
Published as a conference paper at ICLR 2021

A HYPERPARAMETERS AND NEURAL NETWORK ARCHITECTURE

For the proposed RAPID, the common hyperparameters are summarized in Table 2. RAPID is
based on the PPO implementation from OpenAI baselines1. The nstep is 128 for all MiniGrid envi-
ronments and MuJoCo environments, and 512 for MiniWorld-Maze-S5. For MuJoCo environments,
we report the results with only imitation loss since we find that the policy loss of PPO will harm the
performance in the episodic reward setting. The learning rate is 10−4 for all MiniGrid environments
and MiniWorld-Maze-S5, and 5× 10−4 for MuJoCo environments. Since MiniWorld-Maze-S5 and
MuJoCo environments have continuous state space, we set w2 = 0. In practice, in MiniWorld-
Maze-S5, we observe that counting the states will usually lead to memory error because it is not
likely to encounter the same state again in MiniWorld-Maze-S5 (COUNT is excluded in comparison
due to memory issues). Note that it is possible to use pseudo-counts (Bellemare et al., 2016; Os-
trovski et al., 2017), which we will study in our future work. For MiniGrid-KeyCorridorS2R3-v0,
MiniGrid-KeyCorridorS3R3-v0 and MiniWorld-Maze-S5, the update frequency of imitation learn-
ing is linearly annealed to 0 throughout the training process. For other environments, the imitation
learning is performed after each episode. We keep all other hyperparameters of PPO as default and
use the default CNN architecture provided in OpenAI baselines for MiniWorld-Maze-S5 and MLP
with 64-64 for other environments. The PPO also uses the same hyperparameters. We summarize
the state space of each environment and how the local and global scores are computed in Table 3.

Hyperparameter Value
w0 1
w1 0.1
w2 0.001
buffer Size 10000
batch Size 256
number of update steps 5

entropy coefficient 0.01
value function coefficient 0.5
γ 0.99
λ 0.95
clip range 0.2

Table 2: Common hyperparameters of the proposed RAPID (top) and the hyperparameters of PPO
baseline (bottom).

Environment State Space Local Score Global Score
8 MiniGrid Environments 7× 7× 3, discrete Eq. 1 Eq. 3
MiniWorld Maze 60× 80× 3, continuous Eq. 2 No
MuJoCo Walker2d 17, continuous Eq. 2 No
MuJoCo Walker2d 11, continuous Eq. 2 No
MuJoCo Walker2d 4, continuous Eq. 2 No
MuJoCo Walker2d 8, continuous Eq. 2 No

Table 3: The calculation of local and global scores for all the environments. Note that if the state
space is continuous. We disable the global score since counting continuous states is meaningless. A
possible solution is to use pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017).

For RANDOM, we implement the two networks with 64-64 MLP. For CURIOSITY and RIDE, we
use 64-64 MLP for state embedding model, forward dynamics model and inverse dynamics model,
respectively. However, with extensive hyperparameters search, we are not able to reproduce the
RIDE results in MiniGrid environments even with the exactly same neural architecture and hyper-
parameters as suggested in (Raileanu & Rocktäschel, 2020). Thus, we use the authors’ implemen-
tation2 (Raileanu & Rocktäschel, 2020), which is well-tuned on MiniGrid tasks. Our reported result

1https://github.com/openai/baselines
2https://github.com/facebookresearch/impact-driven-exploration

14

https://github.com/openai/baselines
https://github.com/facebookresearch/impact-driven-exploration


Published as a conference paper at ICLR 2021

is on par with that reported in (Raileanu & Rocktäschel, 2020). For SIL and AMIGO, we use the
implementations from the authors34 with the recommended hyperparameters.

For the methods based on intrinsic rewards, i.e., RIDE,, AMIGO CURIOSITY, RANDOM, and
COUNT, we search intrinsic reward coefficient from {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.
For RIDE, the intrinsic reward coefficient is 0.1 for MiniGrid-KeyCorridorS2R3-v0, MiniGrid-
KeyCorridorS3R3-v0, MiniGrid-KeyCorridorS4R3-v0, MiniGrid-MultiRoom-N10S4-v0,
MiniGrid-MultiRoom-N7S4-v0 and MiniWorld-Maze-S5, and 0.5 for MiniGrid-MultiRoom-
N7S8-v0, MiniGrid-MultiRoom-N10S10-v0 and MiniGrid-MultiRoom-N12S10-v0. For AMIGO
and CURIOSITY, the intrinsic reward coefficient is 0.1 for all the environments. For COUNT,
the intrinsic reward coefficient is 0.005 for all the environments. For RANDOM, the intrinsic
reward coefficient is 0.001 for all the environemnts. We also tune the entropy coefficient of RIDE
from {0.001, 0.0005}, as suggested by the original paper. The entropy coefficient is 0.0005 for
MiniGrid-KeyCorridorS2R3-v0, MiniGrid-KeyCorridorS3R3-v0, MiniGrid-KeyCorridorS4R3-v0,
MiniGrid-MultiRoom-N10S4-v0, MiniGrid-MultiRoom-N7S4-v0 and MiniWorld-Maze-S5, and
0.001 for MiniGrid-MultiRoom-N7S8-v0, MiniGrid-MultiRoom-N10S10-v0 and MiniGrid-
MultiRoom-N12S10-v0.

The w0, w1, and w2 are selected as follows. We first run RAPID on MiniGrid-MultiRoom-N7S8-
v0. We choose this environment because it is not too hard nor too easy, so we expect that it is
representative among all the considered MiniGrid environments. We fix w0 to be 1, and select
w1 and w2 from {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}, that is, there are 9 × 9 = 81
combinations. Note that we can fix w0 because only the relative ranking matters in the ranking
buffer. The selected w1 and w2 are then directly used in other environments without tuning. We
further conduct a sensitivity analysis on MiniGrid-MultiRoom-N7S8-v0 in Figure 8. We observe
that RAPID has good performance in a very wide range of hyperparameter choices.

log10(w2)

4 3 2 1 0 1 2 3 4

log 10(w
1)

4
3

2
1

0
1

2
3

4

re
tu

rn

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8: Sensitivity analysis of w1 and w2 (w0 is fixed to 1) in MiniGrid-MultiRoom-N7S8-v0. All
the experiments are run 3 × 106 timesteps. Note that 3 × 106 is more than enough for RAPID to
converge in this environment (see Figure 4). The average results over 5 independent runs are plotted.

B ENVIRONMENTS

B.1 MINIGRID ENVIRONMENTS

MiniGrid5 is a suite of light-weighted and fast gridworld environments with OpenAI gym interfaces.
The environments are partially observable with a grid size of N ×N . Each tile in the gird can have
at most one object, that is, 0 or 1 object. The possible objects are wall, floor, lava, door, key,
ball, box and goal. Each object will have an associated color. The agent can pick up at most one
object (ball or key). To open a locked door, the agent must use a key. Most of the environments in

3https://github.com/junhyukoh/self-imitation-learning
4https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
5https://github.com/maximecb/gym-minigrid

15

https://github.com/junhyukoh/self-imitation-learning
https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
https://github.com/maximecb/gym-minigrid


Published as a conference paper at ICLR 2021

MiniGrid are procedurally-generated, i.e. a different grid will be sampled in each episode. Figure 9
shows the grids in four different episodes. The procedurally-generated nature makes training RL
challenging because the RL agents need to learn the skills that can generalize to different grids. The
environments can be easily modified so that we can create different levels of the environments. For
example, we can modify the number of rooms and the size of each room to create hard-exploration
or easy-exploration environments. The flexibility of MiniGrid environments enables us to conduct
systematic comparison of algorithms under different difficulties.

Figure 9: Rendering of MultiRoom-N12-S10 (top row) and KeyCorridor-S4-R3(bottom row) in 4
different episodes. The environments are procedually-generated, i.e., a different room is generated
in a new episode.

The original observations of MiniGrid are dictionaries, which consist of a image field providing a
partially observable view of the environment, and a mission field describing the goal with texts. In
our experiments, we use ImgObsWrapper which only keeps the image field. The environment
uses a compact encoding with 3 input values per visible grid cell. Note that the cells behind the wall
or unopened doors are invisible.

The possible actions in MiniGrid are (1) turn left, (2) turn right, (3) move forward, (4) pick up an
object, (5) drop the carried object, (6) open doors/interact with objects, and (7) done. The agent will
remain in the same state if the action is not legal. For example, if there is no object in front of the
agent, the agent will remain in the same state when performing action (4) pick up an object.

We focus on MultiRoom-NX-SY and KeyCorridor-SX-RY, where X and Y are hyperparameters
specifying the number of rooms or the room sizes in the environments. With larger X and Y, the
environments will become more difficult to solve due to the sparse rewards. Figure 10 shows the
environments (with different difficulties) in this work. In MultiRoom-NX-SY, the agent needs to
navigate the green tile in the last room. If the agent successfully navigates the goal, the agent will
receive a reward of 1 subtracting some penalties of the timesteps spent. In KeyCorridor-SX-RY, the
agent needs to pick up the key, use the key to open the locked door, and pick up the ball. Similarly,
the agent will receive a reward of 1 subtracting some penalties of the timesteps spent if it picks up the
ball. Both environments are extremely difficult to solve using RL alone due to the sparse rewards.

B.2 MINIWORLD MAZE ENVIRONMENT

MiniWorld6 is a minimalistic 3D interior environment simulator. Similar to Minigrid, we can easily
create environments with different levels. We focus on MiniWorld-Maze, where the agent is asked
to navigate the goal through a procedurally-generated maze. The agent has a first-person partially
observable view of the environment. This environment is extremely difficult to solve due to sparse
reward, long-horizon, and the procedurally-generated nature of the environments.

6https://github.com/maximecb/gym-miniworld

16

https://github.com/maximecb/gym-miniworld


Published as a conference paper at ICLR 2021

(a) MultiRoom-N7-S4 (b) MultiRoom-N10-S4 (c) MultiRoom-N7-S8 (d) MultiRoom-N10-S10

(e) KeyCorridor-S3-R2 (f) KeyCorridor-S3-R3 (g) KeyCorridor-S4-R3 (h) MultiRoom-N12-S10

Figure 10: Rendering of Minigird environments used in the work.

In this work, we focus on MiniWorld-Maze-S5, a variant of the MiniWorld Maze environment with
5×5 tiles. Figure 11 shows the top view of the mazes in four different episodes. In each episode, the
agent and the goal are initialized in the top-left and bottom-right corners of the map, respectively.
In this way, we ensure that the agent and the goal are far away enough so that the agent can not
easily see the goal without exploration. A random maze will be generated in each episode. There
are three possible actions: (1) move forward, (2) turn left, and (3) turn right. The agent will move
0.4× tile length if moving forward, where tile length is the length of one side of a tile. The agent
will rotate 22.5 degrees if turning right/left. The time budget of each episode is 600. The agent will
not receive any positive reward if it can not navigate the goal under the time budget.

Figure 11: Example generated mazes in 4 diffident episodes.

B.3 SPARSE MUJOCO ENVIRONMENTS

Mujoco is a physical engine for continuous control (Todorov et al., 2012). Figure 12 shows the
rendering of the four MuJoCo tasks used in our work. The original MuJoCo environments use
dense rewards, i.e., a well-defined reward is given in each timestep. However, in many scenarios,
well-defined dense rewards may be not available. We consider a variant of MuJoCo task using only
episodic reward. Specifically, the original rewards are accumulated and only an episodic reward is
given in the final timestep. The agent will receive a 0 reward in all the other timesteps. This sparse
setting makes the tasks much more challenging to solve. Contemporary RL algorithms will usually
suffer from the sparse rewards and deliver unsatisfactory performance. We aim to use these sparse
variants to study whether our RAPID can effectively capture the sparse rewards.

17



Published as a conference paper at ICLR 2021

(a) Walker2d (b) Hopper (c) InvertedPendulum (d) Swimmer

Figure 12: Rendering of Mujoco environments.

C ABLATIONS

Figure 13 shows the learning curves of RAPID against different ablations. Without local scores, we
observe significant performance drop on challenging environments in terms of sample efficiency
and final performance, i.e., on MultiRoom-N7-S8, MultiRoom-N10-S10, MultiRoom-N12-S10,
KeyCorridor-S3-R3, and KeyCorridor-S4-R3. This suggests that the proposed local score plays
an important role in encouraging exploration. We also observe that without buffer, the agent fails
to learn a good policy. Naively using the proposed scores as intrinsic reward will harm the per-
formance. Using the extrinsic reward and the global score to rank the episodes also contribute in
the challenging environments, such as KeyCorridor-S4-R3. Therefore, the three proposed scoring
methods may be complementary and play different roles in different environments.

RAPID w/o r ewar d w/o global w /o buf ferw /o l ocal

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 13: Learning curves of RAPID and the ablations

D FULL ANALYSIS RESULTS

D.1 IMPACT OF THE NUMBER OF UPDATE STEPS

18



Published as a conference paper at ICLR 2021

201 105

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 14: Impact of training steps S on MiniGrid environments.

D.2 IMPACT OF BUFFER SIZE

200001000 10000 500005000

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 15: Impact of buffer size D on MiniGrid environments.

19



Published as a conference paper at ICLR 2021

D.3 PURE EXPLORATION ON MINIGRID

RAPID CURIOSITY RANDOMRIDE SIL PPOCOUNTAMIGO

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.00

0.05

0.10

0.15

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(h) MultiRoom-N12-S10

Figure 16: Extrinsic rewards achieved by RAPID and baselines with pure exploration

D.4 LOCAL EXPLORATION SCORE OF PURE EXPLORATION ON MINIGRID

RAPID CURIOSITY RANDOMRIDE SIL PPOCOUNTAMIGO

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ex
pl

or
at

io
n 

sc
or

e

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

ex
pl

or
at

io
n 

sc
or

e

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.00

0.05

0.10

0.15

0.20

0.25

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(h) MultiRoom-N12-S10

Figure 17: Local exploration scores achieved by RAPID and baselines with pure exploration

20



Published as a conference paper at ICLR 2021

E LEARNING CURVES WITH MORE ROOMS

RAPID RIDE

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N4-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N8-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(c) MultiRoom-N12-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(d) MultiRoom-N16-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(e) MultiRoom-N20-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

(f) MultiRoom-N24-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

(g) MultiRoom-N28-S4

Figure 18: The learning curves with more rooms

F LEARNING CURVES WITH LARGE ROOMS

RAPID RIDE

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N4-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(b) MultiRoom-N4-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N4-S12

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

re
tu

rn

(d) MultiRoom-N4-S16

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(e) MultiRoom-N4-S20

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(f) MultiRoom-N4-S24

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

re
tu

rn

(g) MultiRoom-N4-S28

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(h) MultiRoom-N4-S32

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(i) MultiRoom-N4-S36

Figure 19: The learning curves with larger rooms sizes.

21



Published as a conference paper at ICLR 2021

G ABLATION AND ANALYSIS OF MINIWORLD-MAZE

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6
RAPID
w/o local
w/o reward
w/o buffer

Figure 20: Learning curves of RAPID and the ablations on MiniWorld Maze. We observe minor
performance drop when removing the local score, substantial performance drop when removing
extrinsic rewards or the buffer.

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6

0.8 1
5
10
20

Figure 21: Impact of training steps on MiniWorld Maze.

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6

0.8
1000
5000
10000
20000
50000

Figure 22: Impact of buffer size on MiniWorld Maze.

22



Published as a conference paper at ICLR 2021

0 1 2 3 4 5
timesteps 1e6

0.00

0.05

0.10

0.15

0.20 RAPID
PPO
SIL
RANDOM
CURIOSITY
RIDE

Figure 23: Extrinsic rewards achieved by RAPID and baselines on MiniWorld Maze with pure
exploration.

0 1 2 3 4 5
timesteps 1e6

2000

2200

2400

2600

2800

3000 RAPID
PPO
SIL
RANDOM
CURIOSITY
RIDE

Figure 24: Local exploration scores achieved by RAPID and baselines on MiniWorld Maze with
pure exploration.

H COMPARISON WITH STORING ENTIRE EPISODES IN THE BUFFER

A variant of RAPID is to keep the entire episodes in the buffer instead of state-action pairs. The
intuition of keeping the whole episode is that it is possible that a particular state-action pair may
only be good in terms of exploration, in the context of the rest of the agent’s trajectory in that
episode. To test this variant, we force the buffer to keep the entire episode by allowing the episode
at the end of the buffer to exceed the buffer size. For example, given that the buffer size is 5000, if
the length of the end episode is 160 and the number of state-action pairs in the buffer is 5120, we
do not cut off the end episode and exceptionally allow the buffer to store 5120 state-action pairs.
In this way, we ensure that the entire episodes are kept in the buffer. We run this experiment on
MiniGrid-MultiRoom-N7-S8-v0 (Figure 25). We do not observe a clear difference in the learning
curves.

23



Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

re
tu

rn

Not Keeping All
Keeping All

Figure 25: Comparison of keeping all the state-action pairs of an episode and not keeping all the
state-action pairs (i.e., a fixed buffer size) on MultiRoom-N7-S8. The experiments are run 5 times
with different random seeds. We observe no clear difference in the learning curves of these two
implementations.

I RESULTS ON PROCEDURALLY-GENERATED SWIMMER

The standard MuJoCo environments are singleton. Here, we modify the Swimmer-v2 environment
to make it procedurally-generated. Specifically, we make the environment in each episode different
by modifying the XML configuration file of MuJoCo engine in every new episode. We consider
two environmental properties, i.e., density and viscosity. Density is used to simulate lift and drag
forces, which scale quadratically with velocity. Viscosity is used to simulate viscous forces, which
scale linearly with velocity. In the standard Swimmer-v2 environment, the density and the viscosity
are fixed to 4000 and 0.1, respectively. In the first experiment, we uniformly sample the density in
[2000, 4000] in each new episode to make it procedurally-generated, denoted as Density-Swimmer.
Similarly, in the second environment, we uniformly sample the velocity in [0.1, 0.5], denoted as
Velocity-Swimmer. These two variants make RL training more challenging since the agent needs
to learn a policy that can generalize to different densities and velocities. Similarly, we accumulate
the rewards to the final timestep of an episode to make the environments sparse. Both environments
are provided in our code for reproducibility. The results are reported in Figure 26. We observe
that all methods learn slower on these two variants. For example, RAPID only achieves around 190
return in Density-Swimmer, while RAPID achieves more than 200 return in Swimmer. Similarly,
SIL reaches around 100 return after around 5×106 timesteps in Density-Swimmer, while it achieves
around 100 return after around 3 × 106 timesteps in Swimmer. Nevertheless, RAPID can discover
very good policies even in these challenging procedurally-generated settings.

24



Published as a conference paper at ICLR 2021

RAPID SIL PPO

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

250

(a) Swimmer

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

(b) Density-Swimmer

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

250

300

(c) Velocity-Swimmer

Figure 26: (a) is the singleton swimmer environment. In (b) the density is procedurally-generated. In
(c) the velocity is procedurally-generated. All the methods tend to learn slower in the procedurally-
generated settings. Nevertheless, RAPID is still able to discover good policies in these challenging
variants.

J DISCUSSIONS OF ANNEALING

In our experiments, we find that annealing the updating step to 0 sometimes helps improve the
sample efficiency. However, in some environments, annealing will have a negative effect on the final
performance. To show the effect of annealing, we plot learning curves with or without annealing on
MiniGrid-KeyCorridorS3R2-v0 and MiniGrid-MultiRoom-N12-S10-v0 in Figure 27. We observe
that annealing can help in KeyCorridor-S3-R2. The possible explanation is that, after the agent
navigates the goal, it has access to the reward signal. the PPO objective is sufficient to train a good
policy with the extrinsic rewards. The imitation loss may harm the performance since it could be
better to perform exploitation rather than exploration at this stage. However, in MultiRoom-N12-
S10, annealing will harm the performance. In particular, the performance drops significantly in the
final stage when the updating frequency of imitation loss approaches zero. The possible reason is
that MultiRoom-N12-S10 needs very deep exploration to find the goal. Even though the PPO agent
can navigate the goal, it may easily suffer from insufficient exploration when it encounters a new
environment. As a result, the agent needs to keep exploring the environment in order to generalize.
Introducing imitation loss will ensure that the agent keeps exploring the environments.

0 1 2 3
timesteps 1e6

0.0

0.2

0.4

0.6

0.8

re
tu

rn

No Annealing
Annealing

(a) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

re
tu

rn

No Annealing
Annealing

(b) MultiRoom-N12-S10

Figure 27: Annealing versus not annealing. Annealing is helpful in KeyCorridor-S3-R2. However,
the policy fails to converge with annealing in MultiRoom-N12-S10.

25


