
ThinkGrasp: A Vision-Language System for Strategic
Part Grasping in Clutter

Anonymous Author(s)
Affiliation
Address
email

Abstract: Robotic grasping in cluttered environments remains a significant chal-1

lenge due to occlusions and complex object arrangements. We have developed2

ThinkGrasp, a plug-and-play vision-language grasping system that makes use of3

GPT-4o’s advanced contextual reasoning for heavy clutter environment grasping4

strategies. ThinkGrasp can effectively identify and generate grasp poses for target5

objects, even when they are heavily obstructed or nearly invisible, by using goal-6

oriented language to guide the removal of obstructing objects. This approach pro-7

gressively uncovers the target object and ultimately grasps it with a few steps and a8

high success rate. In both simulated and real experiments, ThinkGrasp achieved a9

high success rate and significantly outperformed state-of-the-art methods in heav-10

ily cluttered environments or with diverse unseen objects, demonstrating strong11

generalization capabilities.12

Keywords: Robotic Grasping, Vision-Language Models, Language Conditioned13

Grasping14

1 Introduction15

The field of robotic grasping has seen significant advancements in recent years, with deep learn-16

ing and vision-language models driving progress towards more intelligent and adaptable grasping17

systems [1, 2, 3]. However, robotic grasping in highly cluttered environments remains a major18

challenge, as target objects are often severely occluded or completely hidden [4, 5, 6]. Even state-19

of-the-art methods struggle to accurately identify and grasp objects in such scenarios.20

To address this challenge, we propose ThinkGrasp, which combines the strength of large-scale pre-21

trained vision-language models with an occlusion handling system. ThinkGrasp leverages the ad-22

vanced reasoning capabilities of models like GPT-4o [7] to gain a visual understanding of environ-23

ment and object properties like sharpness, material, etc. By integrating this knowledge, ThinkGrasp24

can significantly improve success rates and ensure safer grasp poses by strategically removing oc-25

cluding objects and focusing on the safest and most advantageous parts for grasping.26

The main contributions of our work are as follows:27

• We develop a plug-and-play occlusion handling system that efficiently utilizes visual and language28

information for robotic grasping. We further enhance the system’s reliability by implementing a29

robust error-handling framework that, based on LangSAM’s segmentation and scoring process uti-30

lizes iterative verification and corrective actions to address potential misidentifications by GPT-4o.31

These improvements significantly increase success rates, ensure safer grasp poses, and enhance32

reliability in diverse and cluttered environments.33

• In the simulation, through extensive experiments on the challenging RefCOCO dataset [8], we34

demonstrate state-of-the-art performance. ThinkGrasp achieves a 98.0% success rate and fewer35

steps in cluttered scenes, outperforming prior methods like OVGNet [9] (43.8%) and VLG [10]36

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



(75.3%). Despite unseen objects and heavy clutter levels, it maintains a high 78.9% success rate,37

showcasing its strong generalization capabilities. In the real world, ours achieved a high success38

rate with few steps.39

• The modular design in our system enables easy adaptation to various robotic platforms and grasp-40

ing systems. It demonstrates strong generalization capabilities, quickly adjusting to new language41

goals and novel objects by simple prompts, making it highly versatile and scalable.42

2 Related Work43

Robotic Grasping in Cluttered Environments: Robotic grasping in cluttered environments re-44

mains a significant challenge due to the complexity of occlusions and the diversity of objects. Tradi-45

tional methods, which rely heavily on hand-crafted features and heuristics, struggle with generaliza-46

tion and robustness in diverse, unstructured environments [1, 11]. Deep learning methods that use47

CNNs and RL have shown improvements in grasp planning and execution [3, 12, 13, 14]. However,48

they often need a lot of data to be collected and labeled, which makes them less useful in a variety49

of situations [15, 4]. Recent methods like NG-Net [5] and Sim-Grasp [16] have made strides in50

cluttered environments but still face limitations in handling heavy clutter with diverse objects.51

Pre-trained Models for Robotic Grasping: Vision-language models (VLMs) and large language52

models (LLMs) have shown promise in enhancing robotic grasping by integrating visual and lan-53

guage information[17]. Models such as CLIP [18] and CLIPort [19] have improved task perfor-54

mance, and VL-Grasp [20] has developed interactive grasp policies for cluttered scenes. Addi-55

tionally, models like ManipVQA [21], RoboScript [22], CoPa [23], and OVAL-Prompt [24] use56

vision-language models and contextual information to improve the performance of grasping tasks.57

Voxposer [25] and GraspGPT [26] have demonstrated how LLMs can generate task-relevant ac-58

tions and grasping strategies. Although these methods have advanced the field, they frequently have59

limitations due to their emphasis on particular types of clutter and the lack of a robust strategy for60

handling heavy occlusions.61

3 Method62

3.1 Problem Definition63

In heavily cluttered environments, robotic grasping faces significant challenges due to occlusions64

and the presence of multiple objects. The main issue is coming up with an appropriate grasp pose65

for a target object that a natural language instruction specifies.66

The key challenges are 1) Occlusions, where objects are often partially or fully obscured by other67

items, making it difficult for the robot to identify and grasp the target object; 2) Ambiguity in68

Natural Language Instructions, as instructions may be vague or ambiguous, requiring the robot69

to accurately interpret the user’s intent and identify the correct object among many possibilities;70

3) Dynamic Environments, where the grasping strategy needs to be changed in real-time as the71

positions and orientations of objects change; 4) Safety and Stability, making sure that the grasp72

pose is not only possible but also safe and stable so that neither the objects nor the robot is damaged;73

and 5) Efficiency, cutting down on the number of steps needed to grasp something so that the process74

is faster and more effective.75

To solve these problems, we need a system that can correctly understand and interpret natural lan-76

guage instructions, find target objects even when they are partially obscured, change its grasp strat-77

egy based on the current environment, ensure safe and secure grasping, and work quickly so that78

tasks can be completed with less effort.79
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3.2 System Pipeline80

Figure 1: ThinkGrasp pipeline for cluttered environments

Our approach tackles the strategic part of grasping in cluttered environments via an iterative pipeline81

(Figure 1). Given an initial RGB-D scene observation O0 (224×224 for simulation, 640×480 for82

real robot) and a natural language instruction g.83

First, the system uses GPT-4o to do ”imagine segmentation,” which means it finds possible target84

objects or parts and suggests places to grab them within a 3×3 grid that is placed on top of the85

object’s bounding box. Essentially, GPT-4o imagines what the segmented objects and ideal grasp86

locations could be based on the visual and language inputs. This involves identifying potential87

target objects and their parts that best match the instruction g and proposing candidate objects ot88

and preferred grasping locations within a 3×3 grid for each object.89

Combining GPT-4o’s comprehension with a grid-based strategy enhances the precision of our sys-90

tem. It divides the cropping box containing the proposed target object or part into a 3×3 grid and91

suggests a number from 1 to 9 indicating the optimal grasping region (1 for top-left, 9 for bottom-92

right). This strategy, especially effective for low-resolution images, focuses on selecting optimal93

regions rather than exact points while also considering the constraints of the robotic arm and gripper94

for successful grasping.95

Next, LangSAM[27] segments the image, focusing on the objects proposed by GPT-4o, and crops96

a point cloud containing these objects. The system iteratively refines its choices, using the cropped97

point cloud to update GPT-4o’s ”imagine segmentation,” and predictions for the target object ot and98

preferred grasping location. LangSAM and VLPart[28] handle object segmentation.99

To determine the optimal grasping pose Pg , the system generates a set of candidate grasp poses A100

based on the cropped point cloud. In order to validate our system, we kept the variables consistent101

in our experiments. We used different grasp generation networks for simulation and real-world102

robot tests. Specifically, we employed Graspnet-1Billion [29] for all simulation comparisons while103

utilizing FGC-Graspnet [30] for real-robot comparisons. This approach ensures that our results are104

reliable and that any observed differences are due to the grasping system rather than inconsistencies105

in the grasp generation network. The candidate grasps A are evaluated based on their proximity to106

the preferred location suggested by GPT-4o and their grasp quality scores from the respective grasp107

generation module.108

The system executes the optimal pose Pg for the selected target ot. If the target is occluded or not109

visible, the system identifies and moves obstructing objects deemed most cost-effective to reveal the110

target.111

This closed-loop process demonstrates the system’s adaptability with the production of its next grasp112

strategy Pg,t+1 based on the updated scene observation Ot+1 after each grasp attempt. The pipeline113

adjusts its grasping strategy as needed until the task is successfully completed or the maximum114

number of iterations is reached. It effectively manages the challenges presented by heavy clutter.115
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3.3 GPT-4o’s Role and Constraint Solver in Target Object Selection116

Our grasping system leverages GPT-4o, a state-of-the-art vision-language model (VLM), to seam-117

lessly integrate visual and language information. GPT-4o excels in contextual reasoning and knowl-118

edge representation, making it particularly well-suited for complex grasping tasks in cluttered envi-119

ronments.120

Target Object Selection: GPT-4o identifies the object that best matches the provided instruction,121

effectively locking it onto relevant regions. Unlike other models, GPT-4o avoids selecting irrelevant122

objects, even without depth information. This capability ensures that the system does not attempt to123

grasp objects that are unlikely to contain or conceal the goal object. For example, in Figure 2, the124

small packet in the top left corner seems to have nothing hidden under it.125

The target object selection process uses GPT-4o to choose the most relevant object based on the126

given language instruction g and the scene context Oc
t . This process considers factors such as object127

relevance to the instruction, ease of grasping, and potential obstruction when making its selection.128

The process can be formulated as:129

ot = argmax
o

fselect(g,O
c
t , o) (1)

where ot is the color and name of the selected target object, g is the language instruction, Oc
t are130

the color observations of the scene, and fselect represents the selection function that evaluates the131

suitability of each object o in the context of the instruction and scene.132

Handling Occlusions and Clutter: GPT-4o strategically identifies and selects objects, ensuring ac-133

curate grasping even when objects are heavily occluded or partially visible. The system intelligently134

removes occluding objects to improve visibility and grasp accuracy.135

The appendix provides further technical details, including the structured process GPT-4o follows to136

analyze and select the optimal grasp pose.137

3.4 3×3 Grid Strategy for Optimal Grasp Part Selection138

Our 3×3 grid strategy enhances the system’s ability to handle low-resolution images (224×224)139

by shifting from selecting a precise point to choosing an optimal region within a 3×3 grid. This140

transformation leverages broader contextual information, making the grasp selection process more141

robust and reliable even with lower pixel density. The grid divides the target object, represented142

by a bounding box that is derived from the highest-scoring output of the segmentation algorithm,143

into nine cells. Each cell is evaluated based on safety, stability, and accessibility. GPT-4o outputs144

a preferred grasping location within this grid, based on its imagined segmentation of the object,145

guiding the subsequent segmentation and pose generation steps.146

Unlike traditional methods that rely on a single best grasp pose selection, our system first evaluates147

multiple potential grasp poses (top-k) based on their proximity to the preferred location. Then, from148

these top candidates, the pose with the highest score is selected. This approach, combined with the149

3×3 grid strategy to identify the optimal grasping region, ensures that the chosen grasp pose is both150

optimal and stable, significantly enhancing overall performance and success rates.151

3.5 Target Object Segmentation and Cropping Region Generation152

Segmentation and Cropping: We use the LangSAM framework for generating precise segmenta-153

tion masks and bounding boxes, which is good at segmenting low-resolution images. In cases where154

GPT-4o identifies an object part, such as a handle, we utilize VLPart for fine-grained segmenta-155

tion, ensuring detailed part identification. If VLPart fails, LangSAM combined with our 3×3 grid156

strategy ensures robust performance.157

Grasp Pose Generation: To determine the optimal grasping pose Pg , the system generates a set of158

candidate grasp poses A based on the cropped point cloud. The candidate grasps A are evaluated159
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based on their proximity to the preferred location suggested by GPT-4o and their grasp quality scores160

from the respective grasp generation module. The grasp with the highest score after this evaluation161

is selected as the optimal grasp pose.162

Robustness and Error Handling: Despite GPT-4o’s advanced capabilities, occasional misidentifi-163

cations may occur. To mitigate this, we employ iterative verification and corrective actions, dynam-164

ically adjusting cropping regions and grasp strategies. This closed-loop control ensures continuous165

improvement based on real-time feedback, significantly enhancing robustness and reliability.166

Our ablation experiments (Table 1) show that using LangSAM significantly improves system per-167

formance compared to using GPT-4o alone. By combining GPT-4o’s contextual understanding with168

LangSAM’s precise segmentation and VLPart’s fine-grained part identification, our system achieves169

higher success rates and efficiency metrics.170

3.6 Grasp Pose Generation and Selection171

Candidate Grasp Pose Generation: Using the local point cloud, the system generates a set of172

candidate grasp poses:173

G = fgrasp(Plocal) (2)
where Plocal represents the point cloud data within the cropped region.174

Grasp Pose Evaluation: We use an analytic computation method to grade each grasp. Based on175

the improved force-closure metric from Graspnet-1Billion [29], the score is calculated by gradually176

decreasing the friction coefficient µ from 1 to 0.1 until the grasp is not antipodal. The lower the177

friction coefficient µ, the higher the probability of successful grasp. Our score s is defined as:178

s = 1.1− µ

such that s lies in (0, 1].179

Each candidate grasp pose is evaluated based on its alignment with the preferred grasping location.180

The optimal grasp pose is selected by maximizing a score function that considers the suitability of181

each pose:182

goptimal = argmax
g∈G

score(g, ppreferred)

Here, goptimal is the optimal grasp pose, and ppreferred is the preferred grasping location. The robot183

then performs the chosen ideal grasp pose (gtext optimal).184

3.7 Closed-Loop System for Robustness in Heavy Clutter185

Our system enhances robustness in heavily cluttered environments through a closed-loop control186

mechanism that continuously updates the scene understanding after each grasp attempt, ensuring187

it works with the most current information. The cropping region and grasp poses are dynamically188

adjusted based on real-time feedback, allowing the system to focus on the most relevant areas and189

select the optimal grasp pose.190

"Give me a fruit"

GPT4o Select Object : green bottle GPT4o Select Object :green bottle GPT4o Select Object : yellow banana
Finally Select Object : green bottle

Goal object : Mango

Finally Select Object : white bottle Finally Select Object : yellow mango
GPT4o Select Object : yellow banana

Finally Select Object : white bottle
GPT4o Select Object : yellow banana
Finally Select Object : yellow mango

(1) (2) (3) (4) (5)

Figure 2: Closed-loop grasping process demonstrating

As shown in figure 2, the sequence of images demonstrates the process of selecting a target object191

based on a user’s command. First, the user provides the goal object ”mango” and inputs the com-192
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mand ”Give me a fruit”. The initial color input image is from the simulation. GPT-4o selects an193

object (e.g., green bottle) and a preferred location based on the prompt, segmented into a 3×3 grid.194

This information is passed to LangSAM for segmentation. LangSAM segments all green bottles in195

the image and crops a point cloud that includes all the green bottles. It then generates all possible196

grasp poses within the cropped point cloud. The pose with the highest LangSAM segmentation197

score is selected as the target object. The target point is the center of the preferred object location198

provided by GPT-4o. From there, the system evaluates the top 10 poses closest to the target point199

and chooses the highest-scoring pose, which is then executed on the green bottle. Even if GPT-4o’s200

initial selection doesn’t match the goal (e.g., bottle instead of mango), LangSAM’s segmentation201

and scoring process corrects errors and locks onto the intended target object due to distinct color202

features.203

4 Experiments204

Our system is designed to work effectively both in simulation and real-world settings, with tailored205

adaptations to address the unique challenges and constraints of each environment.206

4.1 Simulation207

Our simulation environment, built in PyBullet [31], involves a UR5 arm, a ROBOTIQ-85 gripper,208

and an Intel RealSense L515 camera. The raw images are resized to 224×224 pixels and segmented209

by LangSAM for precise object masks. We compare our solution against state-of-the-art methods,210

Vision-Language Grasping (VLG)[10] and OVGrasp[9], using the same GraspNet backbone for fair211

comparison. Additionally, we compare our method to directly use GPT-4o to select a target grasp212

point without additional processing or integration with other modules.213

Grasp a round object Get something to eat Get something 
to hold other things

I want a round object Give me a cup

I need a cup I need a fruit Get something to drink Give me the theramed Give me the pear

Get something for cleaning I need a container Give me the sugerI need a suger Give me the box

Figure 3: Clutter cases in simulation. The target objects are labeled with stars.

Figure 4: Heavy Clutter cases in simulation. The target objects are labeled with stars.

Our experiments focused on various tasks, such as grasping round objects, retrieving items for eat-214

ing or drinking, and other specific requests. Each test case includes 15 runs, measured with two215
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metrics: Task Success Rate and Motion Number. The Task Success Rate is the average percentage216

of successful task completions within 15 action attempts over 15 test runs. Motion Number is the217

average number of motions per task completion.218

Results. The results, summarized in Table 1, demonstrate that our system significantly outper-219

forms the baselines in overall success rates and efficiency metrics. Specifically, our method achieved220

an average success rate of 0.980, with an average step count of 3.39 and an average success step221

count of 3.32 in clutter case (Figure 3). These results indicate that our system not only excels in ac-222

complishing grasp tasks but also operates with greater efficiency, requiring fewer steps for successful223

task completion.224

Table 1: Overall and Heavy Clutter Averages with Ablation Studies
Metric VLG OVGrasp GPT4o (only) no GPT4o no 3×3 GPT crop Ours

Overall Averages

Average Success ↑ 0.753 0.438 0.713 0.740 0.973 0.973 0.980
Average Step ↓ 9.545 4.88 9.826 7.14 3.40 3.97 3.39
Average Success Step ↓ 8.227 5.866 8.749 6.38 3.29 3.76 3.32

Heavy Clutter Overall Averages

Average Success ↑ 0.511 0.000 0.311 0.667 0.733 0.756 0.789
Average Step ↓ 32.98 NA 40.25 22.04 18.71 20.48 19.35
Average Success Step ↓ 25.27 NA 33.48 20.50 16.50 16.89 17.06

We also evaluated our system’s performance in heavy clutter scenarios, where objects are partially225

or completely occluded. These scenarios (Figure 4) involve up to 30 unseen objects and allow up to226

50 action attempts per run. The results, shown in Table 1, demonstrate that our system significantly227

outperforms the baselines in these challenging conditions, achieving the highest success rates2 and228

the fewest steps required for successful grasps.

Table 2: Heavy Clutter Average Success ↑

Task VLG OVGrasp GPT4o(only) Ours
grasp a ball 0.467 0.000 0.800 1.000
grasp a ball (CI) 0.867 0.000 0.400 0.933
get something to hold other things 0.067 0.000 0.000 0.133
get something to hold other things (CI) 0.400 0.000 0.533 0.800
I need a fruit 0.467 0.000 0.133 0.867
I need a fruit (CI) 0.800 0.000 0.000 1.000

229

Ablation study. To assess the contribution of different components of our system, we conducted230

ablation studies. The results of these ablation studies, shown in Table 1, highlight the effective-231

ness of our complete system. The ”no 3×3” configuration refers to an approach where the system232

does not divide the object into a 3×3 grid to select the grasp point but instead uses a fixed or pre-233

determined position. The ”GPT crop” configuration uses GPT-4o to output crop coordinates for the234

point cloud, focusing on the relevant area for grasping. The ”no GPT4o” configuration removes the235

use of GPT-4o. These experiments demonstrate that our complete system, which integrates all these236

components, achieves superior performance.237

4.2 Real-World Experiments238

We extended our system’s capabilities to real-world environments to handle complex and variable239

scenarios. The setup included a UR5 robotic arm with 6 DoFs and a Robotiq 85 gripper. Obser-240

vations were captured using a RealSense D455 camera, providing both color and depth images for241

point cloud construction. The target pose for grasping was determined using the MoveIt motion242

planning framework with the RRT* algorithm. ROS managed the communication, running on a243
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workstation equipped with a 12GB 2080Ti GPU. Our ThinkGrasp model, deployed using Flask on244

a server with dual 3090 GPUs, provided grasp pose predictions within 10 seconds via the GPT-4o245

API.246

In our real-world experiments5 we compared our system against VL-Grasp, using the same FGC-247

GraspNet downstream grasp model to ensure a fair assessment of the improvements introduced by248

our strategic part grasping and heavy clutter handling mechanisms.249

Figure 5: Real Robot Task

Table 3: Real-World Clutter Task Performance

Clutter Task Step 1 Success Rate Step 2 Success Rate

I want a tape 15/20 (75%) success to get the toy dog 12/15 (80%) grasp tape
I want to cut something 18/20 (90%) success to get the toy frog 10/18 (55.6%) grasp knife by handle

Results. Our results 3,11 show that our system has a high success rate in identifying and grasping250

target objects, even in cluttered environments. The use of VLPart and GPT-4o significantly improved251

robustness and accuracy. However, failures were sometimes due to limitations in single image data,252

suboptimal grasp poses from the downstream model, and variations in the UR5 robot’s stability and253

control. These findings underline the importance of robust image processing, high-quality grasp254

pose generation, and stable robotic control. Further technical details and experimental setups are255

provided in the appendix (Table A).256

5 Conclusion257

This paper presents a novel plug-and-play vision-language behavior modeling approach for robotic258

grasping in cluttered environments. By leveraging GPT-4o’s advanced contextual reasoning and259

VLPart’s precise segmentation, our system effectively identifies and grasps target objects, even when260

they are heavily occluded. Through extensive simulation and real-world experiments, our approach261

demonstrated superior performance and robustness compared to existing methods.262

However, our approach has some limitations. It is currently designed to perform grasp tasks only,263

and the grasp poses generated may suffer from occlusions or inaccuracies due to the single-view264

point cloud reconstruction, potentially causing collisions or incomplete grasps. Future work will265

address these limitations by incorporating multi-view point cloud integration and expanding the266

range of tasks beyond grasping.267
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A Appendix347

A.1 Prompt348

Algorithm 1 Prompt
1: Given a 224×224 input image and the provided instruction, perform the following steps:
2: Target Object Selection:
3: Identify the object in the image that best matches the instruction. If the target object is found,

select it as the target object.
4: If the target object is not visible, select the most cost-effective object or object part considering

ease of grasping, importance, and safety.
5: If the object has a handle or a part that is easier or safer to grasp, select the part. [for example

the handle of a knife]
6: Consider the geometric shape of the objects and the gripper’s success rate when selecting the

target object or object part.
7: Output the name of the selected object or object part as [object:color and name] or [object

part:color and name].
8: Round object means like ball. Cup is different from mug.
9: Cropping Box Calculation:

10: Calculate a cropping box that includes the target object and all surrounding objects that might
be relevant for grasping.

11: Provide the coordinates of the cropping box in the format (top-left x, top-left y, bottom-right x,
bottom-right y).

12: Object Properties within Cropping Box:
13: For each object within the cropping box, provide the following properties:
14: Grasping Score: Evaluate the ease or difficulty of grasping the object on a scale from 0 to 100

(0 being extremely difficult, 100 being extremely easy).
15: Preferred Grasping Location: Divide the cropping box into a 3×3 grid and return a number

from 1 to 9 indicating the preferred grasping location (1 for top-left, 9 for bottom-right).
16: Additionally, consider the preferred grasping location that is most successful for the UR5 robotic

arm and gripper.
17: Output should be in the following format:
18: Selected Object/Object Part: [object:color and name] or [object part:color and name]
19: Cropping Box Coordinates: (top-left x, top-left y, bottom-right x, bottom-right y)
20: Objects and Their Properties:
21: Object: [color and name]
22: Grasping Score: [value]
23: Preferred Grasping Location: [value]
24: Example Output:
25: Selected Object/Object Part: [object:blue ball]
26: Cropping Box Coordinates: (50, 50, 200, 200)
27: Objects and Their Properties:
28: Object: Blue Ball
29: Grasping Score: 90
30: Preferred Grasping Location: middle
31: Object: Yellow Bottle
32: Grasping Score: 75
33: Preferred Grasping Location: top-right

A.2 Detailed Process of GPT-4o and Constraint Solver349

Cropping Box Calculation: GPT-4o calculates a cropping box that includes the target object and350

relevant surrounding objects, ensuring focused and effective grasping.351

Object Properties within Cropping Box: GPT-4o assesses the grasping difficulty for each object352

within the cropping box and identifies the optimal grasp location within a 3×3 grid. This detailed353

analysis ensures the selection of the safest and most practical grasp points.354
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By integrating these steps, GPT-4o ensures the selected grasp pose is feasible and optimal, con-355

sidering all relevant factors. This method leverages GPT-4o’s advanced understanding to interpret356

complex instructions and make informed decisions, significantly enhancing robustness and success357

rates in cluttered environments.358

A.3 Results359

Tables 4, 5, 6, 7, 8, 9, 10, and 11 present the performance of our approach compared to baseline360

methods across various tasks. Our method consistently achieves high success rates and lower av-361

erage steps, demonstrating robustness and efficiency. Notably, in tasks such as ”Get something to362

eat” and ”Give me the cup,” our system outperforms other methods, indicating its ability to iden-363

tify and grasp target objects even in cluttered environments accurately. However, the heavy clutter364

scenarios highlight limitations, such as increased average steps due to the single-view point cloud365

reconstruction, which can lead to potential collisions or incomplete grasps.

Table 4: Average Success ↑

Task VLG OVGrasp GPT4o(only) Ours
Grasp a round object 0.933 1.000 1.000 1.000
Get something to eat 1.000 0.000 0.800 1.000
Get something to hold other things 0.933 0.000 0.600 1.000
I want a round object 1.000 1.000 0.533 0.867
Give me the cup 0.800 0.000 0.333 0.933
I need a cup 1.000 0.375 0.800 1.000
I need a fruit 0.733 1.000 0.933 1.000
Get something to drink 0.133 0.000 0.467 1.000
Give me the theramed 0.200 0.000 0.667 1.000
Give me the pear 0.800 1.000 1.000 1.000

366

Table 5: Average Step ↓

Task VLG OVGrasp GPT4o(only) Ours
Grasp a round object 6.47 8.00 5.40 4.40
Get something to eat 4.20 NA 7.80 2.00
Get something to hold other things 9.60 NA 13.33 2.27
I want a round object 8.47 2.00 12.93 7.07
Give me the cup 9.93 NA 14.53 6.20
I need a cup 10.31 4.40 8.80 3.93
I need a fruit 8.67 2.00 5.40 3.13
Get something to drink 14.47 NA 10.13 1.67
Give me the theramed 14.20 NA 12.07 2.00
Give me the pear 9.13 6.00 3.87 1.27
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Table 6: Average Success Step ↓

Task VLG OVGrasp GPT4o(only) Ours
Grasp a round object 5.86 8.00 5.40 4.40
Get something to eat 4.20 NA 6.00 2.00
Get something to hold other things 9.21 NA 12.22 2.27
I want a round object 8.47 2.00 11.13 6.00
Give me the cup 8.67 NA 13.60 5.57
I need a cup 9.33 9.33 7.25 3.93
I need a fruit 6.36 2.00 5.71 3.13
Get something to drink 12.50 NA 7.71 1.67
Give me the theramed 11.00 NA 10.60 2.00
Give me the pear 7.67 6.00 3.87 1.27

Table 7: Heavy Clutter Average Step ↓

Task VLG OVGrasp GPT4o(only) Ours
grasp a ball 25.40 NA 39.33 19.20
grasp a ball (CI) 25.40 NA 43.73 21.33
get something to hold other things 34.53 NA NA 14.27
get something to hold other things (CI) 28.60 NA 31.53 17.53
I need a fruit 46.07 NA 48.40 25.87
I need a fruit (CI) 35.87 NA NA 19.93

Table 8: Heavy Clutter Average Success Step ↓

Task VLG OVGrasp GPT4o(only) Ours
grasp a ball 21.61 NA 34.33 19.20
grasp a ball (CI) 21.61 NA 34.33 19.28
get something to hold other things 12.00 NA NA 5.00
get something to hold other things (CI) 26.50 NA 27.25 17.25
I need a fruit 41.57 NA 38.00 22.69
I need a fruit (CI) 32.33 NA NA 19.93
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Table 9: Case Comparisons

Case Method avg success↑ avg step↓ avg success step↓
Grasp a round object no 3×3 1.00 4.27 4.27

no GPT4o 1.00 6.87 6.87
GPT crop 1.00 3.47 3.47

Ours 1.00 4.40 4.40

Get something to eat no 3×3 1.00 2.27 2.27
no GPT4o 1.00 2.87 2.87
GPT crop 1.00 2.33 2.33

Ours 1.00 2.00 2.00
Get something to hold other things no 3×3 1.00 2.20 2.20

no GPT4o 0.40 14.00 12.50
GPT crop 0.933 9.00 8.57

Ours 1.00 2.27 2.27

I want a round object no 3×3 0.933 5.80 5.14
no GPT4o 0.600 10.27 7.67
GPT crop 0.800 5.93 4.25

Ours 0.867 7.07 6.00

Give me the cup no 3×3 1.00 6.20 6.20
no GPT4o 0.800 6.67 6.25
GPT crop 1.00 5.40 5.40

Ours 0.933 6.20 5.57
I need a cup no 3×3 0.867 4.07 3.54

no GPT4o 0.533 12.13 9.63
GPT crop 1.00 2.53 2.53

Ours 1.00 3.93 3.93

I need a fruit no 3×3 1.00 3.20 3.20
no GPT4o 0.733 11.00 9.55
GPT crop 1.00 3.87 3.87

Ours 1.00 3.13 3.13
Get something to drink no 3×3 0.933 1.53 1.57

no GPT4o 0.400 12.13 10.00
GPT crop 1.00 2.47 2.47

Ours 1.00 1.67 1.67

Give me the theramed no 3×3 1.00 1.87 1.87
no GPT4o 1.00 2.07 2.07
GPT crop 1.00 2.47 2.47

Ours 1.00 2.00 2.00

Give me the pear no 3×3 1.00 1.60 1.60
no GPT4o 0.933 1.40 1.43
GPT crop 1.00 1.27 1.27

Ours 1.00 1.27 1.27
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Table 10: Heavy Clutter Case Comparisons

Case Method avg success↑ avg step↓ avg success step↓
Grasp a ball no 3×3 0.933 22.33 20.36

no GPT4o 0.667 28.60 29.60
GPT crop 0.933 25.87 24.14

Ours 1.000 19.20 19.20
Grasp a ball [CI] no 3×3 1.000 20.27 20.27

no GPT4o 1.000 12.47 12.47
GPT crop 0.933 19.00 16.79

Ours 0.933 21.33 21.33

Get something to hold other things no 3×3 0.067 11.47 6.00
no GPT4o 0.200 7.87 4.00
GPT crop 0.067 15.73 4.00

Ours 0.133 14.27 5.00

Get something to hold other things [CI] no 3×3 0.467 16.07 12.14
no GPT4o 0.533 11.87 12.38
GPT crop 0.800 15.93 15.83

Ours 0.800 17.53 17.25
I need a fruit no 3×3 0.933 23.47 21.57

no GPT4o 0.733 38.27 34.00
GPT crop 0.800 27.07 21.33

Ours 0.867 25.87 22.69

I need a fruit [CI] no 3×3 1.000 18.67 18.67
no GPT4o 0.867 33.13 30.54
GPT crop 1.000 19.27 19.27

Ours 1.000 19.93 19.93

Table 11: VL-Grasp Real-World Clutter Task Performance

Task Step I want a tape I want to cut something

Step 1 Success Rate 11/20 (55%) success to get the toy dog 9/20 (45%) success to get the toy frog
Step 2 Success Rate 0/11 grasp tape, 6/11 (54.5%) success to get the red and green object 2/9 (22.2%) grasp knife by handle
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