
Two-stage Kernel Bayesian Optimization in High Dimensions
(Supplementary Material)

Jian Tan *,1 Niv Nayman *,2

*Equal contribution
1Alibaba Group , Sunnyvale, California, USA

2Technion - Israel Institute of Technology , Haifa, Israel

1 COMPARISON TO REMBO AND ALEBO

REMBO Wang et al. [2016] and ALEBO Letham et al. [2020] are designed for high-dimensional (large D) problems with
low intrinsic dimensions (small d), which essentially assumes that the function does not change along certain directions.
They do not necessarily perform well for problems without redundant dimensions, as shown by the following experiments
with D = d.

First, we compare REMBO and CobBO using Ackley 200D with 4000 iterations and 50 initial points. Even though
D = d = 200 in this case, we treat REMBO as if the effective dimension were d = 20, similar to CobBO’s subspaces with
an average size about 15. REMBO and CobBO reach the mean best values of 15.1 and 3.8, respectively, running for 31.2
and 3.4 hours, respectively. This shows that CobBO could outperform REMBO by a large margin for problems without
redundant dimensions. In addition, CobBO requires about 10% of the computation time of REMBO for this experiment,
which demonstrates the advantage of the two-stage kernels in reducing the computation time.

We further validate that CobBO is superior to SAASBO Eriksson and Jankowiak [2021] for the above example. We tested
SAASBO by running its official code with the official default settings: it takes more than 32 hours for SAASBO to complete
250 iterations and it achieves a best value of 11.17. It is far slower than CobBO and although the found result is already
better than REMBO’s (15.1), it is much worse than CobBO’s (3.8).

Next, we compare with ALEBO, which has demonstrated great performance for problems with large D but small d in Letham
et al. [2020]. Through extensive experiments we find that ALEBO works only when the underlying effective dimension
satisfies d ≤ 20. Otherwise, the algorithm suffers from the same curse of dimensionality as vanilla BO algorithms do, since
the subproblem in the embedding space of d dimensions is also challenging for large d.

Figure 1: Experiments with D = 10, 100, 1000 spaces of small effective dimensions d = 10, 5, 6, respectively

To this end, we design three different experiments. First, we study the general problems for D = d. Since ALEBO has
performance issues for large d, we test Ackley (D = d = 10). As ALEBO requires d < D, we treat it as if d = 8

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<j.tan@alibaba-inc.com>?Subject=Two-stage Kernel Bayesian Optimization in High Dimensions
mailto:<niv.nayman@gmail.com>?Subject=Two-stage Kernel Bayesian Optimization in High Dimensions

(ALEBO-8). In this case, ALEBO does not show good performance and is outperformed by CobBO, TurBO and CMAES,
as shown in Fig. 1 (left). Second, we test Ackley (D = 100, d = 5). In reality, we do not know the effective dimension d.
Therefore, we teat it as if d = 3, 5, 7 to obtain ALEBO-3, ALEBO-5 and ALEBO-7, respectively. Although this problem
indeed has a very small d = 5, CobBO can still perform well compared to ALEBO, as shown in Fig. 1 (middle). The third
experiment is using exactly the same setting as in Letham et al. [2020] for Hartmann6 with D = 1000 and d = 6. As shown
in Fig. 1 (right), ALEBO outperforms CobBO, since CobBO is not designed for a function with a very high dimension
D = 1000 and a very low effective dimension d = 6. The reason is because CobBO relies on selection of subspaces of
an average dimension 15, which cannot easily cover the optima in a high dimensional space D ≥ 1000. In this case, after
projecting the original function into a low d dimensional embedding space, CobBO can be applied to solve the subproblem
when d is still considered to be too large, e.g., d > 20.

2 COMPARISON TO LINEBO

Although sharing some common basic ideas, LineBO Kirschner et al. [2019] reduces the acquisition maximization cost
by restricting on a line, but it does not address the computational issue of the GP regression in the full space by using a
single kernel, i.e., the first stage of CobBO. In addition, it is difficult to find a good direction to form the line space at each
iteration, since searching for the optima in a high dimensional space on a random line is not computationally efficient. Fig. 2
shows that LineBO is significantly outperformed by CobBO using a typical example, e.g., Ackley, with D = 10, 30. For

Figure 2: CobBO outperforming different variants of LineBO

D = 10 with a query budget of 500, CobBO almost reaches the optimal solution 0.0 while LineBO (CoordinateLineBO)
only obtains 6.2. For D = 30 with a query budget of 5000, CobBO reaches 0.12 and LineBO (CoordinateLineBO) only
obtains 7.6. In both cases, RandomLineBO performs even worse than random search.

3 PROOFS

In this section we provide proofs for the theorems in Section 3.1.1.To make non-negative temporal losses, we modify the
losses in Eq. (3) to be non-negative by adding the same constant log(α̃),

ℓ̃t,i =


0 if i ∈ Ct and yt > Mt−1

log(α̃β̃) if i ∈ Ct and yt ≤ Mt−1

log(α̃) if i /∈ Ct.

This modification does not change the resulted distribution πt induced over the coordinates as it is invariant to shifts of the
losses, πt,i = wt,i/Wt,

πt,i =
e−η

∑t
τ=1 ℓ̃τ,i∑D

j=1 e
−η

∑t
τ=1 ℓ̃τ,j

=
e−η

∑t
τ=1(ℓτ,i+log(α̃))∑D

j=1 e
−η

∑t
τ=1(ℓτ,j+log(α̃))

=
e−ηt log(α̃)e−η

∑t
τ=1 ℓτ,i

e−ηt log(α̃)
∑D

j=1 e
−η

∑t
τ=1 ℓτ,j

=
e−η

∑t
τ=1 ℓτ,i∑D

j=1 e
−η

∑t
τ=1 ℓτ,j

.

Thus, π̃t,i and π̂t,i introduced in Sections 3.1 and 3.2 remain unchanged as well. For simplicity we refer to ℓ̃ as ℓ throughout
this section.

3.1 REGRET ANALYSIS FOR SAMPLING FROM THE COMBINATORIAL SPACE OF COORDINATE
BLOCKS

The probability π̃t,It of selecting a certain coordinate block It ⊂ I = {1, · · · , D} of size |It| = c ∈ C follows sampling
according to πt such that

w̃t,It =
∏
i∈It

w
1

|It|
t,i , W̃t =

∑
c∈C

∑
It∈Sc

w̃t,It , π̃t,It =
w̃t,It

W̃t

∀It ∈
⋃
c∈C

Sc (1)

with ∑
c∈C

∑
It∈Sc

π̃t,It
= 1. (2)

Lemma 3.1 For η > 0 and non-negative losses ℓt,i ≥ 0 the update rule in (3) satisfies for any block of coordinates I∗:

T∑
t=1

∑
c∈C

∑
It∈Sc

π̃t,It
· 1

|It|
∑
i∈It

ℓt,i −
T∑

t=1

1

|I∗|
∑
i∈I∗

ℓt,i ≤

η

T∑
t=1

∑
c∈C

∑
It∈Sc

π̃t,It
·

(
1

|It|
∑
i∈It

ℓt,i

)2

+
D log(D)

η
. (3)

Proof : Set
w̃0,It

= 1 ∀It ∈
⋃
c∈C

Sc (4)

Thus,

W̃t+1 =
∑
c∈C

∑
It∈Sc

w̃t+1,It
=
∑
c∈C

∑
It∈Sc

∏
i∈It

w
1

|It|
t+1,i

=
∑
c∈C

∑
It∈Sc

∏
i∈It

w
1

|It|
t,i e−

η
|It|

ℓt,i =
∑
c∈C

∑
It∈Sc

∏
i∈It

w
1

|It|
t,i · e−

η
|It|

∑
i∈It

ℓt,i

=
∑
c∈C

∑
It∈Sc

w̃t,It
· e−

η
|It|

∑
i∈It

ℓt,i

= W̃t

∑
c∈C

∑
It∈Sc

π̃t,It · e
− η

|It|
∑

i∈It
ℓt,i (5)

≤ W̃t

∑
c∈C

∑
It∈Sc

π̃t,It

1− η

|It|
∑
i∈It

ℓt,i + η2

(
1

|It|
∑
i∈It

ℓt,i

)2
 (6)

≤ W̃t

1 +
∑
c∈C

 ∑
It∈Sc

η2π̃t,It

(
1

|It|
∑
i∈It

ℓt,i

)2

− η

|It|
π̃t,It

∑
i∈It

ℓt,i

 (7)

≤ W̃te

∑
c∈C ·

(∑
It∈Sc

η2π̃t,It

(
1

|It|
∑

i∈It
ℓt,i

)2
− η

|It|
π̃t,It

∑
i∈It

ℓt,i

)
,

(8)

where (5) follows from (1), (6) holds since e−x ≤ 1 − x + x2 for x ≥ 0, (7) holds due to Eq. (2) and (8) holds since
1 + x ≤ ex.

Due to Eq. (4), we have,

w̃t,It
=
∏
i∈It

w
1

|It|
t,i =

∏
i∈It

w
1

|It|
0,i e−

η
|It|

∑T
t=1 ℓt,i = e−

η
It

∑T
t=1

∑
i∈It

ℓt,i . (9)

And,

W0 =
∑
c∈C

∑
It∈Sc

w̃0,It
=
∑
c∈C

∑
It∈Sc

1 =
∑
c∈C

|Sc| =
∑
c∈C

(
D

c

)
≤ (D!)|C|. (10)

Given that the weight of a certain coordinate block I∗ is less than the total sum of all weights, together with Eq. (8), (4)
and (10) we have

e−
η

|I∗|
∑T

t=1

∑
i∈I∗ ℓt,i = w̃t,I∗ ≤ W̃T

≤ (D!)|C|e

∑T
t=1

∑
c∈C ·

(∑
It∈Sc

η2π̃t,It

(
1

|It|
∑

i∈It
ℓt,i

)2
− η

|It|
π̃t,It

∑
i∈It

ℓt,i

)
.

Taking the log of both sides, we have

−η

T∑
t=1

1

|I∗|
∑
i∈I∗

ℓt,i ≤
T∑

t=1

∑
c∈C

·

 ∑
It∈Sc

η2π̃t,It

(
1

|It|
∑
i∈It

ℓt,i

)2

− η

|It|
π̃t,It

∑
i∈It

ℓt,i

+ |C| log(D!),

which, using D! ≤ DD, finishes the proof.

Proof of Theorem 1:Since ℓt,i ≤ log(α̃β̃), then(
1

|It|
∑
i∈It

ℓt,i

)2

≤

(
1

|It|
∑
i∈It

log(α̃β̃)

)2

≤ log(α̃β̃)2.

Thus, due to Eq. (2), one has

∑
c∈C

∑
It∈Sc

π̃t,It
·

(
1

|It|
∑
i∈It

ℓt,i

)2

≤
∑
c∈C

∑
It∈Sc

π̃t,It
log(α̃β̃)2 = log(α̃β̃)2.

Setting η = 1
log(α̃β̃)

√
|C|D log(D)

T in Eq. (3) yields

Regrett ≤ ηT log(α̃β̃)2 +
|C|D log(D)

η
= 2 log(α̃β̃)

√
T |C|D log(D). (11)

3.2 REGRET ANALYSIS FOR SAMPLING COORDINATES WITHOUT REPLACEMENT

Denote by pc the probability of choosing a certain block size c ∈ C, such that pc > 0 and
∑

c∈C pc = 1, e.g., for a uniform
sampling of the block size pc = 1/|C| for all c ∈ C.

The probability π̂t,It
of selecting a certain coordinate block It ⊂ I = {1, · · · , D} of size |It| = c ∈ C follows sampling

according to πt (Eq. (2) without replacement, such that,

π̂t,It
=

∑
p∈perm(It)

∏
k∈p

πt,k

1−
∑

j∈p1:k
πt,j

=

(∏
i∈It

πt,i

)
·

 ∑
p∈perm(It)

∏
k∈p

1−
∑

j∈p1:k

πt,j

−1
 = P(It) · R(It) (12)

where perm(It) are all the permutations of the set It and p1:k are the first k coordinates in the permutation p. Eq. (12) holds
due to the common numerator of all permutations where the left term P(It) corresponds to the probability of sampling
a subset of coordinates with replacement, and the right term R(It) is associated with sampling without replacement. Of
course, summing over all the possible blocks of size c results

∑
It∈Sc

π̂t,It
= 1 for all c ∈ C.

Thus π̃t,It = pc · π̂t,It and the probability of sampling every block of coordinates of any size sum up to 1 as well:∑
c∈C

∑
It∈Sc

π̃t,It
=
∑
c∈C

pc
∑

It∈Sc

π̂t,It =
∑
c∈C

pc = 1 (13)

Lemma 3.2 Sample a block size c ∈ C with probability pc > 0 and c coordinates without replacement according to πt.
Assume C ⊃ {1}, η > 0 and non-negative losses ℓt,i ≥ 0. Then the update rule in (3) satisfies for any block of coordinates
I∗:

T∑
t=1

∑
c∈C

pc
∑

It∈Sc

π̂t,It
· 1

|It|
∑
i∈It

ℓt,i −
T∑

t=1

1

|I∗|
∑
i∈I∗

ℓt,i

≤ η

T∑
t=1

∑
c∈C

pc
∑

It∈Sc

π̂t,It
·

(
1

|It|
∑
i∈It

ℓt,i

)2

+
log(D)

η
− T log(p1)

η
(14)

Proof : Starting with a uniform distribution over the coordinates w0,i ≡ 1
D such that W0 = 1 and we have:

p1 ·Wt+1 = p1 ·
∑
i∈I

wt+1,i

≤
∑
c∈C

pc
∑

It∈Sc

∏
i∈It

wt+1,i (15)

= Wt

∑
c∈C

pc
∑

It∈Sc

W−1
t

∏
i∈It

wt,ie
−ηℓt,i

≤ Wt

∑
c∈C

pc
∑

It∈Sc

W
−|It|
t

∏
i∈It

wt,ie
−ηℓt,i · |perm(It)| (16)

= Wt

∑
c∈C

pc
∑

It∈Sc

∏
i∈It

wt,i

Wt
e−ηℓt,i ·

∑
p∈perm(It)

1

= Wt

∑
c∈C

pc
∑

It∈Sc

∏
i∈It

πt,ie
−ηℓt,i ·

∑
p∈perm(It)

∏
k∈p

1

≤ Wt

∑
c∈C

pc
∑

It∈Sc

e−η
∑

i∈It
ℓt,i
∏
i∈It

πt,i ·
∑

p∈perm(It)

∏
k∈p

1−
∑

j∈p1:k

πt,j

−1

= Wt

∑
c∈C

pc
∑

It∈Sc

π̂t,It
e−η

∑
i∈It

ℓt,i (17)

≤ Wt

∑
c∈C

pc
∑

It∈Sc

π̂t,It
e−

η
|It|

∑
i∈It

ℓt,i

≤ Wt

∑
c∈C

pc
∑

It∈Sc

π̂t,It

1− η

|It|
∑
i∈It

ℓt,i + η2

(
1

|It|
∑
i∈It

ℓt,i

)2
 (18)

≤ Wt

1 +
∑
c∈C

pc ·

 ∑
It∈Sc

η2π̂t,It

(
1

|It|
∑
i∈It

ℓt,i

)2

− η

|It|
π̂t,It

∑
i∈It

ℓt,i

 (19)

≤ Wte

∑
c∈C pc·

(∑
It∈Sc

η2π̂t,It

(
1

|It|
∑

i∈It
ℓt,i

)2
− η

|It|
π̂t,It

∑
i∈It

ℓt,i

)
(20)

where

• (15) holds since C ⊃ {1} always contains a block size of 1 and thus∑
c∈C

pc
∑

It∈Sc

∏
i∈It

wt+1,i = p1
∑

It∈S1

∏
i∈It

wt+1,i +
∑

c∈C\{1}

pc
∑

It∈Sc

∏
i∈It

wt+1,i

= p1
∑
i∈I

wt+1,i +
∑

c∈C\{1}

pc
∑

It∈Sc

∏
i∈It

wt+1,i ≥ p1
∑
i∈I

wt+1,i

• (16) holds since W0 = 1 and Wt is monotonically non-increasing following the update rule (3) with non-negative
losses, thus wt ≤ 1 for all t; (17) follows from (12); (18) holds since e−x ≤ 1− x+ x2 for x ≥ 0; (19) holds due to
Eq. 13; (20) holds since 1 + x ≤ ex.

Given that the sum of weights of a certain coordinate block I∗ is less than the total sum of weights, together with Eq. 20,
w0,i ≡ 1

D and W0 = 1 we have

1

D

∑
i∈I∗

e−η
∑T

t=1 ℓt,i =
∑
i∈I∗

wt,i ≤ WT

≤ p−T
1 e

∑T
t=1

∑
c∈C pc·

(∑
It∈Sc

η2π̂t,It

(
1

|It|
∑

i∈It
ℓt,i

)2
− η

|It|
π̂t,It

∑
i∈It

ℓt,i

)
,

Taking the log of both sides, we have

log

(∑
i∈I∗

e−η
∑T

t=1 ℓt,i

)
− log(D)

≤
T∑

t=1

∑
c∈C

pc ·

 ∑
It∈Sc

η2π̂t,It

(
1

|It|
∑
i∈It

ℓt,i

)2

− η

|It|
π̂t,It

∑
i∈It

ℓt,i

− T log(p1) (21)

Following the same certain block, all the participating coordinates suffer the same loss ℓ∗t at every time step as follows from
Eq. (3), hence

log

(∑
i∈I∗

e−η
∑T

t=1 ℓt,i

)
= log

(∑
i∈I∗

e−η
∑T

t=1 ℓ∗t

)
= log

(
|I∗|e−η

∑T
t=1 ℓ∗t

)

= log(|I∗|)− η

T∑
t=1

ℓ∗t ≥ −η

T∑
t=1

ℓ∗t ,

which, together with Eq. (21), yields

−η

T∑
t=1

ℓ∗t − log(D)

≤
T∑

t=1

∑
c∈C

pc ·

 ∑
It∈Sc

η2π̂t,It

(
1

|It|
∑
i∈It

ℓt,i

)2

− η

|It|
π̂t,It

∑
i∈It

ℓt,i

− T log(p1),

which finishes the proof.

Proof of Theorem 2:Since ℓt,i ≤ log(α̃β̃) then(
1

|It|
∑
i∈It

ℓt,i

)2

≤

(
1

|It|
∑
i∈It

log(α̃β̃)

)2

≤ log(α̃β̃)2.

Thus, due to Eq. (13), we have

∑
c∈C

pc
∑

It∈Sc

π̂t,It ·

(
1

|It|
∑
i∈It

ℓt,i

)2

≤
∑
c∈C

pc
∑

It∈Sc

π̂t,It log(α̃β̃)
2 = log(α̃β̃)2.

Eq. (14) reads

Regrett ≤ ηT log(α̃β̃)2 +
log(D)

η
− T log(p1)

η
. (22)

Choosing η ≥ 1, we have

Regrett ≤ ηT log(α̃β̃)2 +
log(D)

η
− ηT log(p1) = ηT (log(α̃β̃)2 − log(p1)) +

log(D)

η
.

Thus setting η =
√

log(D)

T (log(α̃β̃)2−log(p1))
≥ 1 finally we have

Regrett ≤ O
(√

(log(α̃β̃)2 − log(p1)) · T log(D)

)
.

Remark: Note that the condition η ≥ 1 can be replaced by setting an appropriate p1 = T
√
ϵ for 0 < ϵ ≤ 1. Thus Eq. (22)

reads

Regrett ≤ ηT log(α̃β̃)2 +
log(D)− log(ϵ)

η
.

Thus, setting η = 1
log(α̃β̃)

√
log(D)−log(ϵ)

T yields Regrett ≤ O
(
log(α̃β̃)−1

√
T (log(D)− log(ϵ))

)
.

3.3 REGRET ANALYSIS FOR CONSISTENT QUERIES

The regret analyses presented in Sections 3.1 and 3.2 hold when incorporating the consistent queries mentioned in section 3.2
for an adapted settings.

Consider the update rule of Eq. (3) at each time step t = 1, . . . , T where the sampling of next coordinate blocks happens for
K ≤ T time steps at 0 = t0 < t1 < · · · < tk < · · · < tK−1 < tk = T . Both K and {tk}K−1

k=0 are unknown in advance and
are revealed to the decision maker along the process. At each time tk a coordinate block is selected and fixed for the next
tk+1 − tk steps. The effective losses incurred to the coordinates are the aggregation of all the temporal losses in this time
interval t ∈ [tk, tk+1 − 1], and thus ℓ̄k,i =

∑tk+1−1
t=tk

ℓt,i where ℓ̄k,i ≥ 0 due to ℓt,i ≥ 0.

Since the update rule in Eq. (3) is applied in every time step t = 1, . . . , T , we effectively have

wk+1,i = wk,i

tk+1−1∏
t=tk

e−ηℓt,i = wk,ie
−η

∑tk+1−1

t=tk
ℓt,i = wk,ie

−ηℓ̄k,i .

Define the stopping rule mentioned in section 3.23.23.2 such that the number of consistent queries in a subspace does not
cross τ ∈ [1, 2, . . . , T], such that tk+1 − tk ≤ τ for all k = 0, . . . ,K − 1 and thus ℓ̄k,i ≤ τ log(α̃β̃) since ℓt,i ≤ log(α̃β̃).

Hence, all the results hold by replacing T with K and log(α̃β̃) with τ log(α̃β̃).

4 BACKOFF STOPPING RULE HYPERPARAMETERS

The values of the hyperparameters ξ and τ of the stopping rule, described in Section 3.2, depend on the query budget T and
the problem dimension D, such that,

τ =
T

1000
+



1 D < 20

2 20 ≤ D < 70

3 70 ≤ D < 100

4 100 ≤ D < 200

5 200 ≤ D

ξ =


4 ∆t < 0.05

2 0.05 ≤ ∆t ≤ 0.1

0 ∆t > 0.1

This heuristic stopping rule is designed to take into account several considerations:

1. A maximal query budget (τ) in each subspace grows with the total query budget (T) and dimension (D).

2. A sufficient progress (∆t) needs to be made in the subspace to avoid only harvesting marginal improvements due to
local fluctuation. The more significant progress the more consecutive improvements (ξ) are allowed in this subspace.

This heuristic stopping rule is robust to all the problems presented in this work and to many other that we have tested.

5 THE UPPER BOUND OF THE BLOCK SIZES

At each iteration, the block size |Ct| of CobBO is uniformly sampled from a set formed through capping the elements
from {1, 4, 6, 8, 12, 14, 16, 22, 24, 26, 30} by the dimension D of the problem. Hence the average block size is about 15, the
lower bound is 1 and the upper bound is 30. This set is chosen to prefer relatively lower dimensions and works well for the
problems we experimented with. In Fig. 3 we present an ablation study focusing on the selection of the upper bound of
this set, which plots the means and variances of the best searched function values for Rastrigin on [−3, 4]50. Considering

that the differences of the mean values of the best obtained minimization solutions are small compared to the standard
deviations, we conclude that the algorithm is not very sensitive to the choice of the upper bound, while higher values are
slightly favourable, as expected, yet require more computation.

25 30 35 40

350

400

450

500

550

Upper bound on the block size

R
as

tr
ig

in
50

D
va

lu
e

(m
in

im
iz

at
io

n)

Figure 3: Impact of the block size upper bound on the best function values for Rastrigin on [−3, 4]50

6 MORE ON IMPLEMENTATION AND ADDITIONAL EXPERIMENTS

The proposed CobBO algorithm is implemented in Python 3. The source code and the original log files of all the experiments
are attached for review. The code has been utilized for various complex real-world applications and handles many corner
cases (hence the error fallbacks). For example, a parameter “smooth” of Scipy RBF (kernel=multiquadric, default=0.0) is
increased by 0.02 upon “try catch” numerical issues of ill conditioning.

Figure 4: Performance over the low dimensional Michalewicz function with symmetrical and asymmetrical subspaces

In Fig. 4 we show that CobBO also optimizes well the Michalewicz function on 10 dimensions, although it has symmetric
bumps, where certain subspaces pass through a point in a symmetrical manner and others break it. Other real applications
include parameter tuning for recommendation systems, database online performance tuning, and simulation based parameter
optimization. However, due to deviating from the main study of this paper, we refrain from presenting these results that
require elaborated description on the application backgrounds.

References

David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization with sparse axis-aligned subspaces. In
Uncertainty in Artificial Intelligence, pages 493–503. PMLR, 2021.

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adaptive and safe Bayesian
optimization in high dimensions via one-dimensional subspaces. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 3429–3438, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embeddings for high-dimensional
bayesian optimization. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 1546–1558. Curran Associates, Inc., 2020.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Freitas. Bayesian optimization in a billion
dimensions via random embeddings. J. Artif. Int. Res., 55(1):361–387, January 2016. ISSN 1076-9757.

	Comparison to REMBO and ALEBO
	Comparison to LineBO
	Proofs
	Regret analysis for sampling from the combinatorial space of coordinate blocks
	Regret analysis for sampling coordinates without replacement
	Regret analysis for consistent queries

	Backoff stopping rule hyperparameters
	The upper bound of the block sizes
	More on implementation and additional experiments

