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ABSTRACT

Q-learning and SARSA(0) with ϵ-greedy exploration are leading reinforcement
learning methods, and their tabular forms converge to the optimal Q-function un-
der reasonable conditions. However, with function approximation, these methods
exhibit strange behaviors, e.g., policy oscillation and chattering, convergence to
different attractors (possibly even the worst policy) on different runs, etc., apart
from the usual instability. Accordingly, a theory to explain these phenomena has
been a long-standing open problem, even for basic linear function approximation
(Sutton, 1999). Our work uses differential inclusion theory to provide the first
framework for resolving this problem. We further illustrate via numerical exam-
ples how this framework helps explain these algorithms’ asymptotic behaviors.

1 INTRODUCTION

Tabular versions of value-based Reinforcement Learning (RL) algorithms such as Q-learning and
SARSA are known to converge to the optimal Q-function under reasonable conditions (Singh et al.,
2000; Jaakkola et al., 1993; Tsitsiklis, 1994). However, the story of their approximate variants (those
using function approximation) with ϵ-greedy exploration has been inconclusive. On the one hand,
these variants, e.g., the Deep Q-Network (DQN) (Mnih et al., 2015), have shown significant empir-
ical successes. On the other, there is also growing evidence of undesirable behaviors such as policy
oscillation, i.e., indefinitely cycling between multiple policies, or convergence to a sub-optimal or
even the worst possible policy (Gordon, 1996; 2000; De Farias & Van Roy, 2000; Bertsekas, 2011;
Young & Sutton, 2020). Accordingly, a mathematical framework to explain such behaviors and,
in turn, to identify conditions for some minimal reliability has been a long-standing open problem,
even in the basic linear function approximation case (Sutton, 1999, Problem 1).

By reliability of an approximate value-based method, we mean some basic notions like i.) stability,
ii.) convergence to the optimal policy when the optimal Q-value function lies in the approximating
function class, or iii.) convergence to a policy with a better Q-value function than the initial pol-
icy. Tabular variants of Q-learning and SARSA are reliable in all these three viewpoints under the
reasonable conditions that guarantee their convergence (see references above). Likewise, there are
sufficient, albeit restrictive conditions (Melo et al., 2008; Chen et al., 2019; Carvalho et al., 2020;
Lee & He, 2020; Xu & Gu, 2020) under which approximate Q-learning and SARSA with a fixed
behavior policy are reliable, at least as per the first two notions above. For example, these conditions
hold when the behavior policy is close to the optimal policy (the one to be estimated).

In contrast, we claim that the reliability of approximate value-based RL methods with ϵ-greedy
exploration cannot be taken for granted. To see this, consider Figure 1, showing trajectories of
different runs of a variant of DQN. This variant also employs experience replay and a target network
as in (Mnih et al., 2015), but uses a linear function instead of a neural network for approximating
the optimal Q-value function. The reduction in the approximation power is offset by including the
optimal Q-value function in this linear function class1. For all the trajectories, the starting conditions
are the same and set so that the initial behavior policy is close to the optimal policy, aligned with
the conditions in the fixed behavior policy literature. Thus, one would expect the greedy policy
along these trajectories to converge to the optimal policy. Surprisingly, we observe three different
behaviors: i.) convergence to a sub-optimal policy (red), ii.) oscillation between two sub-optimal
policies (blue, tail end) and iii.) convergence to the optimal policy (green).

1This is ensured by setting one column of the state-action feature matrix to the optimal Q-value function.
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(a) (b)

Figure 1: Trajectories of three runs of DQN on a 2-state 2-action MDP, with a linear 2-dimensional Q-value
approximation which perfectly represents the optimal Q-value function Q∗. Figure 1a shows these trajectories
in the parameter space. The parameters of Q∗ are denoted by the black star at (1, 0). The initial parameter for
all trajectories is the same (the black dot) and is chosen so that the initial behavior is the ϵ-greedy version of
the optimal policy. In this idealized setting, one would have expected all trajectories to go to the star. In reality,
all of them do converge, but only the green one has the desired limit (the initial fading of colors is for ease of
exposition). Figure 1b shows the greedy policies associated with the different trajectories. The limiting greedy
policy for the green trajectory is unique and is the optimal one; for the red, it is some sub-optimal policy. In
contrast, that of the blue trajectory oscillates between two other sub-optimal policies.

The above discussion along with those in (Young & Sutton, 2020) show that approximate value-
based methods with ϵ-greedy exploration can exhibit several pathological behaviors beyond the
textbook instability phenomenon (Sutton & Barto, 2018), raising serious doubts about their relia-
bility in practice. Towards addressing these concerns, a theory to explain the limiting behaviors of
approximate value-based RL with greedification is thus an extremely important first step.

Existing analyses based on Ordinary Differential Equations (ODEs) are of limited utility in building
such a theory. To see why, note that RL schemes can be viewed as update rules of the form

θn+1 = θn + αn[h(θn) +Mn+1], n ≥ 0, (1)

where h is some driving function, αn is the stepsize, and Mn+1 is noise. When h is ‘nice’ overall,
e.g., globally Lipschitz continuous, the ODE method is useful to show that the limiting dynamics
of (1) is governed by the ODE θ̇(t) = h(θ(t)) (Benaı̈m, 1999; Borkar, 2009). This is indeed the
case in policy evaluation. In value-based RL methods, however, h is quite complex, even with
linear function approximation: the update rules involve sampling from distributions which change
depending on the iterates. Accordingly, the ODE method has been made to work here only via
restrictive assumptions on the sampling distribution, e.g., fixed behavior policy (Carvalho et al.,
2020), near-optimal behavior policy (Melo et al., 2008; Chen et al., 2019), smooth soft-max behavior
policy (Perkins & Precup, 2002; Zou et al., 2019), etc. With ϵ-greedy exploration, the situation is
even worse since, as we show, the resultant dynamics also turns out to be discontinuous.

Key Contributions: The main highlights of this work can be summarized as follows.

1. Analysis Framework: Our work uses Differential Inclusion (DI) theory (Aubin & Cellina, 2012)
to develop a new framework for analyzing value-based RL methods. Our key steps include i.)
breaking down the parameter space into regions where the algorithm’s dynamics are simple, ii.)
identifying a DI that stitches the local dynamics together, and iii.) using this DI to explain the
algorithm’s overall (possibly complex) behavior. A DI is a generalization of an ODE which
enables this stitching by allowing for multiple update directions at every point.
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2. Explanation of Asymptotic Behaviors: We demonstrate our idea for a variant of linear2 Q-learning
and SARSA(0) with ϵ-greedy exploration. We show that the DIs uncovered by our framework
govern the asymptotic behaviors of these algorithms. Our work thus provides the first pathway to
systematically explain the whole range of limiting phenomena that approximate value-based RL
methods with greedy exploration can exhibit, and answers the question posed by Sutton (1999).
The Q-learning and SARSA(0) variants we study do not involve experience replay and the target
network as in DQN, but instead sample independently3 from the stationary distribution of the
current behavior policy. Our motivation for these variants is threefold: i.) the independent sam-
pling serves as an idealized replay buffer, ii.) their asymptotic behaviors are amenable to detailed
analysis, and iii.) they still show all limiting behaviors of the kind we observe in Figure 1.

3. Illustrations: In Section 3, we present case studies that isolate and spotlight the different types
of behaviors of the kind shown in Figure 1 (unique or multiple attractors, policy oscillations). In
each study, we explicitly describe how to identify the appropriate DI using our framework, what
the nature of its solutions are, and how they describe the asymptotic behavior of the algorithm.
In particular, we explain policy oscillation via a hitherto unseen ‘sliding mode’ phenomenon.

Related Work: Several works identify and report a variety of complex behaviors for approximate
algorithms. These include the classic example of instability for linear Q-learning (Baird, 1995) and
the phenomenon of chattering in linear SARSA(0) (Gordon, 1996) and its approach to a bounded
region (Gordon, 2000). Apart from these, De Farias & Van Roy (2000) show how approximate value
iteration may not possess any fixed points, while Bertsekas (2011) argues that approximate policy
iteration schemes may generally be prone to policy oscillations, chattering, and convergence to poor
solutions. More recently, Young & Sutton (2020) and Schaul et al. (2022) show experimentally
how a range of approximate value-based RL methods involving greedification exhibit pathological
behaviors such as policy oscillation, multiple fixed points, and consistent convergence to the ‘worst’
policy. Our framework helps rigorously explain all these phenomena.

On the theoretical front, while global convergence results exist for Q-learning and SARSA in the
tabular setting, their analysis with function approximation presents significant challenges. Even with
arguably simple linear function approximation, the general form of the iterations is nonlinear, and
there is no natural contraction or Lyapunov function structure that can be exploited. One prominent
stream of work focuses on extending linear SA theory to analyze Q-learning with linear function
approximation (Melo et al., 2008; Carvalho et al., 2020; Chen et al., 2019) and nonlinear (neural)
function approximation (Fan et al., 2020; Xu & Gu, 2020). However, all these works hold the behav-
ior policy fixed, along with imposing other conditions on it (e.g., being close to the optimal policy).
These assumptions effectively ensure that the resulting nonlinear SA has a Lyapunov function and
thus convergence guarantees. Another such notable work is that of Lee & He (2020), which uses
ideas from switched system theory to analyze nonlinear ODEs. This is perhaps similar in spirit to
our endeavor as switched systems are also useful for analyzing discontinuous dynamics.

There is also a set of analyses that apply SA techniques to study SARSA(0) with incrementally
changing policies (Perkins & Precup, 2002; Melo et al., 2008; Zhang et al., 2022; Zou et al., 2019).
However, these apply only when the policy improvement operator is Lipschitz-continuous, e.g.,
softmax, which ensures the limiting ODE is ‘very smooth.’ Our DI framework is rich enough to
handle even discontinuous cases, which is true, e.g., with ϵ-greedy policies.

Finally, we remark that a few complicated variants of approximate Q-learning have already been an-
alyzed using DI based approaches (Maei et al., 2010; Bhatnagar & Lakshmanan, 2016; Avrachenkov
et al., 2021). However, the need for using a DI there is fundamentally different to the one in ours (the
use of ϵ-greedy exploration). Maei et al. (2010) and Avrachenkov et al. (2021) look at variants of
approximate Q-learning with a fixed behavior policy that represent full gradient descent with respect
to suitably defined objective functions. A DI arises there due to discontinuities in the sub-gradient
of the max of Q-function estimates. In contrast, Bhatnagar & Lakshmanan (2016) propose a two-
timescale variant of approximate Q-learning where the max is replaced by a gradient search in the
space of smoothly continuous policies. A DI is natural there since the gradient search can lead to one
of multiple local equilibria. These differences make their DIs very different to the ones we study;
hence, these analyses do not carry over to the case with discontinuous behavior policy changes.

2Linear Q-learning (resp. linear SARSA) is Q-learning (resp. SARSA) with linear function approximation.
3Recall the main purpose for using replay buffers was to break correlations between samples.
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2 OUR FRAMEWORK AND MAIN RESULT

Take some function f : Rd → Rd and consider the generic update rule
θn+1 = θn + αn[f(θn) +Mn+1], n ≥ 0. (2)

The main steps of our framework for analyzing such an update rule are as follows.

1. Partition Rd into regions (Ri) over which f is ‘simple’: The word simple is subjective and will
depend on the algorithm and the tools available for analysis. For approximate value-based RL
methods with ϵ-greedy exploration, we consider regions where the ϵ-greedy policy is constant.
Under linear function approximation, f restricted to these regions turns out to be linear and
continuous. However, f changes discontinuously when we move from one region to the other.

2. Use the ‘Filippov’ idea to stitch the different f -pieces and get a DI: Formally, we combine the
different pieces via the set-valued map h : Rd → 2R

d

given by

h(θ) =
⋂
δ>0

co(f(B(θ, δ))), (3)

where co is the convex closure, and B(θ, δ) and f(B(θ, δ)) denote the open ball of radius δ
centered at θ, and its image under f, respectively. An intuitive explanation for h(θ) is that it is a
single update direction {f(θ)} within a region of the partition, and the set of all possible update
directions in the vicinity of θ at the boundary between two regions. This construction is standard
in control theory to handle discontinuous dynamics (Filippov, 2013) and ensures continuity of h
in a set-valued sense. The (deterministic) DI that captures the overall dynamics is

θ̇(t) ∈ h(θ(t)). (4)
Note that, unlike a differential equation, a DI uses ∈ instead of = . Further, the RHS now can
potentially be a set of several Rd-valued vectors instead of a singleton. A solution of a DI is
any map θ : [0,∞) → Rd that satisfies (4). However, unlike in ODEs, solutions of a DI need
not be unique. In fact, this is one of the primary sources for the pathological behaviors in linear
Q-learning and SARSA(0) with ϵ-greedy exploration.

3. Use the DI to explain the limiting dynamics of (2): Theorem A.1, taken from (Borkar, 2009;
Ramaswamy & Bhatnagar, 2017), gives a set of conditions under which (2) asymptotically tracks
the solution trajectories of (4). By leveraging this result, the limiting behavior of (2) is explained.

We now demonstrate the usage of our framework for explaining the limiting behaviors of linear
Q-learning and SARSA(0). We begin by describing our setup and these algorithms’ update rules.

Let ∆(U) be the set of probability measures on a set U. At the heart of RL, we have an MDP
(S,A, γ,P, r), where S denotes a finite state space, A is a finite action space equipped with a total
order, γ is the discount factor, and P : S × A → ∆(S) and r : S × A × S → R are deterministic
functions such that P(s, a)(s′) ≡ P(s′|s, a) specifies the probability of moving from state s to s′

under action a, while r(s, a, s′) is the one-step reward obtained in this transition. The main goal in
RL is to find Q∗ ∈ R|S||A|, the optimal Q-value function, associated with this MDP.

In practice, however, it is often the case that the state and action spaces are large. In such situations,
to reduce the search space dimension, it is common to try and find an approximation to Q∗, instead
of Q∗ itself. In this work, we focus on linear function approximation. That is, we presume we are
given a feature matrix Φ ∈ R|S||A|×d and the goal is to find a θ∗ ∈ Rd such that Q∗ ≈ Φθ∗.

Two algorithms to find such a θ∗ are linear Q-learning and SARSA(0) with ϵ-greedy exploration. To
enable a joint investigation, we build a unified learning scheme that includes the above two methods
as special cases. Let ϕT (s, a), where T implies transpose, denote the (s, a)-th row of Φ. Further,
assume that Φ and r satisfy the following condition.

B1. Φ has full column rank. Further, there exist constants Kr,Kϕ ≥ 0 such that ∥ϕ(s, a)∥ ≤ Kϕ

and |r(s, a, s′)| ≤ Kr for all s, s′ ∈ S and a ∈ A.

Next, let ϵ ∈ (0, 1] and πϵ
n : S → ∆(A) the ϵ-greedy policy at time n ≥ 0. That is, if θn is the

estimate of our unified algorithm at time n, then let

πϵ
n(a|s) =

{
1− ϵ(1− 1/|A|) if a = argmax

a′
ϕT (s, a′)θn,

ϵ/|A| otherwise.
(5)
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We presume that argmax breaks ties between actions that have the same value of ϕT (s, a)θn using
the total order on A. Since the state and action spaces are finite, the number of ϵ-greedy policies is
also finite. Suppose these policies satisfy the following condition.

B2. The Markov chains induced by each of the finitely many ϵ-greedy policies are ergodic and,
hence, have their own unique stationary distributions.

Finally, let ϵ′ ∈ [0, 1]. Then, given some initial estimate θ0 ∈ Rd, the update rule of our unified
algorithm at time n ≥ 0 is

θn+1 = θn + αnδnϕ(sn, an)

δn = r(sn, an, s
′
n) + γϕT (s′n, a

′
n)θn − ϕT (sn, an)θn,

(6)

where αn is the stepsize, sn is the current state at time n which we presume is independently sampled
from the stationary distribution corresponding to the Markov chain4 induced by πϵ

n, an ∼ πϵ
n(·|sn),

while s′n ∼ P(·|sn, an) and a′n ∼ πϵ′

n (·|s′n). Clearly, (6) with ϵ′ = 0 and ϵ′ = ϵ corresponds to
linear Q-learning and SARSA(0) with ϵ-greedy exploration, respectively. In particular, the max
operator for Q-learning is implicitly specified via the manner in which action a′n is sampled (from
an ϵ′-greedy policy). Note that by independently sampling the state sn in (6) from πϵ

n’s stationary
distribution, we ensure an idealized version of experience replay from the original DQN algorithm.

Next, suppose that the stepsize sequence (αn)n≥0 satisfies the standard Robbins-Monro condition:

B3.
∑

n≥0 αn = ∞ and
∑

n≥0 α
2
n < ∞.

We are ready to analyze (6). For n ≥ 0, let Fn := σ(θ0, s0, a0, s
′
0, . . . , sn−1, an−1, s

′
n−1, a

′
n−1),

f(θn) := E[δnϕ(sn, an)|Fn], and Mn+1 := δnϕ(sn, an) − f(θn). Then, it is easy to see that (6)
can be rewritten in the form given in (2).

As per Step 1 in our framework, we partition Rd such that the function f above has a simple form in
each region of this partition. For any deterministic policy a ≡ (a(s))s ∈ AS , let Pa := {θ ∈ Rd :
∀s ∈ S,a(s) = argmaxa ϕ

T (s, a)θ}, where argmax breaks ties using the total order. Clearly, at
each θ ∈ Pa, a is the greedy policy corresponding to the Q-value function Φθ. Alternatively, Pa is
the greedy region associated to a. For some a, it is possible that Pa = ∅. Nonetheless, {Pa : a ∈
AS} partitions Rd, i.e., for any θ ∈ Rd, there is a unique a such that θ ∈ Pa.

Let πϵ
a (resp. πϵ′

a ) be the ϵ-greedy (resp. ϵ′-greedy) policy associated with the policy a. It is easy to
see that πϵ

n = πϵ
a and πϵ′

n = πϵ′

a whenever θn ∈ Pa. Next, let dϵa denote the stationary distribution
associated with the Markov chain induced by πϵ

a. Then, when θn ∈ Pa, the expectations of the
different terms in δnϕ(sn) conditional on Fn are

ba = E[ϕ(sn, an)r(sn, an, s′n)] = ΦTDϵ
ar (7)

and
Aa = E[ϕ(sn, an)ϕT (sn, an)− γϕ(sn, an)ϕ

T (s′n, a
′
n)] = ΦTDϵ

a(I− γP ϵ′

a )Φ. (8)
Here, Dϵ

a is the diagonal matrix of size |S||A| × |S||A| whose (s, a)-th diagonal entry
is dϵa(s)π

ϵ
a(a|s), r is the |S||A|-dimensional vector whose (s, a)-th coordinate is r(s, a) =∑

s′∈S P(s′|s, a)r(s, a, s′), while P ϵ′

a is the matrix of size |S||A| × |S||A| such that
P ϵ′

a ((s, a), (s′, a′)) = P(s′|s, a)πϵ′

a (a
′|s′). Note that, when ϵ = ϵ′, Aa and ba are exactly the quan-

tities that govern the behavior of TD(0) with linear function approximation for evaluating the policy
πϵ
a (e.g., (Sutton & Barto, 2018, (9.11))). The f function can now be explicitly written as

f(θ) =
∑
a∈AS

(ba −Aaθ)1[θ ∈ Pa]. (9)

Remark 2.1. Note that f is discontinuous due to the presence of the indicator function 1. However,
in each Pa, it is the simple linear function ba −Aaθ; in particular, notice that there is no ‘max.’

Assume that the matrices Aa,a ∈ AS , satisfy the following condition (cf. Remark 2.5).

4At any time t ≥ 0, this Markov chain moves from state s to s′ with probability
∑

a π
ϵ
n(a|s)P(s′|s, a).
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B4. For all a ∈ AS , Aa is positive definite, i.e., θTAaθ > 0 ∀θ ∈ Rd (Aa need not be symmetric).

The DI from Step 2, i.e., (4), can now be used to understand the asymptotic behavior of (6). In rela-
tion to (4), we will say a set Γ ⊂ Rd is invariant if, for every x ∈ Γ, there is some solution trajectory
(θ(t))t∈(−∞,∞) of (4) with θ(0) = x that lies entirely in Γ. An invariant set Γ is additionally said
to be internally chain transitive if it is compact and, for x, y ∈ Γ, ϵ > 0, and T > 0, there exist
m ≥ 1 and points x0 = x, x1, . . . , xm−1, xm = y in Γ such that one of the solution trajectories of
(4) initiated at xi meets the ϵ-neighborhood of xi+1 for 0 ≤ i < m after a time that is equal or larger
than T. Such characterizations are useful to restrict the possible sets to which (6) could converge to.

Step 3 of our framework leads to our main result.
Theorem 2.2 (Main Theorem: SRI-DI connection). Suppose B1, . . . ,B4 hold. Then, almost surely,
the iterates of (6) are stable, i.e., supn ∥θn∥ < ∞, and converge to a (possibly sample path depen-
dent) closed connected internally chain transitive invariant set of the DI in (4).

Proof Outline. The crucial element in the proof is Theorem A.1, originally proved in (Borkar, 2009;
Ramaswamy & Bhatnagar, 2017), that discusses the stability and convergence of discontinuous
update rules such as (2) and their connections to DIs. The details are in Appendix A.

Remark 2.3. The almost sure convergence in Theorem 2.2 shows that the limiting DI in (4) captures
all possible asymptotic behaviors of our unified scheme given in (6).
Remark 2.4. If the only internally chain transitive invariant sets for the DI in (4) are isolated equi-
librium points, then (θn) almost surely converges to a (possibly sample path dependent) equilibrium
point. In that case, our generic scheme given in (6) will not exhibit parameter chattering.
Remark 2.5. Assumption B4 is for ensuring stability, i.e., a.s. boundedness of the sequence (θn).
For linear SARSA(0) with ϵ-greedy exploration, B4 follows from B2 (Gordon, 2000). For Q-learning,
B4 need not hold in general. In that case, Theorem 2.2’s claim holds a.s. on the event where the
iterates are stable: {supn≥0 ∥θn∥ < ∞}; see the first extension in Section 2.2. of (Borkar, 2009).

3 ILLUSTRATION VIA NUMERICAL EXAMPLES

We illustrate here how Theorem 2.2 can be used to explain the limiting dynamics of linear Q-learning
and SARSA(0) algorithms with ϵ-greedy exploration. Specifically, we consider a range of 2-state
2-action MDPs, whose rewards, probability transition matrices and state-action features have been
generated via random search (each MDP’s details, such as probability transition function, reward
function, discount factor, and the algorithm’s exploration parameter ϵ, are provided in the Appendix).
In each case, the MDP and features induce 2 greedy policies, for simplicity. Even in these ‘simple’
settings, we see that the algorithms’ trajectories exhibit complex and non-trivial phenomena. We
then explain their causes via analysis of the associated DIs.

A. Two self-consistent greedy regions – Multiple attractors. The parameter space R2 is parti-
tioned into 2 greedy regions (see definition of Pa in Section 2) Pa1

and Pa2
via greedy policies a1

and a2, respectively.

Let us call the point A−1
ai

bai
a landmark for the partition Pai

, i = 1, 2, where the Aa and ba are as in
(7),(8) (all matrices our examples will be positive-definite, hence invertible). The landmark A−1

ai
bai

is the (unique) point to which the ODE θ̇(t) = bai − Aaiθ would converge. Put another way, it is
the point to which the Q-learning algorithm would converge were it to always sample actions an in
(6) according to the ϵ-greedy policy based on ai.

The greedy regions in this example are both self-consistent. By this, we mean that each contains its
own landmark: A−1

ai
bai

∈ Pai
for i = 1, 2. The landmarks, along with their respective color-shaded

greedy regions, are shown as diamonds in Fig. 2a. Note that since each greedy region must be a
cone and there are only 2 regions, each must be a halfspace with the origin 0 on its boundary.

Fig. 2a shows two sample paths of the iterates θn of Q-learning (update (6) and ϵ′ = 0), with
ϵ = 0.1 greedy exploration, γ = 0.75 discount factor, decaying stepsizes αn = Θ(1/n) and an
iteration count of 20, 000, against the backdrop of the partition diagram. The starting positions,
marked with black dots, were chosen arbitrarily. Note that segments of a trajectory are often parallel
to each other, because the number of directions to move from an iterate is finite in a finite MDP.
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(a) (b) (c)

Figure 2: Trajectories under Q-learning. (Left) An MDP where function approximation in R2 gives rise to 2
greedy regions, both of which are self-consistent. The shaded areas represent the greedy regions, with the (self-
consistent) landmarks for each partition’s dynamics marked with diamonds of the respective colors. Two sample
trajectories of Q-learning, with a Θ(1/n) stepsize schedule, are overlaid on the partition diagram with their
starting iterates marked with black dots. The trajectories converge to any one of the self-consistent landmarks
(behavior). The differential inclusion here has only the self-consistent landmarks as its asymptotically stable
attractors (cause). (Center) An MDP where function approximation in R2 gives rise to 2 greedy regions,
neither of which is self-consistent. Two sample trajectories of the iterates of Q-learning, with a Θ(1/n) stepsize
schedule, are overlaid on the partition diagram with their starting iterates marked with black dots. The iterates
converge to a unique point on the partition boundary (behavior) The differential inclusion here has a single
‘sliding mode’ attractor on the boundary (cause). (Right) An MDP where function approximation in R2 gives
rise to 2 greedy regions, exactly one of which which is self-consistent. Two sample trajectories of the iterates
of Q-learning, with a Θ(1/n) stepsize schedule, are overlaid on the partition diagram with their starting iterates
marked with black dots. The iterates always converge to the unique self-consistent point in one of the partitions
(behavior). The differential inclusion here has a unique attractor (cause).

(a) (b)

Figure 3: Sample trajectories of the iterates of Q-learning and SARSA(0), with a Θ(1/n) stepsize schedule,
overlaid on their greedy regions. (Left) In the landmark structure induced by Q-learning, there is no ‘sliding
mode’ point on the boundary of the green and red partitions, thus the trajectories move towards the red land-
mark in this case. (Right) In the landmark structure induced by SARSA(0), there is a ‘sliding mode’ equilibrium
point on the boundary of the green and red regions towards which both trajectories move (see inset).

Though the trajectories may traverse both greedy regions, they eventually approach one of the two
landmarks (this observation remains true after several repeated trials). How can this be explained
via our theoretical framework?

To answer this, let us look at the DI θ̇(t) ∈ h(θ(t)) induced by Q-learning for this MDP, obtained
via (9). Specifically, h(θ) equals the singleton set {ba1

−Aa1
θ} for θ lying in the interior of the blue

region (say Pa1 ), the singleton set {ba2 −Aa2θ} in the interior of the red region (say Pa2 ), and the
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connected segment co ({ba1
−Aa1

θ, ba2
−Aa2

θ}) whenever θ is on the (1-dimensional) boundary
of the two regions. In this DI, each point in the interior of a greedy region suffers a drift ‘towards’
the region’s landmark. Points on the boundary, however, can be subjected to any drift in the convex
hull of the drifts induced by each partition’s affine dynamics at that point.

Theorem 2.2 says that with probability 1, the iterates must converge to an invariant and internally
chain transitive set of the DI. Recall that an invariant set I means that ∀θ ∈ I there is some trajectory
θ̃(t), −∞ < t < ∞ lying entirely in I and passing through θ at time 0. Roughly, for I to be
internally chain transitive, for any pair of points θstart, θend ∈ I , a closeness tolerance η and a travel
time T , we must be able to find a solution of the DI and intermediate waypoints in I such that the
solution starts close to θstart, ends close to θend, and reaches close to each successive waypoint after
time T .

Examining this DI leads to the conclusion that it possesses only 3 invariant, internally chain transitive
singleton sets – the 2 limiting dynamics points, plus a point θ◦ on the boundary whose convex hull
contains the 0 vector5 – for the following reasons. These 3 singletons are certainly invariant and
internally chain transitive sets, because for each there is a solution of the DI that always stays at
that point for all −∞ < t < ∞ by virtue of zero drift. It also follows that there can be no other
invariant set for the DI, because (a) any solution of the DI that, at any time, is in the interior of a
region continues within that region towards its respective landmark, and (b) any solution that, at any
time, is on the boundary but not at θ◦ must suffer a drift that eventually pushes it into some greedy
region’s interior or along the boundary to θ◦. We do not give a formal proof that these are the only
invariant, internally chain transitive sets of the DI; the reader is directed to standard references on
DIs Aubin & Cellina (2012)

Thus, according to our result, the stochastic iterates of Q-learning must eventually approach one of
these 3 isolated points. We additionally remark that the point θ◦ on the boundary is an unstable
equilibrium point, because any neighborhood around it contains points (in the interiors of Pa1 and
Pa2 ) from where the DI’s solutions will escape towards the landmarks. If the martingale difference
noise (Mn) is sufficiently ‘rich’, i.e., it does not put all its probability mass in a subspace of R2,
then random chance will cause the iterates to eventually escape this unstable equilibrium point. This
condition will hold if all state-actions’ features span R2, which they indeed do.

Our analysis also brings out the fact that asymptotically (as n → ∞), there are no policy oscillations
(iterates jumping regions infinitely often) nor parameter oscillations (iterates that ‘bounce between’
two regions at a positive distance) that can occur, because the iterates must eventually stabilize
around one of the two landmarks in the interior of the greedy regions.

B. No self-consistent greedy regions – Sliding mode attractor. We consider an MDP and feature
set that induce 2 greedy regions, each of which has its landmark in the other region. Trajectories
of Q-learning, with the same parameters and stepsizes as before, appear to move eventually towards
the boundary between the two regions (Fig. 2b).

Reasoning about the DI in this case, and its solutions, paints a qualitatively different picture than
that of the previous example. As before, for each point θ in the interior of any greedy region, there is
a singleton, nonzero drift h(θ) = {b−Aθ}, based on the b, A of the region containing θ. However,
this drift is directed toward the other region. It follows that any trajectory of the DI initialized at a
region’s interior point θ will reach the boundary in finite time, which rules out interior points from
belonging to any internally chain transitive sets.

The only possible invariant, internally chain transitive sets, then, are to be found on the 1-
dimensional boundary between the 2 regions. A moment’s thought convinces us that the only such
set is the singleton comprising the unique point θ⋆ on the boundary for which both dynamics’ drifts
point in opposite directions (equivalently, 0 is in their convex hull). This point is strikingly different
than the point θ◦ of the previous example in that is a globally stable equilibrium point – indeed,
any deviation from this point pushes the DI’s trajectory towards it rather than away from it. More-
over, observe that any trajectory of the DI started from an interior point of a region first reaches
the boundary in finite time, due to a positive ‘velocity’ towards the boundary. Thereafter, it ‘slides’

5The coordinates of this (2-dimensional) point can be analytically obtained by solving 2 equations express-
ing that: (1) θ◦ lies on the boundary of the greedy regions, (2) the vectors bared − Aaredθ

◦ and bablue − Aablueθ
◦

point in opposite directions.
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along the boundary to reach θ⋆, i.e., θ(t) always belongs to the boundary ∀t ≥ t0 for some time t0.
Such a trajectory is termed a sliding mode and has been extensively studied in control theory (see
e.g., Utkin (2013)).

To our knowledge, the existence of sliding modes and associated equilibria has not been previously
demonstrated for approximate RL algorithms. Also, our main result (Theorem 2.2) guarantees that
asymptotically, the stochastic iterates θn will not oscillate or chatter, although policy oscillations are
possible (the iterates may cross the boundary infinitely often on their way to θ⋆).

C. Only one self-consistent greedy region – Unique landmark attractor. We consider an MDP
that, with linear Q-function approximation in R2, induces two greedy regions with exactly one of
them being self-consistent (Fig. 2c). The DI for this setting has the property that points in the red
region will experience a (vector) drift, towards the boundary, which is bounded away from 0 in norm.
As a result, any DI trajectory that starts in the red region will, in finite time, hit the boundary. The
driving (set-valued) function h(θ) for each boundary point can be shown to have all its constituent
drift vectors ‘pointing into’ the blue region, so any solution from the boundary must instantaneously
leave it. Continuing from here, the trajectory moves towards the blue landmark, which can be shown
to be the sole invariant, internally chain transitive set of the DI. It is thus clear, from Theorem 2.2,
that all the original stochastic iterates of the algorithm must eventually approach this point. This is a
situation in which no policy or parameter chattering occurs. Also, as observed by Young and Sutton
Young & Sutton (2020), it is possible that this (single) landmark point to which every trajectory
converges may represent a very poor quality approximation for the optimal value function.

Figs. 3a and 3b show that even with the same MDP and features (and hence greedy regions), Q-
Learning and SARSA(0) can induce different landmark structures, resulting in different trajectory
behavior. We discuss other examples such as the chattering phenomenon observed in Gordon (1996);
Young & Sutton (2020) in the Appendix.

4 CONCLUSION AND FUTURE DIRECTIONS

We introduced the novel toolset of SRIs and DIs to help understand the algorithmic dynamics of
approximate RL algorithms. We may have merely scratched the surface with regard to wielding
the DI approach to its fullest potential. Our framework paves the way for a more comprehensive
understanding of existing approximate-RL algorithms as well as the design of new schemes with
‘well-behaved’ DIs, hopefully resulting in value beyond just analysis to the realm of synthesis.

On a somber note, the insights we have uncovered about algorithms using arguably the simplest
possible (linear) function approximation casts doubt on their utility in more complicated, nonlinear
approximation architectures. It is plausible that there are many more failure modes in these set-
tings than the range observed in the linear case, as also seen by Young & Sutton (2020) in neural
approximation. Even with linear function approximation, we have shown in this paper that (a) one
could converge to multiple attractors with disparate qualities, (b) one could oscillate between mul-
tiple policies’ greedy regions, making it difficult to devise simple stopping criteria (c) even if one
converges always to a unique point within a greedy partition, the induced greedy policy could be
arbitrarily bad – these spell doom for the practitioner unless carefully addressed and investigated.
Separately, we acknowledge that our theory addresses only linear function approximation and more
work is needed to extend it to nonlinear approximation architectures.

Yet another promising direction for future research, which is not taken up in this paper, is that of
the quality of the limiting iterates (assuming there is some reasonable form of convergence). Again,
Young & Sutton (2020, ’Worst-case example’) and Bertsekas (2011) point out that approximate
policy iteration schemes could very well converge to the ‘worst possible outcome’, which, perhaps,
with suitable design considerations based on the DI connection, can be avoided in new algorithms to
come. For instance, a whole new class of algorithms can arise by assigning arbitrary values of ϵ, ϵ′ in
the generic update (6) with favourable properties. On a slightly different but related note, our work
also reinforces the fact that merely ensuring stability of an incremental RL algorithm’s iterates is by
no means sufficient to guarantee good performance – discontinuous policy updates often swamp out
gains from stability by inducing complex and varied convergence modes.
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A PROOF OF MAIN RESULT

Our proof primarily builds upon the results from Borkar (2009) and Ramaswamy & Bhatnagar
(2017) that study the asymptotic behavior of an SRI using a DI lens. Our proof also needs a result
from Molchanov & Pyatnitskiy (1989) that discusses conditions for the origin to be a Globally
Exponentially Stable (GES) equilibrium point of a DI. We first state these results along with the
necessary definitions and, thereafter, provide the complete proof of Theorem 2.2.

For θ ∈ Rd and a set-valued function h : Rd → 2R
d

, let

hc(θ) =
1

c
h(cθ) := {y : cy ∈ h(cθ)}, c ≥ 1,

and h∞(θ) := cl({y : limc→∞ d(y, hc(θ)) = 0}), where d(y, Z) := inf{∥y − z∥ : z ∈ Z} and cl
denotes closure. Separately, in relation to a DI, call an invariant set Γ an attractor if it is compact
and has a fundamental neighborhood U. The latter condition means that, for any ϵ > 0, there exists
T (ϵ) ≥ 0 such that all solution trajectories (θ(t))t≥0 of this DI with θ(0) ∈ U satisfy θ(t) ∈ N ϵ(Γ)
∀t ≥ T (ϵ), where N ϵ(Γ) is the (open) ϵ-neighborhood of Γ.

A Stochastic Recursive Inclusion (SRI) (Benaı̈m et al., 2005; Borkar, 2009) is an update rule in Rd

of the form
θn+1 = θn + αn[yn +Mn+1], n ≥ 0, (10)

where yn ∈ h(θn) ⊆ Rd for some set-valued function h, while αn and Mn+1 are as before. Clearly,
any SA scheme is also an SRI.

The following result provides sufficient conditions for the stability and convergence of an SRI.

Theorem A.1 (Corollary4, Chapter 5 in Borkar (2009) and Theorem 1 in Ramaswamy & Bhatnagar
(2017)). Consider a generic SRI of the form given in (10) and suppose the following conditions
hold.

C1. h is Marchaud, i.e.,

(a) h(θ) is convex and compact for all θ ∈ Rd;

(b) ∃Kh > 0 such that, for all θ ∈ Rd, supy∈h(θ) ∥y∥ ≤ Kh(1 + ∥θ∥); and

(c) h is upper semicontinuous or, equivalently, {(θ, y) ∈ Rd × Rd : y ∈ h(θ)} is closed.

C2.
∑∞

n=0 αn = ∞, but
∑∞

n=0 α
2
n < ∞.

C3. (Mn) is a square-integrable martingale difference sequence adapted to an increasing family of
σ-fields (Fn). Further, ∃Km ≥ 0 such that

E[∥Mn+1∥2|Fn] ≤ Km[1 + ∥θn∥2] a.s., n ≥ 0.

C4. h∞(θ) is non-empty for all θ ∈ Rd. Further, the differential inclusion θ̇(t) ∈ h∞(θ(t)) has an
attractor Γ ⊆ B(0, 1) such that cl(B(0, 1)) is a subset of one of its fundamental neighborhoods.
Lastly, if the sequences (cn), (zn), and (xn) are such that cn ↑ ∞, zn ∈ hcn(xn) ∀n ≥ 0,
xn → θ, and zn → y, then y ∈ h∞(θ).

Then, almost surely, the iterates (θn) of the SRI are stable, i.e., supn≥0 ∥θn∥ < ∞, and converge to
a (possibly sample path dependent) closed connected internally chain transitive invariant set of the
differential inclusion θ̇(t) ∈ h(θ(t)).

For verifying Condition C4 in the above result, we need an additional stability result from Molchanov
& Pyatnitskiy (1989).

Theorem A.2 (Theorem 1 and (2) in Molchanov & Pyatnitskiy (1989)). Consider the generic DI

θ̇(t) ∈ g(θ),

g(θ) = co{y : y = Aθ,A ∈ X}
(11)

where X is a compact set of d× d matrices. Suppose ∃V : Rd → R such that
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D1. V is strictly convex.

D2. V is of quasiquadratic form, i.e., for all θ ∈ Rd, V (θ) = θTL(θ)θ for some symmetric d × d
matrix L(θ) ∈ Rd×d. Further, V is homogeneous of second order, i.e., V (λθ) = λ2V (θ)
∀θ ∈ Rd and λ ∈ R. (These imply L(λθ) = L(θ).)

D3. There exists β > 0 such that ∇V (θ)T y ≤ −β∥θ∥2 for all θ ∈ Rd and y ∈ g(θ).

Then, the origin is the Globally Exponentially Stable (GES) equilibrium point of (11). That is, any
solution (θ(t))t≥t0 of (11) satisfies

∥θ(t)∥ ≤ K1∥θ(t0)∥e−K2(t−t0), t ≥ t0, (12)

for some constants K1 ≥ 1 and K2 > 0 that are independent of t, t0, and θ(t0).

Proof of Theorem 2.2. The desired result follows from Theorem A.1 and, in our discussion below,
we only verify the sufficient conditions stated there, beginning with C1.
For each θ ∈ Rd, h(θ) defined in (3) is convex since it is an intersection of convex sets. Similarly,
it is closed and bounded, from which we have that it is also compact. These statements jointly
establish (C1.a). Next, from the definition of h and by (arbitrarily) choosing δ = 1, it follows that

sup
y∈h(θ)

∥y∥ ≤ sup
y∈co(f(B(θ,1)))

∥y∥.

Since the argument set on the RHS above is closed and convex, we also have

sup
y∈co(f(B(θ,1)))

∥y∥ ≤ sup
y∈f(B(θ,1))

∥y∥

which, in turn, implies

sup
y∈co(f(B(θ,1)))

∥y∥ ≤ sup
θ′∈B(θ,1)

sup
a∈AS

∥ba −Aaθ
′∥ ≤ sup

a∈AS
(∥ba∥+ ∥Aa∥)(1 + ∥θ∥).

From (7), (8) and B1, note that ∥ba∥ ≤ KϕKr and ∥Aa∥ ≤ (γ + 1)K2
ϕ. Hence, (C1.b) is satisfied

for Kh := Kϕ(Kr + (γ + 1)Kϕ). It remains to establish the upper semicontinuity of h. That is, for
any sequences (xn) and (zn) such that xn → θ, zn → y, and zn ∈ h(xn)∀n ≥ 0, we need to show
that y ∈ h(θ). To see this, let δ > 0 be arbitrary. Then, ∃Nδ ≥ 0 such that xn ∈ B(θ, δ) for all
n ≥ Nδ. Further, for each such n, since B(θ, δ) is open, there is also small ball around xn that is
contained in B(θ, δ) which, in turn, implies

zn ∈ h(xn) ⊆ co(f(B(θ, δ))). (13)

Because the set on the extreme right is closed and y is the limit of (zn), it then follows that y ∈
co(f(B(θ, δ))). The choice of δ above being arbitrary finally shows that y ∈ h(θ), as desired.

Condition C2 holds trivially due to our stepsize assumption in B3.

Next, consider C3. The fact that (Mn) is a martingale-difference sequence adapted to (Fn) is a direct
consequence of their respective definitions. Further, for any n ≥ 0, it follows from (6) and B1 that

∥δnϕ(sn, an)∥ ≤ |δn| ∥ϕ(sn, an)∥ ≤ Kϕ(Kr + (γ + 1)Kϕ∥θn∥) (14)

and, hence,
∥Mn+1∥ ≤ 2Kϕ(Kr + (γ + 1)Kϕ∥θn∥). (15)

Therefore, E[∥Mn+1∥2|Fn] ≤ Km[1 + ∥θn∥2] for Km = 8K2
ϕ max{K2

r , (γ + 1)2K2
ϕ}. It remains

to show that (Mn) is a square integrable sequence, i.e., E∥Mn∥2 < ∞ for all n ≥ 0. The result is
trivially true for n = 0. Separately, since ∥θ0∥2 < ∞, it follows from (6) and using (14) and (15)
for n = 0 that E∥M1∥2 < ∞ and E∥θ1∥2 < ∞. The desired result now follows by induction.

Finally, we verify C4. We begin by showing that h∞(θ) is non-empty. For θ ∈ Rd, let Hθ := {a ∈
AS : θ ∈ cl(Pa)}. Since {Pa : a ∈ AS} partitions Rd, it follows that |Hθ| ≥ 1. Additionally, note
that each Pa is a cone, i.e., θ ∈ Pa implies cθ ∈ Pa for all c > 0. Therefore, Hcθ = Hθ for any
c > 0. From the definition of h in (3), it is now easy to see that h(cθ) = co{ba − Aacθ : a ∈ Hθ}
for c > 0; we don’t need to explicitly work with the closure of this set since a convex hull of finitely
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many vectors is closed by definition. This implies that h∞(θ) = co{−Aaθ : a ∈ Hθ}, which is
clearly non-empty.

Next, we claim that Γ := {0} is the desired attractor of the DI

θ̇(t) ∈ h∞(θ(t)) (16)
that is contained in B(0, 1) and has cl(B(0, 1)) as a subset of one of its fundamental neighborhoods.
To see this, first note that Γ is a subset of B(0, 1), is compact, and is invariant under (16). The
latter holds since the solution θ(t) ≡ 0 passes through the origin and stays there entirely. Separately,
since B4 holds, Aa + AT

a is a symmetric positive definite matrix for each a. Hence, with respect to
Theorem A.2, if we let L(θ) be the identity matrix, g ≡ h∞,X := {−Aa : a ∈ AS}, V (θ) := ∥θ∥2,
and β := mina∈AS{λmin(Aa +AT

a )}, then all conditions of Theorem A.2 hold and we get that the
origin is the GES equilibrium point of (16). The relation in (12) now implies that B(0, δ) is a
fundamental neighborhood of Γ for any δ > 0. Picking δ > 1, we have cl(B(0, 1)) ⊂ B(0, δ), as
desired.

Lastly, let (cn), (xn), (zn), θ, and y be as in C4 and let δ > 0 be arbitrary. Then, ∃Nδ ≥ 0 such
that xn ∈ B(θ, δ) and Hxn ⊆ Hθ for all n ≥ Nδ. Hence, for n ≥ Nδ, using zn ∈ hcn(xn) =
1
cn

co{ba −Aacnxn : a ∈ Hxn
} and hcn(θ) =

1
cn

co{ba −Aacnθ : a ∈ Hθ}, it follows that

d(zn, hcn(θ)) ≤ δ sup
a∈AS

∥Aa∥.

A simple triangle inequality then shows that
lim sup
n→∞

d(y, hcn(θ)) ≤ δ sup
a∈AS

∥Aa∥.

Since δ > 0 is arbitrary, we get
lim
n→∞

d(y, hcn(θ)) = 0.

It can be shown that the above conclusion holds for all sequences (c′n) such that c′n ↑ ∞. From this,
it follows that y ∈ h∞(θ) as desired.

B DETAILS OF THE MDP AND DQN IMPLEMENTATION USED TO GENERATE
FIGURE 1

• MDP and linear action-value feature matrix: {P(s′|s, a1)}s,s′ =

[
0.754 0.246
0.178 0.822

]
,

{P(s′|s, a2)}s,s′ =

[
0.511 0.489
0.930 0.070

]
, Φ =

 5.953 −0.204
6.197 −0.532
10.628 −0.444
5.571 0.388

, r =

 −0.440
−1.220
1.810
−0.080

,

γ = 0.9, ϵ = 0.1.
• DQN algorithm implementation details: Replay buffer size: 10,000; Batch size: 32, Target

update duration: 32, Step sizes: O(log(n)/n).

C DETAILS OF MDPS USED IN SECTION 3

All MDPs used in the experiments have 2 states and 2 actions. In the following, MDP transition
probabilities {P(s′|s, a)}s,s′,a are displayed as separate |S| × |S| matrices for each action a, with
each row indexing s and each column indexing s′. Feature matrices Φ are displayed as |S||A| × d
matrices, where rows are indexed as (s1, a1), (s1, a2), ..., (s2, a1), (s2, a2), ..., and reward vectors
are displayed as |S||A| × 1 vectors with the same row-indexing.

• MDP used for Fig. 2a (Two self-consistent greedy regions):

{P(s′|s, a1)}s,s′ =

[
0.444 0.556
0.800 0.200

]
, {P(s′|s, a2)}s,s′ =

[
0.500 0.500
0.300 0.700

]
,

Φ =

 0.200 0.200
−0.200 1.100
−0.100 −1.000
−0.100 −1.000

, r =

 0.400
0.300
0.200
−0.100

, γ = 0.75, ϵ = 0.1.

15



Under review as a conference paper at ICLR 2023

• MDP used for Fig. 2b (No self-consistent greedy regions):

{P(s′|s, a1)}s,s′ =

[
0.333 0.667
0.588 0.412

]
, {P(s′|s, a2)}s,s′ =

[
0.429 0.571
0.400 0.600

]
,

Φ =

 −1.300 −1.200
−1.100 −1.000
1.900 −0.700
1.100 −1.500

, r =

 −2.100
0.300
0.900
−0.800

, γ = 0.75, ϵ = 0.1.

• MDP used for Fig. 2c (Only one self-consistent greedy region):

{P(s′|s, a1)}s,s′ =

[
0.286 0.714
0.250 0.750

]
, {P(s′|s, a2)}s,s′ =

[
0.500 0.500
0.200 0.800

]
,

Φ =

 0.800 0.400
1.000 0.700
−1.600 −0.700
−0.200 1.400

, r =

 −0.800
−2.000
0.500
−2.100

, γ = 0.75, ϵ = 0.1.

• MDP used for Fig. 3 (Disparate behavior for Q-Learning and SARSA):

{P(s′|s, a1)}s,s′ =

[
0.716 0.284
0.423 0.577

]
, {P(s′|s, a2)}s,s′ =

[
0.109 0.891
0.260 0.740

]
, Φ = 0.411 −1.051

−0.768 0.240
0.153 0.242
−0.610 −0.546

, r =

 −2.983
−9.780
−6.432
9.052

, γ = 0.95, ϵ = 0.3.

D THE CHATTERING PHENOMENON

We discuss in this section some examples of MDP settings provided in the literature that have been
shown to exhibit pathological behavior such as parameter chattering. The case studies of Section 3
do not by any means cover all possible behavioral phenomena that the iterates can exhibit and the
kinds of limiting DI structures that could be obtained. For example, there could be cases where the
landmark point for the local dynamics of a greedy region could be located right on its boundary.

In this regard, a notable example is that of Gordon (1996). This paper constructs an absorbing MDP
with a start, absorbing and two intermediate states, and the only choice among (two) actions being at
the start state. Under state aggregation resulting in a 3-dimensional linear function approximation to
the Q-value function, SARSA(0) with ϵ-greedy exploration is shown to exhibit chattering both in the
policy and parameter or Q-value estimates. Although this setting of an absorbing MDP with discount
factor γ = 1 is not the same as our discounted-cost ergodic MDP setting, we can still write down
the SARSA(0) update after each absorbing trajectory as the following stochastic approximation
iteration in R3:

θn+1 = θn + αnδn, with δn = Un

 θ3n − θ1n
0

2− θ3n

+ (1− Un)

 0
θ3n − θ2n
1− θ3n

 . (17)

Here, θin denotes the i-th coordinate of θn, Un denotes a Bernoulli random variable whose success
probability conditioned on θn is ϵ if θ2n > θ1n, and (1 − ϵ) if θ2n ≤ θ1n. Note that with respect to
the original notation used in Gordon (1996), the variables θ1n, θ2n and θ3n correspond to the variables
QU , QL and QA, respectively, at the n-th trajectory update. We will assume that ϵ ∈ (0, 1/2).

Taking the conditional expectation of the right-hand side of (17) yields the discontinuous ODE

θ̇ = bθ −Aθ θ,

where bθ, Aθ depend on which side of the half plane H = {θ ∈ R3 : θ1 = θ2} the point θ lies. (We
again use θi to mean the i-th coordinate of θ.) Specifically,

bθ =

{
bU ≡ [0, 0, 2− ϵ]T if θ1 ≤ θ2

bL ≡ [0, 0, 1 + ϵ]T if θ1 > θ2
,
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and

Aθ =


AU ≡

[
1− ϵ 0 ϵ− 1
0 ϵ −ϵ
0 0 1

]
, if θ1 ≤ θ2

AL ≡

[
ϵ 0 −ϵ
0 1− ϵ ϵ− 1
0 0 1

]
, if θ1 > θ2

.

(Note that the ODE’s driving function is arbitrary in case of a tie: θ1 = θ2.)

This can be lifted to the DI
θ̇ ∈ h(θ), (18)

with the set-valued driving function h(θ) equaling the singleton {bθ −Aθθ} as defined above when
θ1 ̸= θ2, and co (bU −AUθ, bL −ALθ) when θ1 = θ2. Note that both the (triangular) matrices AU

and AL are stable in the sense that their eigenvalues’ real parts are positive, which can be used to
show that the iterates (θn) of (17) will be bounded almost-surely (this is also established by Gordon
(2000)). At this point, the conditions of A.1 can be verified to hold; thus the iterates (θn) must
converge to a closed connected internally chain transitive invariant set of the DI (18).

Further calculation shows that the landmarks for both sides’ dynamics are x∗
U := A−1

U bU = [2 −
ϵ, 2− ϵ, 2− ϵ]T and x∗

L := A−1
L bL = [1 + ϵ, 1 + ϵ, 1 + ϵ]T , both on the boundary hyperplane H.

The following observations (not necessarily exhaustive) can be made about the solution trajectories
(θ(t))t∈R of the DI (18):

1. If ∃t0 ∈ R such that θ(t) /∈ H for all t > t0, then, by linear dynamical systems theory, θ(t) must
converge asymptotically to either x∗

U or x∗
L. This is because after time t0, the solution is confined

to exactly one of the (open) half spaces {θ1 < θ2} or {θ1 > θ2}.
2. If ∃t0 ∈ R such that θ(t) ∈ H for all t > t0, then the solution is a ‘sliding motion’ confined to the

half plane H after time t0. Let θ denote θ(t) for some t > t0. Analyzing the DI dynamics with
the additional restriction that θ̇ ∈ H shows that (a) if θ1 ̸= θ3 (equivalent to θ2 ̸= θ3), then θ(t)
must converge asymptotically to the point [3/2, 3/2, 3/2]T from within H; (b) if θ1 = θ3 = θ2,
then (i) to retain equality between all 3 coordinates, the solution must stay put at θ for all times
after t, which can happen if and only if θ1 = θ2 = θ3 ∈ [1 + ϵ, 2 − ϵ], else (ii) the equality
between θ1 (or θ2) and θ3 stops holding, and we get into the situation of (a) above.

The observations above, together with results from differential inclusion theory (Benaı̈m et al.,
2005), lead us to conjecture that the only invariant, internally chain transitive sets of the DI (18)
are all the singleton sets {[η, η, η]T } for η ∈ [1 + ϵ, 2 − ϵ]. This would imply that no parameter
chattering can take place for Gordon’s SARSA(0) MDP learning example with a Robbins-Monro
decaying stepsize schedule (αn), since the original iterates of (17) will almost-surely converge to a
path-dependent singleton. Note, however, that policy-space oscillations are still possible.

Another related example of an absorbing MDP over which Q-learning is shown to exhibit (param-
eter) chattering, under a fixed stepsize, is given by Young & Sutton (2020, ‘Oscillating Example’).
Although no formal analysis is carried out about the cause of the chattering, we surmise that if
the associated DI does indeed have only isolated points as its invariant, internally chain transitive
sets, then with decaying Robbins-Monro stepsizes, SARSA(0) should be free from such parameter
chattering.
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