws that have
already been difficult in the sector.

Caught diving too deeper, Arasan Sance had a career at IIT built on
Year Up in Science at the Wood,, Theatre during an instructor
class at the university in Banance in 2017. The guide says that
some jobs may have been finalised and it was understood well that,
if efficacious, McCarley could decide to be invited to a perhaps

larger as academic class.

======================================================================
strength of subsequent fitness genes from mitochondria after

maintenance of. This type of transition is called exalted
mitochondrial, and although extended to long a feat is indeed
amolecule strategy that requires stringent tests in selective
binders.

In particular, one that abundant, modified mitochondria can enable
recovery; first they produce mitochondria which is attached to the
fuel cell, is rapidly moving essentially back to normal form,

transitioning from the atrophy to a more muscular phenotype.
Mitria such as L1L protein A (C1A and transporter R (Anaris-in
proteinase), as NAD is used as an adaptation strategy, like many

======================================================================
how things were in the later years. The truck was littered with a

black pepper. It was overflowing with halal green and mo yellow
corn pepperoni and a charcoal plate.

Pictured used to have a baseballs encased in the front driveway with
the sports hooders. Guy’s black ores tip, black bean bag, silver,
cherry, and granny banger was ricocheted, and when the Appomeess
the Chinese bullfly rolled me over to the Morrissey. O 44,
everything fresh and natural were just different from those in
earlier, inscriptions. This guy’s big white hooded or blue jacket

======================================================================
idea of increasing momentum, however, is to slow down a quarterback’s

strength. His is in the midst of a slow renaissance with the
team’s ensuing 17 games, but it is aging one who is getting the
effectiveness of missing Greg Jennings and injuries. That this
crucial area comes as the 49ers failed progressual Mac is forcing
his fades down instead of sticking fully - unless he is getting
better.

The Jets is approaching the top-10 in front but, as soon as they fill
it in, an underdog-Dish seems to benefit from this slight fatigue
in their upcoming game.

Negvious Matt Miller
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Listing 6: Generated texts from Roulette (0.95) diffusion trained using CEDD*, L=128.
such fraudulent statements and denials as, "the truth lies," and "

white lies" could never be trusted. More than one among you have
just known Williams about.

Many are the fictional experiences Williams shaped, in ways that
embodied him in a generation. The Tielemin figure in James Joyce’s
white character largely was based on male gaze and information

and, from Williams’ perspective, reflecting to the lens on men
from a different time was disappointing.

Williams’s material images of how, in essence, we had occupied a not
present world: beaten, destroyed, marginalized or

======================================================================
an attempt to fully realize the potential for pedestrian safety where

there is no dearticulate conduct for the traffic.

His own current plans, for which Lokxelli is the secretary of the
planning drove changes with little progress through traditional
detours as of late. "Not highways, but others are up quite a bit,"
Akka forecasted "to make sure that one imp is not going to get
torn. How to do that away from what it is becomes when much faster
roads occur. There is all going to be of no serious consideration

, at present, either in design or perspective."

======================================================================
mad over and watching him laugh loudly enough to say so, and my point

is that it’s not just that I am not displeased with a politician
or a CEO, that I think people looked in their shoes and paid
well."

To see countries that see relevance to the show’s multimillionaires,
including so frustrating the small smile in the face of the world,
Thomas Archifelius applied, but wanted to represent the image of

man keeping ignorant out his protectionist mission.

ARTICLE CONTINUES BELOW

GEORGE STEPHANRAD: In a few weeks, Papacuzzi and so did Paul
======================================================================
and made fun of the tactic. They acknowledged was just silly. Indeed,

shortly after the books, a real Western painter and fellow
broach type, said, to another wood miller, "he’s straightened a
nose. Skeptic got a hard chin and flies in the back." The winced
to me is that you’re a courtesan. You’ll know what’s up for you<|
endoftext|>Get it done. Your friends will never see it

Parents of kids and old owners dogs yesterday said they are going to
miss president-elect Donald Trump’s look, ’Loving’ for
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Listing 7: Generated texts from Absorb diffusion trained using SEDD, L=128.
likely to be the fact that Nephi calls God’s beloved "The Synod Word

," a difference when it translates to an accident.

As viewers know, an Andesad man and his wife will never meet in Nephi’
s time God begins to connect with others, Le Burkert said.

Source: Bonuses de jeunee included<|endoftext|>The concept of
attunational fit occurs from the presence of perceptual
experiences on the cortex of the brain, as exposed recently by
research by senior Prof. Linda Perriene.[1] Since personal dynamic
patterns don’t exist within human subjects, cortical memory is

often cognitive
======================================================================
will look like a target.

97) J.O. Do you think of as a White House national coordinator as a
Clinton political operative? Kitty|O. I sort of’re still up-the-
table the White House. P.O. That person who refuses to have the
same meek with a client with concerns/lives just pretty boycotted
by pulling off in the relationship. Glad let’s get that out of the
way tonight and point out his ability and his job promise.

98) Next to the President - David Grimsnek | In at least 100 years
George W. Bush has

======================================================================
last month invested in Ria Louise, New York through a wealth of $7

billion this year.

Meanwhile, the committee is a part of Katzman & Girle Service
Conference, the firm that licenses the annual facility. Frisco
visits to CraftEarlier this year.

"We newg CraftyTags for philanthropic, recovery, trust, and use of our
services, with immense support from federal government, Mossody

said.

Under the partnership, Neoneys also is working on expansion as a
partner among other not-for-profit resource providers, with an
increasing amount of resources and core services covering

======================================================================
at least one, but nothing qualified from any perspective they could

be offering them.

"The response was from a very recent comment made in blue material by
the public but it was decided ahead of time," Smith writes of the
public’s prurient. So we’ve found that a long and full response
excludes the ones who didn’t believe the policy would meet the
government’s standards for proof and hold."

Sure enough, their apologists could do what they want on hard science.
But that being said, they’d like some insights into scientific

ethics and
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Listing 8: Generated texts from Uniform diffusion trained using SEDD, L=128.
can generate a json of the library based on which one exists for the

scenario instance.

<?php G require JetlinkViewer :: create ( ePub : ’Whu )’ d. add(): c.
app (). head () //Outputs from Sub_select from Google = str__ (
http://www.google.com ); //Add it while that function starts down
the path and results.Usingjson */ }

In order, Node handles repos(), several usable implementations in Mesh
.js have been tested.

The JavaScript library actually has dire explanation for itls: it does
not, but unlike

======================================================================
using you or they use you taking people out to catch you or whatever.

That was wonderful because of the ways I look. I had gone from
anywhere from 20/22 here to 40 years old to 50/50. I also grew up
feeling. ’True Blood Baby’ has gave me a lot of body movements
... that’s got me right there and I used to pop their first
transformation. That show."

My sister really grew up as a nairety boy. Thrones in a while? No, it’
s only sometimes, and since older people might even see us for 15
days or 30 days per night, how long they

======================================================================
, but the ban on kidnapping remains the only difference.

Seyer has closed the case in a court letter seeking a response.

For more on the arrest video visit your Confused TMZ app page.

Updated Sept. 24, 2013. Tribute to Lawyer R Harrison.<|endoftext|>Gils
Dahman is starting his season with the Red Bulls Crystal Palace.

The midfielder rounded out his fifth season in the United States,
missing three league meetings at U-a.

You can watch the interview with the media below. You can see an image
for the camera below.

Gils Dahman has started
======================================================================
Girl"). The earnestness of the ensemble is random, cheerful though

frustrated with both the actions of themselves and the different
perspectives on their journey. This classic masterpiece-writing
in sequels and his imagined form of movies-is the tale of cinema
that still has had aesthetics and is able to grow. But it also
sees the fall of the film genre-though very serious yet complex-
so we see a live show that can also find places lost by leading
the way to work around intersectionality, where the lineage of
Reed and Dormedy ("Iron Man" though) is applicable-and that she’s
starting
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Listing 9: Generated texts from Roulette (0.95) diffusion trained using SEDD, L=128.
its own territory. All the European Union as well as the U.S.

government, including the British East Company, were issued coins
to the Federal Reserve and a few days were in the open to
support a foreign buyer. President Lee had adopted law rejecting
donations from the country’s tax code, preserving the spirit of
the Constitution of the 1870 Act of self-rule in South America.
In the caddition of the British banking system, the American Mint
provided the first ammunition and smuggled guns to Europe.
Nonetheless, a serious problem: the Union was secretly armed anti
-communists with a formidable internal authority. The union
government was

======================================================================
to blame?

It’s full of wrongheaded sheen and bears expressions and carries a
similar light ending. I’m not turned off on that Craig’s Edge of
Truth NYC guide if I don’t see something wrong going on and do the
right thing.

What’s different about another story that can somehow tell the tale
unfolds in Chicago so well with the ppl being approved by the
General Service.

Like an Independent. Right? All right.

What Happens?

A Licensed Reader keeps all relationships private. They have no
precedents. By all things

======================================================================
result it couldn’t publish it.

No, my work is not the best way that all of us can be at home with the
poll results. I acknowledge you believing it, and doing this poll
is going to have to happen to make the difference.

But again, we are honestly happy with the results - let’s see. We
could not vote from all the experts - but that still could happen.
What’s your opinion on that debate?

The other most annoying - but the most upset is #MSNBC. In the Wall
Street Journal, people called the polls slow Gore down, saying
that even the ABC thought

======================================================================
, 400 times the base capacity there has been priced to four. And now

another station can do the same for capacity with two other lines
to 1 per cent of the power meter factory circuit which also costs
to $56 million for cancellation.

The next debate is on the schedule, but may not happen in late 2017
without major delays.<|endoftext|>The French media reports that
Chinese technology firm EtApple has today started claiming that it
has all given back, in its software, a return to earlier this

month’s SmartEasy payment processing that will simply payment it
for most Chinese users. And based on recent developments, the same
company is sending
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Listing 10: Generated text from Absorb diffusion trained using CEDD*, trained L=1024.
two days later meeting with the Governmental Affairs Committee next

Tuesday, replacing the committee’s naps with an informal
discussion.

In his Thursday hearing, Sessions said he had been "used" into
criticizing the CIA.

"There has been some degree of transparency in looking at but that’s
not going to come cheap for himself or the American people, or
really to undermine his independence, which I think, despite being
in various positions, I’ve been very, very clear on the matter of
that. I would be angry or very upset about that," he told

senators at the meeting. "But I think as we go into Wednesday, and
the United States Cabinet are finding ways to make very clear to

citizens that they will respect that system."

Several high-level officials also called the appointment, saying it
was "a bit of a quirk" since a revolving door of offices such as
the CGA is already running rampant and has yet to hold any
hearings.

"We’ve seen people make fairly much of their career life from the
Justice Department out of this," said one GOP source. "And I don’t
think that choice is appropriate when that’s a government entity

that has given up a lot of accountability claims."

Speaking after noon another Republican member of the Senate Commerce
Committee told. Todd Risch (R-Idaho) however, how he thought about
Sessions, "and honestly, I didn’t see a whole lot of discussion

at one point suggesting a tone - a tone. There has been a lot of
change since the removal of some five of these people ... I mean,
I want people to find out that respect goes to the leadership of
their department, and I’m not sure it’s nice to move on down that
precipice."<|endoftext|>When you try to put any pressure, you put
more than the Pacers into you love watching. Before the Boston
Celtics come to their games against Washington with.500 records on
Tuesday night in Pittsburgh, you will likely watch a five-point

game between Brad Stevens and Antetioun Gouden. Hollis have fourth
-most competition in the game overall (49 points per game) but
before games start their season of over 14.5 points per game has
already passed.

That led Boston to an early 2-1 deficit.

No, not really. In addition to last season, however, the Celtics
really struggled during the Wizards’ first year of the NBA. For
only the first 24 minutes, Washington had 18 minutes their D-man
shooting guard who averaged at least four points, and as he
chipped in another 11 points on at least 10 fourth quarter
quarters Boston was outscored in the paint on five four-point
shots, including two-point turnover margin.

If I included Stevens and Horford scoring 18 points in the only fourth
quarter quarter from the paint, it would have probably been 2-1,

and in the second-half-first quarter at half-time it would have
been a 9-2 game thanks to the disastrous fourth-quarter
performances. Yes, the Celtics have been unable to pull the ball
away from us in the paint over the fourth quarter, but their
success was probably in spite of the bad 2s, otherwise, our
defense was weak.
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Listing 11: Generated text from Absorb diffusion trained using SEDD, trained L=1024.
.

The principle of selling for a period of energy will make the most
sense next year, as Tesla’s record rapid sales may be sluggish but
demand lives on.

Tesla Motors Corp’s CTO Carl Conti said beginning a new conversation
with Tesla about the future state of its workforce in 2014 may be
a part of its strategy in which as the company races to reduce its
price of luxury vehicle deliveries, the first units that get to

market again in earnest are expected to begin to get "next level,"
he said.

AP Photo

"I appreciate [the] ideas. These are not a fast break, but are ways to
strengthen the margin at least knowing that if you get the right

timeframe you make, its way ahead," Musk told reporters at The New
York Times over the past month.

"None of these people have looked toward [s]ourcing the cost or the
increase of the vehicle, unless you see it as a downward spiral,"
he said.

Although Musk and other executives point to one to two auto drivers
and a net purchaser of gasoline or other, the company’s strategy
is that a reduced price for vehicles will outstrip some of those
buyers, Conti still said.

Conti said the price of Model S is projected to fall by at least a 33
percent decline rate in 2015, on average. Conti expects Tesla
expects 58.5 million to 59.5 million in 2015 and also for an
average 15 percent decline to rise to February.

For the Model S, by contrast, Tesla’s are expected to reach a write-
down of about $500 million to 2,000,000 EVs in September and more
than 700,000 currently, he said.

The first Model deliveries of the year is expected to nearly begin on
March 22. That price is heavily influenced by dealer monitoring
that includes a total inventory of 600,000, with 400,000 delivered
next month, Conti said.

He noted Tesla expects its predicted upward trajectory to increase by
2.4 percent by 2015 as production in Australia and China
accelerate to 4.6 percent next year, respectively.

Musk also noted in The Wall Street Journal that while Tesla expects
more than three consecutive in production next year, it will
production a total of $8 million in U.S. roll-backs in the fall.

He said he has settled on a key question about the car: "If a customer
needs it and is willing to pay the rates that we can keep things

moving, then we ought to consider adding incentives for it."

"The price of Model S expectations for production is a driver’all,"
Conti said. "When the profit is available, it means a car is not
in its pocket. We are seeing this as a very good time after Jan.
31."
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Listing 12: Generated text from GPT2, trained L=1024.
power well past the NPC versus NPC meter for each unit type. Their use

is varied, and thus allows for a considerable amount of
flexibility with The Banner Saga, but whether you prefer your
parent’s roots to stay part of the community -- with allies
everyone can fight and help each other -- remains to be seen. For
that, you can always pick the steam community tab (not required,
that’s how the game is named -- no one likes spamming themselves
for news now, I know).

However, you agree to terms of service that you agree to disable your
favorite kind of multiplayer games (by default) to prevent
unwanted conflicts: factions are only listed once in a game and
cannot be disbanded or changed just because of a non-friendlier
fleet. So it’s a pretty straightforward, fairly simple toggle to
get used to.

Ugh, it sounds like the HUD might get progressively messier as the
game ends.

Shields charging slowly: active shields last several minutes, recharge
fully in seconds, and charge every second they charge.

Shields wearing’shield’ else doubles their size, can clip high above
their skull, and are invincible to all other shields around your
ship that border the shield and can deploy wall-mounted shields.
Other shields like this one can only be used to shield the next
vessel. Hit someone on the Pustules to activate shield shields. In
an expedited, non-lethal, coordinated confrontation, it is fairly
easy to compare stats to each shield for a ship to use.

Shield minus shields compensation: up to five shields are held at rank
2 in your ship’s shields. It’s called ’delay,’ but with a ton of

fancy commands on screen, you don’t have to know (or even see)
their context or employment to make sure to compensate for some of
the distortion inherent in that bit. Seconds before your shield

starts charging (just seconds before it behaves like hiring
another worker), the timer will start running indefinitely, which
means shields can snap to the back of your ship if kept as low as
possible. Avoid collisions caused by instantaneous cap.

Shield halves that match the length of the ship’s hull: you can
control the range between Shields, such as your Private Capital
Signatures, where the ship’s bulletproof liquor clock is set at
half-space and your Heavy Construction Band Bump the Game’s Game
soundtrack to Fade let the corp count (if the corporation has
sixty transports within one day of being prepped, it’s probably
already pretty close to ten minutes, but your mission selection
loading speeds will be holding it back a little).

Surrounding explosions moving over the bow: it’s deceivingly easy to
line up targets like an Infallible Surface projection theater
Explosion shield room high up in the sky: fire teams can run
together and mean to demolish their own low-flying illions every
once in a while, yet closely follow their targets like shadow
warriors to the detriment of themselves. Covertly set to’square
hit’ for easier customization, Ubisoft’s new ship weather HUD is
the key to spreading effective damage throughout the entire ship
using the standard meteorological updates.

Shaping your space: shape each bridge to create low-risk rockouts or
pathogen/addage paths. This may be tedious, but it actually
whizzes through by itself while simultaneously adding damage to
giants mercenary ships.
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D CTMCS PRELIMINARIES

D.1 DISCRETE-TIME MARKOV CHAINS OVER FINITE-STATE SPACES

A discrete-time Markov Chain in a finite-state space is a stochastic process X1, X2, . . . , XT , where
each state Xt depends solely on the preceding state Xt−1. The states Xt can take on any value
from the set {1, 2, . . . , S}, where S denotes the total number of possible states, and T represents the
number of time steps. The probability of being in state x at time t is

pt(Xt = x) =

S∑
y=1

p(Xt = x,Xt−1 = y) =

S∑
y=1

pt|t−1(Xt = x|Xt−1 = y)pt−1(Xt−1 = y).

(177)
If we place all such probabilities pt(Xt = x) in a vector st of shape S × 1, such that st(x) =
pt(Xt = x), then from above we can deduce that

st = Pst−1, (178)

where P (x, y) = pt|t−1(Xt = x|Xt−1 = y). Given an initial probability distribution s0 over states,
the equation above fully determines the evolution of the probability over states with respect to time.
If it is known that the state at time t− 1 is y, then st is simply column y of P . This implies that the
sum of the elements of each column y of P is one.

D.2 CONTINUOUS-TIME MARKOV CHAINS OVER FINITE-STATE SPACES

It is possible to define a stochastic process with the Markov property in finite-state spaces, for
t ∈ [0, T ], (Anderson, 2012). As previously, we can define a discrete-time process, on time points
{0, ϵ, ..., T − ϵ, T}, such that there is ϵ probability of activating the previous transition mechanism
when progressing from time t − ϵ to t, otherwise we stay where we are with probability (1 − ϵ).
Removing the random variables to simplify notation, we have

pt(x) = (1− ϵ)pt−ϵ(x) + ϵ

S∑
y=1

pt|t−ϵ(x|y)pt−ϵ(y). (179)

We notice that when ϵ = 1 the equation above coincides with Equation (177), and in addition as
before we can write Equation (179) in matrix form

st = (1− ϵ)st−ϵ+ ϵPst−ϵ = (I + ϵ(P − I)) st−ϵ = (I + ϵQ) st−ϵ , where Q = P − I. (180)

From Equation (180), we see that st−st−ϵ

ϵ = Qst−ϵ, which when taking the limit ϵ → 0 becomes

dst
dt

= Qst. (181)

Given an initial probability distribution s0 over states, the equation above fully determines the evo-
lution of the probability over states with respect to time. Indeed, the distribution over states at time
t is the solution of the linear ODE in (181): st = etQs0. Therefore, if it is known that the state
at time 0 is j, then st is simply column j of etQ. Naturally, one can rescale the time variable such
that t = σ(t), where σ is monotonically increasing, σ(0) = 0 and limt→1 σ(t) = T , so that for
z0 := s0, we get etQs0 = eσ(t)Qz0 = zt, and

dzt
dt

= σ
′
(t)Qzt = Qtzt, where Qt = σ

′
(t)Q. (182)

Matrices Qt = σ
′
(t)(P − I) clearly satisfy the properties of transition-rate matrices (Suhov &

Kelbert, 2008). Matrices Qt are chosen such that: a) the matrix exponential eσ(t)Q is easy to
calculate, which is essential as pt|0(x|y) = eσ(t)Q(x, y); and b) z1 is an easy reference distribution
to sample from (Austin et al., 2021; Campbell et al., 2022).
Finally, similar to diffusion processes in continuous spaces, the continuous-time Markov chain in
Equation (182) also admits a reverse process (Kelly, 1979; Sun et al., 2023):

dz1−t

dt
= Q̄1−tz1−t, (183)
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where Q̄t(x, y) = Qt(y, x)
pt(x)
pt(y)

for x ̸= y, and Q̄t(x, x) = −
∑

y ̸=x Q̄t(y, x). Since we can
easily sample from the reference distribution, the only unknowns preventing us from being able to
run backwards are the ratios pt(x)

pt(y)
also known as concrete scores (Meng et al., 2022), which we

desire to model using a neural network. Once such ratios are modeled we can generate samples
from the learned data distribution pθ0 by discretizing Equation (183) as follows:

p(xt−ϵ = y | xt = x) = δx(y) + Q̄t(y, x)ϵ+O(ϵ2). (184)
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