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Abstract: Robotic grasping in cluttered environments remains a significant chal-
lenge due to occlusions and complex object arrangements. We have developed
ThinkGrasp, a plug-and-play vision-language grasping system that makes use of
GPT-40’s advanced contextual reasoning for heavy clutter environment grasping
strategies. ThinkGrasp can effectively identify and generate grasp poses for target
objects, even when they are heavily obstructed or nearly invisible, by using goal-
oriented language to guide the removal of obstructing objects. This approach pro-
gressively uncovers the target object and ultimately grasps it with a few steps and a
high success rate. In both simulated and real experiments, ThinkGrasp achieved a
high success rate and significantly outperformed state-of-the-art methods in heav-
ily cluttered environments or with diverse unseen objects, demonstrating strong
generalization capabilities.

Keywords: Robotic Grasping, Vision-Language Models, Language Conditioned
Grasping

1 Introduction

The field of robotic grasping has seen significant advancements in recent years, with deep learn-
ing and vision-language models driving progress towards more intelligent and adaptable grasping
systems [1, 2, 3]. However, robotic grasping in highly cluttered environments remains a major
challenge, as target objects are often severely occluded or completely hidden [4, 5, 6]. Even state-
of-the-art methods struggle to accurately identify and grasp objects in such scenarios.

To address this challenge, we propose ThinkGrasp, which combines the strength of large-scale pre-
trained vision-language models with an occlusion handling system. ThinkGrasp leverages the ad-
vanced reasoning capabilities of models like GPT-40 [7] to gain a visual understanding of environ-
ment and object properties like sharpness, material, etc. By integrating this knowledge, ThinkGrasp
can significantly improve success rates and ensure safer grasp poses by strategically removing oc-
cluding objects and focusing on the safest and most advantageous parts for grasping.

The main contributions of our work are as follows:

* We develop a plug-and-play occlusion handling system that efficiently utilizes visual and language
information for robotic grasping. We further enhance the system’s reliability by implementing a
robust error-handling framework that, based on LangSAM’s segmentation and scoring process uti-
lizes iterative verification and corrective actions to address potential misidentifications by GPT-4o.
These improvements significantly increase success rates, ensure safer grasp poses, and enhance
reliability in diverse and cluttered environments.

* In the simulation, through extensive experiments on the challenging RefCOCO dataset [8], we
demonstrate state-of-the-art performance. ThinkGrasp achieves a 98.0% success rate and fewer
steps in cluttered scenes, outperforming prior methods like OVGNet [9] (43.8%) and VLG [10]
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(75.3%). Despite unseen objects and heavy clutter levels, it maintains a high 78.9% success rate,
showcasing its strong generalization capabilities. In the real world, ours achieved a high success
rate with few steps.

* The modular design in our system enables easy adaptation to various robotic platforms and grasp-
ing systems. It demonstrates strong generalization capabilities, quickly adjusting to new language
goals and novel objects by simple prompts, making it highly versatile and scalable.

2 Related Work

Robotic Grasping in Cluttered Environments: Robotic grasping in cluttered environments re-
mains a significant challenge due to the complexity of occlusions and the diversity of objects. Tradi-
tional methods, which rely heavily on hand-crafted features and heuristics, struggle with generaliza-
tion and robustness in diverse, unstructured environments [1, 11]. Deep learning methods that use
CNNs and RL have shown improvements in grasp planning and execution [3, 12, 13, 14]. However,
they often need a lot of data to be collected and labeled, which makes them less useful in a variety
of situations [15, 4]. Recent methods like NG-Net [5] and Sim-Grasp [16] have made strides in
cluttered environments but still face limitations in handling heavy clutter with diverse objects.

Pre-trained Models for Robotic Grasping: Vision-language models (VLMs) and large language
models (LLMs) have shown promise in enhancing robotic grasping by integrating visual and lan-
guage information[17]. Models such as CLIP [18] and CLIPort [19] have improved task perfor-
mance, and VL-Grasp [20] has developed interactive grasp policies for cluttered scenes. Addi-
tionally, models like ManipVQA [21], RoboScript [22], CoPa [23], and OVAL-Prompt [24] use
vision-language models and contextual information to improve the performance of grasping tasks.
Voxposer [25] and GraspGPT [26] have demonstrated how LLMs can generate task-relevant ac-
tions and grasping strategies. Although these methods have advanced the field, they frequently have
limitations due to their emphasis on particular types of clutter and the lack of a robust strategy for
handling heavy occlusions.

3 Method

3.1 Problem Definition

In heavily cluttered environments, robotic grasping faces significant challenges due to occlusions
and the presence of multiple objects. The main issue is coming up with an appropriate grasp pose
for a target object that a natural language instruction specifies.

The key challenges are 1) Occlusions, where objects are often partially or fully obscured by other
items, making it difficult for the robot to identify and grasp the target object; 2) Ambiguity in
Natural Language Instructions, as instructions may be vague or ambiguous, requiring the robot
to accurately interpret the user’s intent and identify the correct object among many possibilities;
3) Dynamic Environments, where the grasping strategy needs to be changed in real-time as the
positions and orientations of objects change; 4) Safety and Stability, making sure that the grasp
pose is not only possible but also safe and stable so that neither the objects nor the robot is damaged;
and 5) Efficiency, cutting down on the number of steps needed to grasp something so that the process
is faster and more effective.

To solve these problems, we need a system that can correctly understand and interpret natural lan-
guage instructions, find target objects even when they are partially obscured, change its grasp strat-
egy based on the current environment, ensure safe and secure grasping, and work quickly so that
tasks can be completed with less effort.
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3.2 System Pipeline
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Figure 1: ThinkGrasp pipeline for cluttered environments

Our approach tackles the strategic part of grasping in cluttered environments via an iterative pipeline
(Figure 1). Given an initial RGB-D scene observation Og (224 x 224 for simulation, 640x480 for
real robot) and a natural language instruction g.

First, the system uses GPT-40 to do “imagine segmentation,” which means it finds possible target
objects or parts and suggests places to grab them within a 3x 3 grid that is placed on top of the
object’s bounding box. Essentially, GPT-40 imagines what the segmented objects and ideal grasp
locations could be based on the visual and language inputs. This involves identifying potential
target objects and their parts that best match the instruction g and proposing candidate objects o,
and preferred grasping locations within a 3 x 3 grid for each object.

Combining GPT-40’s comprehension with a grid-based strategy enhances the precision of our sys-
tem. It divides the cropping box containing the proposed target object or part into a 3x 3 grid and
suggests a number from 1 to 9 indicating the optimal grasping region (1 for top-left, 9 for bottom-
right). This strategy, especially effective for low-resolution images, focuses on selecting optimal
regions rather than exact points while also considering the constraints of the robotic arm and gripper
for successful grasping.

Next, LangSAM[27] segments the image, focusing on the objects proposed by GPT-40, and crops
a point cloud containing these objects. The system iteratively refines its choices, using the cropped
point cloud to update GPT-40’s "imagine segmentation,” and predictions for the target object o; and
preferred grasping location. LangSAM and VLPart[28] handle object segmentation.

To determine the optimal grasping pose P,, the system generates a set of candidate grasp poses A
based on the cropped point cloud. In order to validate our system, we kept the variables consistent
in our experiments. We used different grasp generation networks for simulation and real-world
robot tests. Specifically, we employed Graspnet-1Billion [29] for all simulation comparisons while
utilizing FGC-Graspnet [30] for real-robot comparisons. This approach ensures that our results are
reliable and that any observed differences are due to the grasping system rather than inconsistencies
in the grasp generation network. The candidate grasps A are evaluated based on their proximity to
the preferred location suggested by GPT-40 and their grasp quality scores from the respective grasp
generation module.

The system executes the optimal pose P, for the selected target o;. If the target is occluded or not
visible, the system identifies and moves obstructing objects deemed most cost-effective to reveal the
target.

This closed-loop process demonstrates the system’s adaptability with the production of its next grasp
strategy P, ;1 based on the updated scene observation O, after each grasp attempt. The pipeline
adjusts its grasping strategy as needed until the task is successfully completed or the maximum
number of iterations is reached. It effectively manages the challenges presented by heavy clutter.
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3.3 GPT-40’s Role and Constraint Solver in Target Object Selection

Our grasping system leverages GPT-4o, a state-of-the-art vision-language model (VLM), to seam-
lessly integrate visual and language information. GPT-40 excels in contextual reasoning and knowl-
edge representation, making it particularly well-suited for complex grasping tasks in cluttered envi-
ronments.

Target Object Selection: GPT-40 identifies the object that best matches the provided instruction,
effectively locking it onto relevant regions. Unlike other models, GPT-40 avoids selecting irrelevant
objects, even without depth information. This capability ensures that the system does not attempt to
grasp objects that are unlikely to contain or conceal the goal object. For example, in Figure 2, the
small packet in the top left corner seems to have nothing hidden under it.

The target object selection process uses GPT-40 to choose the most relevant object based on the
given language instruction g and the scene context Of. This process considers factors such as object
relevance to the instruction, ease of grasping, and potential obstruction when making its selection.

The process can be formulated as:
O = arg m{?‘x fselecl(ga O;; 0) (1

where o; is the color and name of the selected target object, g is the language instruction, Of are
the color observations of the scene, and fec represents the selection function that evaluates the
suitability of each object o in the context of the instruction and scene.

Handling Occlusions and Clutter: GPT-4o strategically identifies and selects objects, ensuring ac-
curate grasping even when objects are heavily occluded or partially visible. The system intelligently
removes occluding objects to improve visibility and grasp accuracy.

The appendix provides further technical details, including the structured process GPT-40 follows to
analyze and select the optimal grasp pose.

3.4 3x3 Grid Strategy for Optimal Grasp Part Selection

Our 3x3 grid strategy enhances the system’s ability to handle low-resolution images (224 x224)
by shifting from selecting a precise point to choosing an optimal region within a 3x3 grid. This
transformation leverages broader contextual information, making the grasp selection process more
robust and reliable even with lower pixel density. The grid divides the target object, represented
by a bounding box that is derived from the highest-scoring output of the segmentation algorithm,
into nine cells. Each cell is evaluated based on safety, stability, and accessibility. GPT-40 outputs
a preferred grasping location within this grid, based on its imagined segmentation of the object,
guiding the subsequent segmentation and pose generation steps.

Unlike traditional methods that rely on a single best grasp pose selection, our system first evaluates
multiple potential grasp poses (top-k) based on their proximity to the preferred location. Then, from
these top candidates, the pose with the highest score is selected. This approach, combined with the
3 x 3 grid strategy to identify the optimal grasping region, ensures that the chosen grasp pose is both
optimal and stable, significantly enhancing overall performance and success rates.

3.5 Target Object Segmentation and Cropping Region Generation

Segmentation and Cropping: We use the LangSAM framework for generating precise segmenta-
tion masks and bounding boxes, which is good at segmenting low-resolution images. In cases where
GPT-4o identifies an object part, such as a handle, we utilize VLPart for fine-grained segmenta-
tion, ensuring detailed part identification. If VLPart fails, LangSAM combined with our 3x3 grid
strategy ensures robust performance.

Grasp Pose Generation: To determine the optimal grasping pose Py, the system generates a set of
candidate grasp poses A based on the cropped point cloud. The candidate grasps A are evaluated
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based on their proximity to the preferred location suggested by GPT-40 and their grasp quality scores
from the respective grasp generation module. The grasp with the highest score after this evaluation
is selected as the optimal grasp pose.

Robustness and Error Handling: Despite GPT-40’s advanced capabilities, occasional misidentifi-
cations may occur. To mitigate this, we employ iterative verification and corrective actions, dynam-
ically adjusting cropping regions and grasp strategies. This closed-loop control ensures continuous
improvement based on real-time feedback, significantly enhancing robustness and reliability.

Our ablation experiments (Table 1) show that using LangSAM significantly improves system per-
formance compared to using GPT-40 alone. By combining GPT-40’s contextual understanding with
LangSAM’s precise segmentation and VLPart’s fine-grained part identification, our system achieves
higher success rates and efficiency metrics.

3.6 Grasp Pose Generation and Selection

Candidate Grasp Pose Generation: Using the local point cloud, the system generates a set of
candidate grasp poses:

G = fgrasp(Plocal) 2)
where P)q., represents the point cloud data within the cropped region.

Grasp Pose Evaluation: We use an analytic computation method to grade each grasp. Based on
the improved force-closure metric from Graspnet-1Billion [29], the score is calculated by gradually
decreasing the friction coefficient x from 1 to 0.1 until the grasp is not antipodal. The lower the
friction coefficient y, the higher the probability of successful grasp. Our score s is defined as:

s=11—-p
such that s lies in (0, 1].

Each candidate grasp pose is evaluated based on its alignment with the preferred grasping location.
The optimal grasp pose is selected by maximizing a score function that considers the suitability of
each pose:
Yoptimal = argmmax SCOI'C(g, ppreferred)
geG

Here, goptimal 18 the optimal grasp pose, and Ppreferrea 1S the preferred grasping location. The robot
then performs the chosen ideal grasp pose (g.ext optimal).

3.7 Closed-Loop System for Robustness in Heavy Clutter

Our system enhances robustness in heavily cluttered environments through a closed-loop control
mechanism that continuously updates the scene understanding after each grasp attempt, ensuring
it works with the most current information. The cropping region and grasp poses are dynamically
adjusted based on real-time feedback, allowing the system to focus on the most relevant areas and
select the optimal grasp pose.

"Give me a fruit"

Goal object : Mango

GPT4o Select Object : green bottle  GPTdo Select Object :green bottle  GPT4o Select Object : yellow banana  GPT4o Select Object : yellow banana  GPT4o Select Object : yellow banana
Finally Select Object : green bottle  Finally Select Object : white bottle  Finally Select Object : yellow mango  Finally Select Object : white bottle  Finally Select Object : yellow mango

Figure 2: Closed-loop grasping process demonstrating

As shown in figure 2, the sequence of images demonstrates the process of selecting a target object
based on a user’s command. First, the user provides the goal object mango” and inputs the com-
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mand “’Give me a fruit”. The initial color input image is from the simulation. GPT-40 selects an
object (e.g., green bottle) and a preferred location based on the prompt, segmented into a 3x 3 grid.
This information is passed to LangSAM for segmentation. LangSAM segments all green bottles in
the image and crops a point cloud that includes all the green bottles. It then generates all possible
grasp poses within the cropped point cloud. The pose with the highest LangSAM segmentation
score is selected as the target object. The target point is the center of the preferred object location
provided by GPT-40. From there, the system evaluates the top 10 poses closest to the target point
and chooses the highest-scoring pose, which is then executed on the green bottle. Even if GPT-40’s
initial selection doesn’t match the goal (e.g., bottle instead of mango), LangSAM’s segmentation
and scoring process corrects errors and locks onto the intended target object due to distinct color
features.

4 Experiments

Our system is designed to work effectively both in simulation and real-world settings, with tailored
adaptations to address the unique challenges and constraints of each environment.

4.1 Simulation

Our simulation environment, built in PyBullet [31], involves a URS arm, a ROBOTIQ-85 gripper,
and an Intel RealSense L515 camera. The raw images are resized to 224 x 224 pixels and segmented
by LangSAM for precise object masks. We compare our solution against state-of-the-art methods,
Vision-Language Grasping (VLG)[10] and OVGrasp[9], using the same GraspNet backbone for fair
comparison. Additionally, we compare our method to directly use GPT-4o0 to select a target grasp
point without additional processing or integration with other modules.

Y

i i Get something | want around object Givemea
Grasp around object Get something to eat o hold other things ) cup

1 need acup | need afruit Get something to drink Give me the theramed Give me the pear

Figure 3: Clutter cases in simulation. The target objects are labeled with stars.

Grasp a ball Get something to hold other things I need a fruit

Figure 4: Heavy Clutter cases in simulation. The target objects are labeled with stars.

Our experiments focused on various tasks, such as grasping round objects, retrieving items for eat-
ing or drinking, and other specific requests. Each test case includes 15 runs, measured with two
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metrics: Task Success Rate and Motion Number. The Task Success Rate is the average percentage
of successful task completions within 15 action attempts over 15 test runs. Motion Number is the
average number of motions per task completion.

Results. The results, summarized in Table 1, demonstrate that our system significantly outper-
forms the baselines in overall success rates and efficiency metrics. Specifically, our method achieved
an average success rate of 0.980, with an average step count of 3.39 and an average success step
count of 3.32 in clutter case (Figure 3). These results indicate that our system not only excels in ac-
complishing grasp tasks but also operates with greater efficiency, requiring fewer steps for successful
task completion.

Table 1: Overall and Heavy Clutter Averages with Ablation Studies

Metric | VLG | OVGrasp | GPT4o (only) | no GPT4o | no3x3 | GPTcrop | Ours |
Overall Averages
Average Success T 0.753 0.438 0.713 0.740 0.973 0.973 0.980
Average Step | 9.545 4.88 9.826 7.14 3.40 3.97 3.39
Average Success Step | | 8.227 5.866 8.749 6.38 3.29 3.76 3.32
Heavy Clutter Overall Averages
Average Success T 0.511 0.000 0.311 0.667 0.733 0.756 | 0.789
Average Step | 32.98 NA 40.25 22.04 18.71 2048 | 19.35
Average Success Step | | 25.27 NA 33.48 20.50 16.50 16.89 | 17.06

We also evaluated our system’s performance in heavy clutter scenarios, where objects are partially
or completely occluded. These scenarios (Figure 4) involve up to 30 unseen objects and allow up to
50 action attempts per run. The results, shown in Table 1, demonstrate that our system significantly
outperforms the baselines in these challenging conditions, achieving the highest success rates2 and
the fewest steps required for successful grasps.

Table 2: Heavy Clutter Average Success 1

Task | VLG | OVGrasp | GPT4o(only) | Ours
grasp a ball 0.467 0.000 0.800 | 1.000
grasp a ball (CI) 0.867 0.000 0.400 | 0.933
get something to hold other things 0.067 0.000 0.000 | 0.133
get something to hold other things (CI) | 0.400 0.000 0.533 | 0.800
I need a fruit 0.467 0.000 0.133 | 0.867
I need a fruit (CI) 0.800 0.000 0.000 | 1.000

Ablation study. To assess the contribution of different components of our system, we conducted
ablation studies. The results of these ablation studies, shown in Table 1, highlight the effective-
ness of our complete system. The “no 3x3” configuration refers to an approach where the system
does not divide the object into a 3x3 grid to select the grasp point but instead uses a fixed or pre-
determined position. The ”GPT crop” configuration uses GPT-4o to output crop coordinates for the
point cloud, focusing on the relevant area for grasping. The "no GPT40” configuration removes the
use of GPT-40. These experiments demonstrate that our complete system, which integrates all these
components, achieves superior performance.

4.2 Real-World Experiments

We extended our system’s capabilities to real-world environments to handle complex and variable
scenarios. The setup included a URS5 robotic arm with 6 DoFs and a Robotiq 85 gripper. Obser-
vations were captured using a RealSense D455 camera, providing both color and depth images for
point cloud construction. The target pose for grasping was determined using the Movelt motion
planning framework with the RRT* algorithm. ROS managed the communication, running on a
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workstation equipped with a 12GB 2080Ti GPU. Our ThinkGrasp model, deployed using Flask on
a server with dual 3090 GPUs, provided grasp pose predictions within 10 seconds via the GPT-40
APL

In our real-world experiments5 we compared our system against VL-Grasp, using the same FGC-
GraspNet downstream grasp model to ensure a fair assessment of the improvements introduced by
our strategic part grasping and heavy clutter handling mechanisms.

I want a tape I want to cut something

T | \ 7|

Figure 5: Real Robot Task

Table 3: Real-World Clutter Task Performance

Clutter Task \ Step 1 Success Rate Step 2 Success Rate

I want a tape 15/20 (75%) success to get the toy dog 12/15 (80%) grasp tape
I want to cut something | 18/20 (90%) success to get the toy frog  10/18 (55.6%) grasp knife by handle

Results. Our results 3,11 show that our system has a high success rate in identifying and grasping
target objects, even in cluttered environments. The use of VLPart and GPT-4o significantly improved
robustness and accuracy. However, failures were sometimes due to limitations in single image data,
suboptimal grasp poses from the downstream model, and variations in the URS robot’s stability and
control. These findings underline the importance of robust image processing, high-quality grasp
pose generation, and stable robotic control. Further technical details and experimental setups are
provided in the appendix (Table A).

5 Conclusion

This paper presents a novel plug-and-play vision-language behavior modeling approach for robotic
grasping in cluttered environments. By leveraging GPT-40’s advanced contextual reasoning and
VLPart’s precise segmentation, our system effectively identifies and grasps target objects, even when
they are heavily occluded. Through extensive simulation and real-world experiments, our approach
demonstrated superior performance and robustness compared to existing methods.

However, our approach has some limitations. It is currently designed to perform grasp tasks only,
and the grasp poses generated may suffer from occlusions or inaccuracies due to the single-view
point cloud reconstruction, potentially causing collisions or incomplete grasps. Future work will
address these limitations by incorporating multi-view point cloud integration and expanding the
range of tasks beyond grasping.
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A.1 Prompt

Algorithm 1 Prompt

1:
2:
3:

4:

11:

12:
13:
14:

15:

16:

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

Given a 224 x 224 input image and the provided instruction, perform the following steps:
Target Object Selection:

Identify the object in the image that best matches the instruction. If the target object is found,
select it as the target object.

If the target object is not visible, select the most cost-effective object or object part considering
ease of grasping, importance, and safety.

If the object has a handle or a part that is easier or safer to grasp, select the part. [for example
the handle of a knife]

Consider the geometric shape of the objects and the gripper’s success rate when selecting the
target object or object part.

Output the name of the selected object or object part as [object:color and name] or [object
part:color and name].

Round object means like ball. Cup is different from mug.

Cropping Box Calculation:

Calculate a cropping box that includes the target object and all surrounding objects that might
be relevant for grasping.

Provide the coordinates of the cropping box in the format (top-left x, top-left y, bottom-right x,
bottom-right y).

Object Properties within Cropping Box:

For each object within the cropping box, provide the following properties:

Grasping Score: Evaluate the ease or difficulty of grasping the object on a scale from 0 to 100
(0 being extremely difficult, 100 being extremely easy).

Preferred Grasping Location: Divide the cropping box into a 3x3 grid and return a number
from 1 to 9 indicating the preferred grasping location (1 for top-left, 9 for bottom-right).
Additionally, consider the preferred grasping location that is most successful for the URS robotic
arm and gripper.

Output should be in the following format:

Selected Object/Object Part: [object:color and name] or [object part:color and name]

Cropping Box Coordinates: (top-left x, top-left y, bottom-right x, bottom-right y)

Objects and Their Properties:

Object: [color and name]

Grasping Score: [value]

Preferred Grasping Location: [value]

Example Output:

Selected Object/Object Part: [object:blue ball]

Cropping Box Coordinates: (50, 50, 200, 200)

Objects and Their Properties:

Object: Blue Ball

Grasping Score: 90

Preferred Grasping Location: middle

Object: Yellow Bottle

Grasping Score: 75

Preferred Grasping Location: top-right

A.2 Detailed Process of GPT-40 and Constraint Solver

Cropping Box Calculation: GPT-40 calculates a cropping box that includes the target object and
relevant surrounding objects, ensuring focused and effective grasping.

Object Properties within Cropping Box: GPT-40 assesses the grasping difficulty for each object
within the cropping box and identifies the optimal grasp location within a 3x3 grid. This detailed
analysis ensures the selection of the safest and most practical grasp points.
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By integrating these steps, GPT-40 ensures the selected grasp pose is feasible and optimal, con-
sidering all relevant factors. This method leverages GPT-40’s advanced understanding to interpret
complex instructions and make informed decisions, significantly enhancing robustness and success
rates in cluttered environments.

A.3 Results

Tables 4, 5, 6, 7, 8, 9, 10, and 11 present the performance of our approach compared to baseline
methods across various tasks. Our method consistently achieves high success rates and lower av-
erage steps, demonstrating robustness and efficiency. Notably, in tasks such as "Get something to
eat” and ”Give me the cup,” our system outperforms other methods, indicating its ability to iden-
tify and grasp target objects even in cluttered environments accurately. However, the heavy clutter
scenarios highlight limitations, such as increased average steps due to the single-view point cloud
reconstruction, which can lead to potential collisions or incomplete grasps.

Table 4: Average Success 1

Task | VLG | OVGrasp | GPT4o(only) | Ours
Grasp a round object 0.933 1.000 1.000 | 1.000
Get something to eat 1.000 0.000 0.800 | 1.000
Get something to hold other things | 0.933 0.000 0.600 | 1.000
I want a round object 1.000 1.000 0.533 | 0.867
Give me the cup 0.800 0.000 0.333 | 0.933
I need a cup 1.000 0.375 0.800 | 1.000
I need a fruit 0.733 1.000 0.933 | 1.000
Get something to drink 0.133 0.000 0.467 | 1.000
Give me the theramed 0.200 0.000 0.667 | 1.000
Give me the pear 0.800 1.000 1.000 | 1.000

Table 5: Average Step |

Task | VLG | OVGrasp | GPT4o(only) | Ours
Grasp a round object 6.47 8.00 540 | 440
Get something to eat 4.20 NA 7.80 | 2.00
Get something to hold other things | 9.60 NA 13.33 | 2.27
I want a round object 8.47 2.00 12.93 7.07
Give me the cup 9.93 NA 1453 | 6.20
I need a cup 10.31 4.40 8.80 | 3.93
I need a fruit 8.67 2.00 540 | 3.13
Get something to drink 14.47 NA 10.13 | 1.67
Give me the theramed 14.20 NA 12.07 | 2.00
Give me the pear 9.13 6.00 3.87 | 1.27
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Table 6: Average Success Step |

Task | VLG | OVGrasp | GPT4o(only) | Ours
Grasp a round object 5.86 8.00 540 | 440
Get something to eat 4.20 NA 6.00 | 2.00
Get something to hold other things | 9.21 NA 12.22 | 2.27
I want a round object 8.47 2.00 11.13 6.00
Give me the cup 8.67 NA 13.60 | 5.57
I need a cup 9.33 9.33 725 | 3.93
I need a fruit 6.36 2.00 5.71 3.13
Get something to drink 12.50 NA 7.71 | 1.67
Give me the theramed 11.00 NA 10.60 | 2.00
Give me the pear 7.67 6.00 3.87 | 1.27

Table 7: Heavy Clutter Average Step J

Task | VLG | OVGrasp | GPT4o(only) | Ours
grasp a ball 25.40 NA 39.33 | 19.20
grasp a ball (CI) 25.40 NA 43.73 | 21.33
get something to hold other things 34.53 NA NA | 14.27
get something to hold other things (CI) | 28.60 NA 31.53 | 17.53
I need a fruit 46.07 NA 48.40 | 25.87
I need a fruit (CI) 35.87 NA NA | 19.93

Table 8: Heavy Clutter Average Success Step J

Task | VLG | OVGrasp | GPT4o(only) | Ours
grasp a ball 21.61 NA 34.33 | 19.20
grasp a ball (CI) 21.61 NA 34.33 | 19.28
get something to hold other things 12.00 NA NA | 5.00
get something to hold other things (CI) | 26.50 NA 27.25 | 17.25
I need a fruit 41.57 NA 38.00 | 22.69
I need a fruit (CI) 32.33 NA NA | 19.93
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Table 9: Case Comparisons

Case Method avg successT avg.step] avg success stepl
Grasp a round object no 3x3 1.00 4.27 4.27
no GPT4o 1.00 6.87 6.87
GPT crop 1.00 3.47 3.47
Ours 1.00 4.40 4.40
Get something to eat no 3x3 1.00 2.27 2.27
no GPT4o0 1.00 2.87 2.87
GPT crop 1.00 2.33 2.33
Ours 1.00 2.00 2.00
Get something to hold other things  no 3x3 1.00 2.20 2.20
no GPT4o 0.40 14.00 12.50
GPT crop 0.933 9.00 8.57
Ours 1.00 227 2.27
I want a round object no 3x3 0.933 5.80 5.14
no GPT4o 0.600 10.27 7.67
GPT crop 0.800 5.93 4.25
Ours 0.867 7.07 6.00
Give me the cup no 3x3 1.00 6.20 6.20
no GPT4o0 0.800 6.67 6.25
GPT crop 1.00 5.40 5.40
Ours 0.933 6.20 5.57
I need a cup no 3x3 0.867 4.07 3.54
no GPT4o0 0.533 12.13 9.63
GPT crop 1.00 2.53 2.53
Ours 1.00 3.93 3.93
I need a fruit no 3x3 1.00 3.20 3.20
no GPT4o 0.733 11.00 9.55
GPT crop 1.00 3.87 3.87
Ours 1.00 3.13 3.13
Get something to drink no 3x3 0.933 1.53 1.57
no GPT4o0 0.400 12.13 10.00
GPT crop 1.00 2.47 2.47
Ours 1.00 1.67 1.67
Give me the theramed no 3x3 1.00 1.87 1.87
no GPT4o 1.00 2.07 2.07
GPT crop 1.00 247 247
Ours 1.00 2.00 2.00
Give me the pear no 3x3 1.00 1.60 1.60
no GPT4o 0.933 1.40 1.43
GPT crop 1.00 1.27 1.27
Ours 1.00 1.27 1.27
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Table 10: Heavy Clutter Case Comparisons

Case Method  avg successT avg step] avg success_step)
Grasp a ball no 3x3 0.933 22.33 20.36
no GPT4o 0.667 28.60 29.60
GPT crop 0.933 25.87 24.14
Ours 1.000 19.20 19.20
Grasp a ball [CI] no 3x3 1.000 20.27 20.27
no GPT4o 1.000 12.47 12.47
GPT crop 0.933 19.00 16.79
Ours 0.933 21.33 21.33
Get something to hold other things no 3x3 0.067 11.47 6.00
no GPT4o0 0.200 7.87 4.00
GPT crop 0.067 15.73 4.00
Ours 0.133 14.27 5.00
Get something to hold other things [CI] no 3x3 0.467 16.07 12.14
no GPT4o0 0.533 11.87 12.38
GPT crop 0.800 15.93 15.83
Ours 0.800 17.53 17.25
I need a fruit no 3x3 0.933 23.47 21.57
no GPT4o 0.733 38.27 34.00
GPT crop 0.800 27.07 21.33
Ours 0.867 25.87 22.69
I need a fruit [CI] no 3x3 1.000 18.67 18.67
no GPT4o0 0.867 33.13 30.54
GPT crop 1.000 19.27 19.27
Ours 1.000 19.93 19.93

Table 11: VL-Grasp Real-World Clutter Task Performance

Task Step |

I want a tape

I want to cut something

Step 1 Success Rate

11/20 (55%) success to get the toy dog
Step 2 Success Rate | 0/11 grasp tape, 6/11 (54.5%) success to get the red and green object

9720 (45%) success to get the toy frog
2/9 (22.2%) grasp knife by handle

15



	Introduction
	Related Work
	Method
	Problem Definition
	System Pipeline
	GPT-4o's Role and Constraint Solver in Target Object Selection
	33 Grid Strategy for Optimal Grasp Part Selection
	Target Object Segmentation and Cropping Region Generation
	Grasp Pose Generation and Selection
	Closed-Loop System for Robustness in Heavy Clutter

	Experiments
	Simulation
	Real-World Experiments

	Conclusion
	Appendix
	Prompt
	Detailed Process of GPT-4o and Constraint Solver
	Results


